
Lux URP Essentials 1.91

Lux URP Essentials
Lux URP Essentials provides a growing collection of manually written and
optimized HLSL shaders and custom nodes for Shader Graph. It reduces
the gap between HDRP and URP by adding missing advanced lighting
models and ships with a ton of various rendering features to cover a wide
range of use cases.

I tried to somehow cluster the provided shaders using hopefully
meaningful categories as listed below — nevertheless I just encourage
you to check out all included demos to get the full picture.

The new standard Lit​
Lit extended and Lit Uber with full stencil support and further functions.

Environment related shaders
Mesh terrain, (interactive) grass, foliage, rock, water, tree creator, height
blended parallax terrain and terrain blend shaders.

Advanced Materials and Lighting
Skin, hair, cloth, transmission, clear coat, glass, fuzz, toon lighting, simple
flat shading and lit and shadowed particles.

Effects
Fast outlines, rim based animated highlights, hidden surfaces, screen
space decals, billboards and simple volumetrics.

Shader Graph
Custom nodes for cloth, transmission, clear coat, glass and toon lighting
next to some handy helper nodes like procedural stochastic texturing.

Getting Started​
Do not miss the introduction!

FAQ
Please make sure you have a look into the section FAQ where I will collect
frequently asked questions as well as tips and tricks and visit the forum.

https://forum.unity.com/threads/released-lux-lwrp-essentials.712619/

Lux URP Essentials 1.91

Compatibility
Lux URP Essentials have been successfully tested starting with Unity 2019.1.3 using
LWRP 5.16.1 up to Unity 2022.2 and URP 14.0.4. — but each version of URP needs its
corresponding version of Lux URP Essentials.

If you download the package using the latest version of Unity you will get the latest
version of Lux URP Essentials which also contains packages for older versions.

If you want to upgrade, look if there is a new version available for your version of
Unity/URP using the package manager or check the asset store page.

In case you import one of the older packages some features described here may not be
available as I usually do not backport new features to older versions.

Table of Content

Lux URP Essentials
Compatibility
Table of Content
Getting started
Shader Overview

The new standard Lit
Lit extended* and Lit Uber shader

Environment related shaders
Mesh Terrain Shader
Grass and Foliage Shaders
Top Down Projection Shader
Water Shader
Tree Creator Shaders
Terrain Shader
Terrain Blend Shader
Versatile Blend Shader (experimental)

Advanced Materials and Lighting
Skin Shader
Hair Shader
Cloth Shader
Clear Coat Shader
Transmission Shader
Fuzz Shader
Glass Shader
Lit and shadowed Particles Shaders
Flat shaded Shader
Toon Shader

Effects

Lux URP Essentials 1.91

Fast Outline Shader
Toon Outline Shader
Decal Shaders
Billboard Shader
Volumetric shaders

Lux URP/Lit Extended Shader
Special Shader Inputs

Lux URP/Lit Extended Uber Shader
Special Shader Inputs

Mesh Terrain Shader
Shader Inputs
Tips

Grass and Foliage Shaders
Performance
LuxURP_LayerBasedCulling Script
Wind Input
LuxURP_Wind Script
Grass Shader Inputs
Foliage Shader Inputs
Custom Grass and Foliage Models

Vertex Colors Grass Shader
Vertex Colors Foliage Shader

Normals Grass Shader
Normals Foliage Shader
Adding Bending on Import

Setting up Wind
Bending quality

Top Down Projection Shader
Shader Inputs
Get Mask from Normal

Tips
Water Shader

Shader Inputs
Tips

Tree Creator Shaders
Usage
Shader Inputs
VR only
Changes compared to the original shaders
Tree Creator LOD trees

Lux URP Animated Billboard shader
Terrain Shader

Usage
Material Settings

Lux URP Essentials 1.91

Height Maps
Terrain Layers

Terrain Blend Shader (deprecated)
Draw Order
Usage
Shadows
Shader Inputs
Known Issues

Versatile Blend Shader (deprecated)
Shader Inputs
Known Issues

Skin Shader
Shader Inputs

Hair Shader
Shader Inputs

Cloth Shader
Shader Inputs

Clear Coat Shader
Shader Inputs

Transmission Shader
Shader Inputs

Fuzz Shader
Shader Inputs

Glass Shader
Limitations
Alpha or transparency
Complex glass objects
The importance of enabling ZWrite
Shader Inputs

Lit Particles Shaders (deprecated)
Real Time Shadows
Vertex Streams
Normal Direction
Shader Inputs
Known Issues

Toon Shading Shader
Flat Shading Shader

Shader Inputs
Highlight Shaders

Lux URP/Fast Outline Shader
Outline Overview Demo
Setup
Limitations
Outline Runtime Demo

Lux URP Essentials 1.91

Hidden surfaces
Selection outline

Usage
Shader Inputs

Lux URP/Fast Outline AlphaTested Shader
Shader Inputs

Writing to the stencil buffer using the Lit Extended Uber Shader
Adding stencil options to custom shaders
Using Rim Lighting to highlight selected objects

Toon outline shader
Usage
Shader Inputs

Decals
Limitations
Usage
Performance
HQ Sampling
Enable Normal Buffer (SSAO)
Exclude objects from receiving decals

Using the Stencil Buffer
Using the Render Queue

Decals on top of decals
Decals and Outlines

Outline material receiving decals
Outline material not receiving decals

Shader Inputs
Billboard Shader

Shader Inputs
LuxURP_BillboardBounds.cs

Volumetric Shaders
Light Beams

Shader inputs
Box and Sphere Volumes

Default Settings
Optimize Rendering
Box and Sphere Meshes
Shader Inputs

Custom Nodes for Shader Graph
Custom lighting nodes — Introduction

Adding Emisission
Feature variants

Toon Lighting
Sub Graph Inputs
Sub Graph Outputs

Lux URP Essentials 1.91

Transmission Lighting
Sub Graph Inputs
Sub Graph Outputs

Charlie Sheen Lighting
Subgraph Inputs
Subgraph Outputs

GGX Anisotropic Lighting
Subgraph Inputs
Subgraph Outputs

Clear Coat Lighting
Subgraph Inputs
Subgraph Outputs

Skin Lighting
Subgraph Inputs
Subgraph Outputs

Hair Lighting
Subgraph Inputs
Subgraph Outputs

Transparent Lighting
Subgraph Inputs
Sub Graph Outputs

Standard Lighting
Subgraph Inputs
Subgraph Outputs

Tone mapping
Graph Inputs
Graph Outputs
Usage
Script Inputs

Simple Multiply
Graph Inputs

Flat Shading
Subgraph Inputs
Subgraph Outputs

Instanced Mesh Particles
Subgraph Outputs

Top Down Projection
Subgraph Inputs

Double sided flipped normalTS
Subgraph Inputs
Subgraph Outputs

Metallic Albedo to Specular Albedo
Subgraph Inputs
Subgraph Outputs

Lux URP Essentials 1.91

Procedural Stochastic Texturing
Usage
Tweaking the Shader Graph

Inputs
Outputs
Optimizing

Procedural Texturing
Subgraph Inputs
Subgraph Outputs
Optimizing

Improved Sampling
Inputs
Outputs

Advanced Parallax
Inputs
Outputs

Camera Fade
Inputs
Outputs
Additional Inputs

FAQ
Fast or Toon Outlines and multiple Materials
Creating a tinting glass material
Refractive Glass and DOF

The solution
Mixing Cloth and standard metallic lighting

Getting started
●​ Make sure you have the proper version of the Core RP Library and the Lightweight RP /

Universal RP installed (must match or be compatible with the Lux URP shader package
you will import) in the Window → Package Manager.

●​ Set Color Space to Linear in Project Settings → Player → Other Settings

●​ Open the Scriptable Render Pipeline Settings assigned under Project Settings →
Graphics and check Depth Texture and the Opaque Texture as both are needed by e.g.
the water or the glass shader. If you check Opaque Downsample or not is up to you.​

Lux URP Essentials 1.91

​

●​ Lux URP/LWRP Essentials fully support the SRP batcher. So you should enable it in
your Scriptable Render Pipeline Settings.

●​ Import the package – if you have not done already – and have a look into the the
included demo scenes (located in Lux URP/ LWRP Essentials → Demos).

Shader Overview

The new standard Lit

Lit extended* and Lit Uber shader
While the first one simply adds support for stencil options and rim lighting the Uber version
comes with a bunch of advanced features such as parallax mapping, specular anti aliasing,
horizon occlusion, bent normals and lets you fade out geometry close to the camera.
These shaders are needed in case you want to use features such as the simple outline along
with a “regular” material as they allow you to set up the stencil buffer properly. * Lit extended
was dropped starting with URP 12. Details →

Environment related shaders

Mesh Terrain Shader
The mesh terrain shader lets you shade any custom mesh using up to 4 detail textures
(albedo, smoothness and normal) mixed together based on an RGB splat map. It usually
samples all textures according to the UVs allowing you to texture even cliffs and overhangs
without texture stretches – however the first detail layer may use top down projection to
enhance mesh blending with objects using the Top Down Projection shader or hide texture
seams at UV shell borders. Details →

Grass and Foliage Shaders

The grass and foliage shaders allow you to place individual patches of grass and foliage as
single game objects within your scene whose bending is globally controlled by a built in wind
zone and a custom render texture. In order to speed up rendering all grass and foliage patches
in the demos are placed on the built in layers TransparentFX or Water which get culled at a
distance of 30 / 50 meters using the simple LuxURP_LayerBasedCulling script . Details →

Lux URP Essentials 1.91

Top Down Projection Shader
The top down projection shader allows you to add one texture set on top of the regular texture
set based on the up direction of the normal in world space to create effects such as moss on
rocks, eroded sand or snow.

The projected texture set is sampled in world space and thus gives seamlessly textured
surfaces even over multiple objects.

Normals are blended properly in world space using Reoriented Normal Mapping. The shader
does not need to do expensive triplanar mapping. Details →

Water Shader
The water shader offers fast yet compelling water rendering for rivers or lakes and supports
proper refractions, view depth based underwater fog, soft edge blending with the surrounding
geometry and dynamically generated edge and slope based foam – both using perspective
and orthographic projection. Details →

Tree Creator Shaders

The Lux LWRP/URP tree creator shaders are a port of the original tree creator shaders for the
built in render pipeline and allow you to use tree creator trees along with LWRP and URP.
Details →

Terrain Shader

The terrain shader supports proper(!) normals, height based blending, parallax extrusion and
painted holes (Unity 2019.3. and above only). Details →

Terrain Blend Shader

The terrain blend shader allows you to smoothly blend meshes like cliffs or overhangs with
your terrain. Details →

Versatile Blend Shader (experimental)

The versatile blend shader allows you to smoothly blend meshes with any other opaque
geometry in your scene. Details →

Advanced Materials and Lighting

Skin Shader
The skin shader uses pre-integrated diffuse lighting and lets you create state of the art skin
surfaces. Details →

Hair Shader

The hair shader supports anisotropic Kajiya-Kay specular hair lighting and transmission:
Details →

Lux URP Essentials 1.91

Cloth Shader
The cloth shader supports Charlie Sheen or GGX anisotropic lighting and transmission to
cover a wide range of different fabrics. It allows properly lit double sided rendering using
VFACE.​
Details →

Clear Coat Shader

A versatile clear coat shader that lets you use duo coloring, add metallic flakes and even mix
clear coat with standard lighting within the same material.​
Details →

Transmission Shader
A versatile subsurface scattering or transmission shader, that lets you create materials like
wax or thin plastics and supports transmission as well as wrapped diffuse lighting and can
mix both with standard lighting within the same material.​
Details →

Fuzz Shader
The fuzz shader lets you create materials such as e.g. moss – materials which do not follow a
standard microfacet brdf model because they are a lot more porous and show up transmitted
light.​
Details →

Glass Shader
The glass shader allows you to add refractive, tinted and bump mapped glass like objects.
Details →

Lit and shadowed Particles Shaders
The lit particles shaders offer advanced lighting support such as additional lights,
transmission and real time shadows. Details →

Flat shaded Shader
Add flat shading to any mesh regardless of its vertex normals. Details →

Toon Shader
Versatile toon shading. Details →

Effects

Fast Outline Shader

The fast outline shader allows you to highlight objects by adding a colored outline to them
without having to use any expensive full screen image effect. The shader instead is based on
the stencil buffer and needs the objects to be drawn twice. Details →

https://docs.google.com/document/d/1GpJwOeaXh_K1SqGcDYgA51JnpUV6e5x8n35SebR3W5o/edit#heading=h.6zvjnfuiskj1

Lux URP Essentials 1.91

Toon Outline Shader
The toon outline shader is a rather simple shader which creates outlines by drawing the
geometry a second time, extruding the vertices along the geometry’s normals. Details →

Decal Shaders
The decal shaders let you add screen space decals which act more or less like deferred
decals. Details →

Billboard Shader
The billboard shader lets you create fully camera aligned or camera facing upright oriented lit
and unlit billboards suitable to create e.g. light halos, UI icons or distant trees and objects.
Details →

Volumetric shaders
The volumetric shaders let you create fast volumetric light beams or simple box or sphere
volumes. Details →

Lux URP Essentials 1.91

Lux URP/Lit Extended Shader
Deprecated as from URP 12 on — use the Uber version instead.

This shader is needed to prepare the stencil buffer in case you want to draw outlines as
described in the chapter Highlight Shaders.

Special Shader Inputs
You will find all needed stencil buffer options in the foldout Surface Options:

ZTest Lets you tweak depth based face culling.

Stencil Reference The value to be compared against

Read Mask Bit mask which determines which bit will be read from.

Write Mask Bit mask which determines which bit will be written to.

Stencil Comparison The function used to compare the reference value to the current contents
of the buffer.

Stencil Pass Op What to do with the contents of the buffer if the stencil test (and the depth
test) passes.

Stencil Fail Op What to do with the contents of the buffer if the stencil test fails.

Stencil Z Fail Op What to do with the contents of the buffer if the stencil test passes, but the
depth test fails.

Next to exposing the needed stencil options it also allows you to simply highlight objects by
adding Rim Lighting. You will find the corresponding settings in the foldout Surface Inputs.

Enable Rim Lighting Check to enable Rim Lighting

Rim Color The Rim Color

Rim Power Higher values will push the effect towards grazing angles only.

Rim Frequency Lets you add a simple sinus based animation. If set to values > 0.0 the shader
will lerp between Rim Power and Rim Min Power.

Rim Min Power Second Power value used if Rim Frequency is > 0.0.

Lux URP Essentials 1.91

Rim Per Position Frequency Slightly offsets the animation based on the object’S pivot
in worldspace and prevents objects all pulsating at the same frequency.

Lux URP/Lit Extended Uber Shader
This shader is derived from the Lit Extended one. But it adds support for additional features
such as parallax mapping, horizon occlusion, bent normals, geometric specular AA or camera
fading.

Special Shader Inputs
As you should be familiar with most of the inputs I will only cover the special/new inputs here.

Surface Options

ZTest Allows you to define depth testing.

Camera Fading If checked the shader will stipple out the geometry when the camera
gets close (only available if Alpha Clipping is enabled).

Fade Distance Lets you specify at which distance the shader will start to fade
out the object. (When setting up this param make sure that the editor camera has
a proper near clipping plane!)

Fade Shadows Check this in case you want shadows to fade out as well.
(Please note that dithered shadows may look pretty odd especially if you have a
low res shadow map)

Shadow Fade Dist Distance at which shadows will start to fade out.

Please note that enabling Alpha Testing on an opaque object just to be able to fade it out
when it gets close to the camera may be rather expensive: As soon as you enable Alpha
Testing early depth testing will be disabled by the GPU which means that the GPU will
evaluate all pixels – even those which are hidden by other geometry :(

So in case you use Camera Fading on e.g. walls consider swapping out materials when
the camera gets close: Use a regular opaque material variant for any instance not close to
the camera and only switch to the Fade variant if the camera already is pretty close.

Do so using Unity’s LODgroup component or use triggers.

Advanced Surface Inputs

Height Map (G) RGB texture which stores height in the green color channel used by
parallax extrusion.

Extrusion Amount of parallax extrusion. (The unnamed slider)

Parallax Shadows If checked the shader will apply parallax mapping even in the
shadow caster pass. This is somehow correct for directional shadows where
we can derive the view direction from the (shadow) camera’s forward vector but
not in case we render spot lights. Furthermore even parallax directional shadow
casters are quite unstable if you rotate the camera. So check if you really need
this... (If Alpha Clipping is enabled only)

Lux URP Essentials 1.91

Bent Normal Map Cosine weighted Bent Normal Map in tangent space. If assigned the
shader will tweak ambient diffuse lighting and ambient specular reflections.

It uses a rather simple and all but physically correct approach: Ambient lighting gets
sampled in the direction of the bent normal and specular ambient lighting is reduced by
the dot product between bent and regular normal in world space.

Regular shading Bent normals Bent normals and AO

Horizon Occlusion Terminates light leaking caused by normal mapped ambient
specular reflections where the reflection vector might end up pointing behind the
surface being rendered: https://marmosetco.tumblr.com/post/81245981087. A value
of 0 does not terminate anything.

Geometric Specular AA When enabled the shader reduces specular aliasing on high
density meshes by reducing smoothness at grazing angles.

Screen Space Variance Controls the amount of Specular AA. Higher values give
a more blurry result.

Threshold Controls the amount of Specular AA. Higher values allow higher
reduction.

GI to Specular Occlusion In case you use lightmaps you may activate this feature to
derive some kind of specular occlusion just from the lightmap and its baked ambient
occlusion.

GI to AO factor Controls the amount of specular occlusion. It acts as a factor to
brighten the value sampled from the lightmap.

Bias Adds a constant value to brighten the value sampled from the lightmap.

GI to AO enabled GI to AO disabled Have a look at
the reflections in the gap between ​
the two cubes.

Lightmap

https://marmosetco.tumblr.com/post/81245981087

Lux URP Essentials 1.91

​

Advanced

Render Queue Here i dropped the way the built in Lit GUI handles things and returned to
the old school way. So instead of using Priority you will see the final Render Queue. As the
built in Lit shader always offsets the predefined render queues by + 50 i did so as well. So
you will get a render queue = Geometry + 50 = 2050 if you switch the material from
transparent to opaque.

Lux URP Essentials 1.91

Mesh Terrain Shader
Using Unity’s built in terrain might be slightly over the top in certain cases or simply not
feasible due to its high demands regarding memory consumption and CPU/GPU usage.

Here the Mesh Terrain Shader kicks in which lets you mix up to 4 details textures – based on a
splat map or vertex colors. Latter allows you to texture your terrain right in Unity using e.g.
PolyBrush.

Using a mesh based terrain offers a lot of advantages as you can simply sculpt cliffs and
overhangs and get proper texturing without using expensive solutions such as triplanar
mapping. A mesh based terrain also lets you add vertex density only where you need it –
where otherwise you would have to crank up the heightmap resolution to be able to add the
details you need. Mobile? Something you should consider… Great games have been made
using a technique like this. Just think of all the games from Naughty Dog. It is labor intensive
but will pay off.

Please check out the Environment Demo to find out more.

Shader Inputs
Surface Options

Receive Shadows If unchecked the material will not receive shadows (faster).

Surface Inputs

Enable normal Turns normal maps on and off.

Enable Top Down Projection If checked the first detail texture will be sampled in world
space using a top down projection. This feature is helpful in case:

●​ you add objects like rocks using the Top Down Projection shader and want to
make these blend better with the terrain.

●​ your terrain mesh has several UV shells. Add the top down projected detail
texture at the seams to hide them. See: Path example in the Demo scene.

Tiling in world space Tiling of the top down projected detail texture in world
space. A value of 0.25 means that the texture will be repeated every 4 meters.

Detail [0-3] Albedo (RGB) Smoothness (A) Detail albedo in RGB and smoothness in
Alpha.

Normal [0-3] The related normal maps.

Use Vertex Colors If checked the shader will ignore the Splat Map and mix the detail
textures based on vertex colors. Just like in the splat map version, red maps to detail 0,
blue to detail 1, green to detail 2. If the vertex color is black detail 3 will show up.

Splat Map (RGB) The splat map drives the distribution of the detail maps. Red maps to
detail 0, blue to detail 1, green to detail 2. If the splat map is black detail 3 will show up.​
Please note: The splat map must be imported as linear texture and should be
uncompressed., So uncheck “sRGB (Color Texture)” in the import settings.

Detail Tiling (UV) Tiling of all non top down projected detail texture according to the
UVs.

Lux URP Essentials 1.91

Specular Overall specular color.

Occlusion Although the shader currently does not support explicit occlusion maps you
may tweak occlusion to better make the terrain grounded.

Tips
Use common UV tricks to:

●​ break up tiling.
●​ make the textures follow the actual geometry like in the path example by creating

several UV shells.

Grass and Foliage Shaders
The grass and foliage shaders allow you to place individual patches of grass or foliage as
single game objects within your scene whose bending is globally controlled by a built in wind
zone.

These are the most complex shaders/solutions as they involve proper meshes with baked
bending information, a wind input, layer based culling and finally the shaders themselves.

Performance
The grass shader is the faster one as it performs simple bending and lighting. The foliage
shader does a more complex bending animation and supports translucent lighting or
transmission.

Please note: Both shaders support Alpha Clipping or Alpha Testing which disables early depth
testing due to how GPUs work and may produce a lot of overdraw. In case you use solid
geometry which does not need any alpha testing just disable Alpha Clipping set the shader to
Render Queue = Geometry (2000).

If Alpha Clipping is disabled the shader will scale the instances over distance instead of
tweaking the cut off value in order to make them fade out.

Using the SRP batcher combined with layer based culling → allows us to render even a vast
amount of grass patches / foliage instances quite efficiently on the CPU. Of course 1 mio
grass patches in a 1x1 km level are out of scope. But running 3K grass patches in a 300 x 300
meters level isn’t a problem at all.

When placing grass you do not want to place each grass instance separately but want to place
patches containing several grass meshes instead: Doing so you will keep the number of game
objects and renderers at a reasonable amount. On the other hand it makes it a bit more
difficult to place the patches as outer grass meshes might not align up well with the given
terrain. So create rather small patches of 1x1 – 3x3 meters in size and place them properly.

When it comes to foliage you most likely will place each instance individually.

In order to improve performance use layer based culling → so all grass or foliage instances
will be skipped at a distance of e.g. 30 / 50 meters (lightweight!). The grass and foliage
shaders support distance based fading so you can hide any popping.

Lux URP Essentials 1.91

LuxURP_LayerBasedCulling Script
This script is just a placeholder and offers to set up layer based culling for two layers. You
most likely will extend it and connect it to your quality settings.

Layer based culling is an effective performance optimization as it is pretty fast. In order to
make it work properly you should add a special layer on which you will place all objects which
shall be culled at a distance smaller than the camera’s far clip plane.

The inputs of the script are the following:

Small Details Layer Choose a layer and make sure that small objects actually are set to this
layer.

Small Details Distance The distance at which all objects on the specified Small Details Layer
will be culled.

Medium Details Layer Choose a layer and make sure that medium sized objects actually are
set to this layer.

Medium Details Distance The distance at which all objects on the specified Medium Details
Layer will be culled.

Wind Input
Bending is driven by a global wind render texture which contains a slightly modulated wind
strength and some additional noise in order to create some more distinguished gusting wind.

This wind render texture gets updated each frame which enables us to rotate the wind
direction at runtime without creating weird bending grass instances. Using a wind texture
allows us to have spatial differences concerning wind strength and gust without having to
implement any fancy per instance logic in the vertex shader.

The global wind render texture is created by the LuxURP_Wind.cs script, which has to be
assigned to your main directional wind zone as it gets its main inputs like wind strength and
direction from that wind zone:

●​ Main (wind strength) from the wind zone settings will be directly pushed to the
shaders.

●​ The rotation of the wind zone will drive the scroll direction.

Previous versions derived turbulence from the turbulence in the wind zone. But I decoupled
these as it is just too complicated to keep two parameters in sync. Somehow.

Instead you can now specify a Wind To Turbulence curve and a Max Turbulence value which
describe the relation between Main (wind strength from the wind zone) to Turbulence as it will
land in the global wind texture.

Either add the LuxURP_Wind.cs script to your main wind zone or – in case you have none –
drag the PF Lux URP Wind into your scene.

LuxURP_Wind Script
Update In Edit Mode If checked the wind render texture will be updated in editor each frame
which helps you to adjust the settings. In case you do not work on tweaking the wind just
uncheck it to free resources in the editor.

Lux URP Essentials 1.91

Render Texture Settings

Resolution Resolution of the created global wind texture. Keep it as low as possible to
save resources like memory and GPU time.

Format Choose between ARGB32 (faster and less memory consumption) and
ARGBHalf (more precise).

Wind Base Tex In order to be able to create a global wind texture you have to provide a
proper base texture. The package ships with a default wind base texture (Default Wind
Base texture.psd). This texture contains various grayscale perlin noise textures at
different scales in each of the color channels (RGBA). While RGB will only be used to
calculate the final wind strength the texture assigned to the alpha channel (A) will
contribute to the wind strength but also determine the wind gusting.​
Please note: The texture should be imported as linear texture, so uncheck “sRGB (Color
Texture)” in the import settings. In order to get the best quality I recommend to set the
Compression to None – at least to High.

Wind Composite Shader Shader which is used to render the final global wind texture.
Assign the included Lux URP WindComposite.shader – or a proper custom one.

Wind Frequency and Turbulence

Wind To Frequency The shaders change the frequency of the branch bending and
turbulence according to this factor so stronger wind strengths may make grass and
foliage bend faster. Do not go crazy with this param: A value of 0.25 should be fine.

Wind To Turbulence Lets you define a curve which drives how incoming main (wind
strength) from the wind zone will influence the final turbulence encoded into the wind
texture.

Max Turbulence Determines the max turbulence encoded into the global wind texture.

Wind Speed and Size

Base Wind Speed Speed of wind in km per hour at main (wind strength from the wind
zone) = 1.0 (maps to Speed Layer x = 1.0). So now you have some real world reference.

Size In World Space Determines the area in world space the global wind texture covers
before it gets tiled and repeats.

Speed Layer 0, Speed Layer 1, Speed Layer 2 These are multipliers for the overall set
Base Wind Speed. In order to create a lively global wind texture you should use varying
values here.

Noise

Grass Gust Tiling RGB channels of the assigned Wind Base Texture will be sampled
using fixed UVs as they already contain perlin noise textures at various scales –
however you may finetune gusting wind by changing this parameter. Higher values will
create smaller waves of gusting wind.

Grass Gust Speed Just like the other Speed multipliers.

Layer To Mix With Lets you choose a Wind Layer you want the dedicated Gust sample
to be combined with.

Wind Multipliers

Lux URP Essentials 1.91

Grass Global multiplier for the wind strength as retrieved from the assigned wind zone
and applied in the grass shader.

Foliage Global multiplier for the wind strength as retrieved from the assigned wind
zone and applied in the foliage shader.

Grass Shader Inputs
Inputs for URP 12.1 and above are described in the LuxURPEssentials_URP_12.1.pdf

Surface Options

Alpha Clipping If checked the shader will do alpha clipping or alpha testing which is the
desired behavior in case your texture contains any alpha.

Threshold If the alpha channel contains different shades of gray instead of just
black and white, you can manually determine the cutoff point by adjusting the
slider.

Please note: If you disable Alpha Clipping you should set the shader to Render Queue =
Geometry (2000). If you re-enable Alpha Clipping, set back the shader to Render Queue =
AlphaTest (2450).

Alpha To Coverage If checked edges will use some kind of dithered alpha.​
Please note: This feature is quite costly so use it wisely. ​
In case your alpha contains very little and fine details grass may just dither out over
distance where lower mips are sampled. Try to work against this by checking “Alpha
preserves coverage” in the import settings of the grass texture and playing around with
the “alpha cutout value”. Also try to adjust the contrast of the alpha channel. If none of
this helps turn off Alpha To Coverage.

Receive Shadows If unchecked the material will not receive shadows (faster).

Surface Inputs

Albedo (RGB) Alpha (A) The grass texture (RGB) and the Opacity mask (Alpha)

Smoothness Overall smoothness factor. As grass should use upwards pointing normal
specular lighting and ambient reflections will look pretty odd. So i recommend to use
quite low values here like 0.1. This will make grass being grounded within the
environment but not looking crazy.

Specular The specular color. Smoothness Overall smoothness factor. As grass should
use upwards pointing normal specular lighting and ambient reflections will look pretty
odd. So i recommend to use quite low values here like 0.1. This will make grass being
grounded within the environment but not looking crazy.

Specular The specular color.

Occlusion Lets you adjust the ambient occlusion as sampled from the vertex colors.

Wind

Wind Strength acts as a multiplier on the global settings and lets you adjust bending
without having to rework the vertex colors.

Normal Strength determines the impact of the bending on the normal. Any value > 0.0f
will effect diffuse and specular lighting.​
Please check the Normal Strength under various lighting conditions (light angle, view

Lux URP Essentials 1.91

angle) to find the right value. Increasing smoothness and having a look at the ambient
specular reflections can be a help here.

Sample Size Wind strength is sampled from the render texture at the world position of
the given vertex offsetted by vertex.color.red. Sample Size scales the value of
vertex.color.red. So setting it to 0.0 will fully flatten vertex.color.red and all vertices will
sample the wind strength at their world position while setting it to 4.0 will allow certain
vertices to use a world position + 4 (along the xz axis) as sample location.​
So think of it being some kind of additional local turbulence factor.

LOD Level lets you specify the LOD level at which the wind render texture gets sampled.
Using higher LOD levels will flatten out the sampled wind strength and smooth bending
over all instances.​
So think of it as some kind of negative local turbulence factor.

Distance Fading

Max Distance Determines the distance at which grass will be fully faded out. The
distance should match the culling distance you use in the layer based culling.

Fade Range Determines the fade range.

Please note: Both values are “manipulated” by the material editor. Max Distance maps
to _DistanceFade.x and Fade Range to _DistanceFade.y where _DistanceFade.x = Max
Distance * Max Distance; and _DistanceFade.y = 1.0f / ((Fade Range * 2) * (Fade Range *
2));

Important: Please make sure that the grass actually gets culled by the layer based
culling and not only fades out. Check it by setting Max Distance to a much greater value
than the one you use in the layer based culling settings.

Advanced

Enable Blinn Phong Lighting Lets you switch to a cheaper lighting model.

Enable Specular Highlights If unchecked the shader does not calculate direct specular
highlights which makes it cheaper.

Environment Reflections If unchecked the shader will not sample any reflection probes
which makes it cheaper.

Foliage Shader Inputs
Inputs for URP 12.1 and above are described in the LuxURPEssentials_URP_12.1.pdf

Surface Options

Alpha Clipping If checked the shader will do alpha clipping or alpha testing which is the
desired behaviour in case your texture contains any alpha.

Threshold If the alpha channel contains different shades of gray instead of just
black and white, you can manually determine the cutoff point by adjusting the
slider.

Please note: If you disable Alpha Clipping you should set the shader to Render Queue =
Geometry (2000). If you re-enable Alpha Clipping, set back the shader to Render Queue =
AlphaTest (2450).

Lux URP Essentials 1.91

Alpha To Coverage If checked edges will use some kind of dithered alpha.​
Please note: This feature is quite costly so use it wisely. ​
In case your alpha contains very little and fine details grass may just dither out over
distance where lower mips are sampled. Try to work against this by checking “Alpha
preserves coverage” in the import settings of the grass texture and playing around with
the “alpha cutout value”. Also try to adjust the contrast of the alpha channel. If none of
this helps turn off Alpha To Coverage.

Receive Shadows If unchecked the material will not receive shadows (faster).

Surface Inputs

Albedo (RGB) Alpha (A) The foliage texture (RGB) and the Opacity mask (Alpha)

Smoothness Overall smoothness factor.

Specular The specular color.

Enable Normal Smoothness Trans Map If checked the shader will sample the
according texture.

Normal (AG) Smoothness (B) Trans (R) Combined texture which stores the normal in
AG, smoothness in B and translucency or thickness in R. The texture can be assembled
like shown below:

Combined Normal/Smoothness/Translucency Texture Color Channel Layout

Lux URP Essentials 1.91

Please note: These combined textures do not contain a color or albedo texture – so uncheck
“sRGB (Color Texture)” in the import settings.​
As the texture contains a normal map you might consider setting the Filter Mode = Trilinear.

Smoothness Scale Lets you remap the sampled smoothness value.

Transmission

Power Determines view dependency

Strength Lets you scale transmission.

Shadow Strength As transmission might be totally eliminated by self shadowing this
parameter lets you suppress shadows when it comes to transmission. Other lighting
features (diffuse, specular) are not affected.

Mask by incoming shadow strength Lets you suppress transmission according to the
shadow strength as set on the given light source - or from point lights which do not
cast any shadows.

Distortion When calculating transmission the shader distorts the inverted light
direction vector slightly by the given normal to simulate the scattering. Default value is
0.01. Higher values will give you more scattering and break up the uniform look.

The subsurface color will be derived from albedo.

Wind

Wind Input Choose between Math or Texture. Texture should be a bit faster. Math is a
bit more predictable.

Primary Strength Lest you remap the primary or main bending strength as encoded in
vertex color alpha.

Secondary Strength Lest you remap the secondary or detail bending strength as
encoded in vertex color blue.

Edge Flutter Lets you adjust the edge flutter strength as encoded in vertex color green.

LOD Level lets you specify the LOD level at which the wind render texture gets sampled.
Using higher LOD levels will flatten out the sampled wind strength and smooth bending
over all instances. Wind Input = Texture only.

Sample Size Primary and secondary wind strengths are sampled from the render
texture at the world position of the given vertex. Setting Sample Size to 0.0 will make all
vertices fetch the wind strengths at the pivot of the given instance while setting it to
1.0 will make the shader sample strengths at the vertex positions in world space which
will add some more noise and disturbance.

Distance Fading

Max Distance Determines the distance at which grass will be fully faded out. The
distance should match the culling distance you use in the layer based culling.

Fade Range Determines the fade range.

Please note: Both values are “manipulated” by the material editor. Max Distance maps
to _DistanceFade.x and Fade Range to _DistanceFade.y where _DistanceFade.x = Max

Lux URP Essentials 1.91

Distance * Max Distance; and _DistanceFade.y = 1.0f / ((Fade Range * 2) * (Fade Range *
2));

Important: Please make sure that the foliage actually gets culled by the layer based
culling and not only fades out. Check it by setting Max Distance to a much greater value
than the one you use in the layer based culling settings.

Advanced

Enable Specular Highlights If unchecked the shader does not calculate direct specular
highlights which makes it cheaper.

Environment Reflections If unchecked the shader will not sample any reflection probes
which makes it cheaper.

Custom Grass and Foliage Models
When using custom grass or foliage models you have to take care about:

●​ the fact that the grass shader expects single sided geometry.
●​ vertex colors properly set up as they drive the bending.
●​ the vertex normals.

Vertex Colors Grass Shader
The grass shader uses vertex.color.rgb to control ambient lighting and bending.

● Red – Ambient Occlusion ● Green – Phase Variation ● Blue – Bending

Just some ambient occlusion added
to the lower vertices.

Different grass “instances” have
different green values to add some
variation to the bending as the final
sampling position for the wind
texture will be displaced by the
amount of the green color value.

The blue color channel contains a
gradient from black at the bottom to a
medium gray or white at the top. This
will fix lower vertices while upper ones
may bend.

The vertex color usage in the grass shader is similar to how Vegetation Studio expects vertex
colors. So any grass mesh working with VS should work with Lux LWRP as well.

In order to apply bending (blue) on import please have a look into the section Adding Bending on
Import →

Lux URP Essentials 1.91

​
Vertex Colors Foliage Shader

The foliage shader supports a more complex bending as you might already know from the
built in tree creator shaders and is based on Crytek’s original tree bending. It is controlled by
the vertex colors applied to the model and consists of 3 blended animations:

1.​ Primary or main bending which animates the entire model along the wind direction.

2.​ Secondary or detail bending adding a higher frequent animation mostly along ​
the y-axis.

3.​ Edge fluttering which is a high frequent bending animation originally invented by Crytek
to simulate single leaves on large leaf planes.

4.​ In order to make the whole blending more believable, there is a fourth factor:​
per leaf / per branch phase variation which controls the delay of the detail bending.

● Red
Phase Variation

● Green
Edge Flutter

● Blue​
Detail Bending

● Alpha
Main Bending

Red stores phase
variation.​
Each branch should
always have one single red
value.

Just some small green
values (barely visible here)
only at the outer tips of the
leaves. Make sure that the
pivot and the spine of the
leaves are set to green = 0.

The blue color channel
stores detail bending. It
should be a gradient from
black at the pivot of the
branches to a medium
gray or white at their outer
tips.

Alpha stores main bending
which is a gradient from
black (bottom) to some
brighter gray or even white
at the upper vertices,

The vertex color usage in the foliage shader is similar to how AFS or ATG expect vertex colors. So
you may use the AFS Foliage tool to apply or adjust vertex colors. Furthermore you can use the
Custom Tree Importer to add vertex colors automatically on import.

In order to apply main bending (alpha) on import please have a look into the section Adding
Bending on Import → ​

https://assetstore.unity.com/packages/vfx/shaders/advanced-foliage-shaders-v-5-68907
https://assetstore.unity.com/packages/tools/terrain/advanced-terrain-grass-100014
https://assetstore.unity.com/packages/tools/modeling/custom-tree-importer-21079

Lux URP Essentials 1.91

Normals Grass Shader

The vertex normals should more or less all point upwards so
the final lighting of the grass patch is mainly driven by its
overall orientation. This way the lighting of the grass
matches the lighting of the underlying terrain.

Normals Foliage Shader

When using the foliage shader the vertex normals should match the given geometry: The
shader will apply wrapped around diffuse lighting by default and as it uses VFACE any
smoothed normals will cause very harsh lighting on backfaces.

Adding Bending on Import

In case you do not want or can’t apply a proper gradient in the blue color channel (grass) or the
alpha channel (foliage) of the vertex colors you can make use of the
LuxURP_GrassMeshPostprocessor script. This script will add the related vertex colors
automatically on import and whenever the grass or foliage mesh is updated.

Important: As this script is an Assetpostprocessor and may start to reimport all meshes in
your project it is “muted” by default which means its file name is
LuxURP_GrassMeshPostprocessor.__cs – so Unity will not recognize it. Simply remove the “__”
to make it compile but be aware: In very large projects it will most likely reimport large portions
of your assets!

In order to let the script find all models that should be processed you will have to name them
properly: The script finds them by name which must contain “_LuxGM“ for grass meshes and
“_LuxFM“ for meshes using the foliage shader.

Maximum Bending

You also have to specify the max bending value by adding it directly after “_LuxGM“ or
“_LuxFM”. Bending values must be in the range of 0.0 – 1.0 and have to be written as 2 digits
without the period:

“00“ -> 0.0 / “05“ -> 0.5 / -> “10“ -> 1.0

So a file named: “SM MyTallGrass_LuxGM05_test.fbx” would be processed using a max
bending value of 0.5.

A file named: “SM MySuperfern_LuxFM03Testnew.fbx” would be processed using a max
bending value of 0.3.

A file named: “SM MySuperfern_LuxFM1Testnew.fbx” would throw an error.

Power

In case you have a more complex model which consists of several triangles you may also
specify a power factor. Adding a power factor will change the linear gradient which gets
applied towards an exponential gradient and results in much livelier bending.

Lux URP Essentials 1.91

Do so by adding “_POW” + 2 digits to the file name e.g.:​
“SM Grass Patch_LuxGM10_POW19.fbx”

Processing Details

Main bending (vertex color blue in case of grass meshes and vertex color alpha in case of
foliage meshes) will be set according to the “local” y position of the given vertex, the max
bending and the power value: Main bending = 0 for all vertices if vertex.pos.y < 0 and a lerped
value for all other vertices according their y coordinate divided by the height of the bounding
volume.

Please note: The postprocessor expects a single flattened mesh. It does not merge sub
meshes and skips processing on models which have more than 1 sub mesh. It does not bake
occlusion or phase but keeps the values stored in the vertex colors.

Setting up Wind
In order to give you a better understanding of how the wind works and help you setting it up I
added the Wind Setup scene.

It contains the PF Lux URP Wind Prefab and a plane which uses the M Lux URP Vegetation Wind
Visualize material: This actually lets you view the generated wind render texture.

In order to see how the wind render texture changes over time and reacts to changes in the
settings of the script or the rotation of the game object which holds the wind zone and script
make sure you have checked Update In Edit Mode.

By default the plane shows the Combined Wind which is how the vegetation shaders will
combine Wind Strength and Wind Gust.

In order to visualize the original inputs as stored in the wind render texture you have to edit the
visualization material and change Visualize to Wind Strength or Wind Gust.

In case you get confused because the bending of the grass does not match the wind strength as
visualized by the underlying plane: Due to “Sample Size” in the grass material and according to
the baked vertex colors → red = phase grass may sample wind at a different location. If you set
“Sample Size” to 0.0 it should perfectly match.

Wind Strength

Wind Gust Combined Wind

The combination of the 3 + 1 wind
layers. Contrast will change
according to the Turbulence
settings in the wind zone.

The combination of the dedicated
gust layer and the selected Layer To
Mix With. Contrast according to the
Turbulence settings in the wind
zone.

The combination of Wind Strength and
Wind Gust as calculated within the
vegetation shaders. Red pixels
indicate negative wind strengths.

Lux URP Essentials 1.91

Now you should be able to adjust speeds and tilings driving the render texture and adjust your
materials.

Final bending on each prefab will be controlled by:

●​ the Main (wind) parameter in the wind zone settings
●​ the input from the wind render texture
●​ the according wind multiplier in the script
●​ the baked vertex colors
●​ the wind parameters in the used material

Bending quality

Bending quality depends on:

●​ the number of vertices in the mesh: Less vertices will result in harsher bending.

●​ the accuracy of the bending information stored in the vertex colors: Any discontinuities
here will result in jagged bending.

●​ the accuracy/compression and resolution of the wind input textures: The one that gets
sampled to create the render texture and the render texture itself.

Lux URP Essentials 1.91

Top Down Projection Shader

Shader Inputs
Surface Options

Receive Shadows If unchecked the material will not receive shadows (faster).

Surface Inputs

Albedo (RGB) Smoothness (A) Albedo texture in RGB, Smoothness in Alpha.

Enable dynamic tiling If checked the shader will adjust the giving tiling values
according to the scale of the object. This is a nice feature in case you care about texel
density, use a tiling texture and add the related object at various scales.

Smoothness Scale Lets you remap the sampled smoothness value.

Specular Specular color.

Enable Normal Map If checked the shader will sample the assigned normal map(s).

Normal Map The normal map.

Normal Scale Scale of the sampled normal.

Mask Map

Enable Mask Map Check to make the shader sample the mask map.

Metallness (R) Occlusion (G) Height (B) Emission (A) This combined texture contains
all other features supported on the base material. Height (B) in this case does not do
anything to the base material but acts as a detail mask for the top down projection. So
it does not have to contain a height value but could also store a simple noise map.​
Please note: The texture should be imported as linear texture, so uncheck “sRGB (Color
Texture)” in the import settings.

In case you do not need Metallness, Occlusion or Emission always consider using Get
Mask from Normal as described below because this will strip off one texture lookup.

Emission Color Tint color for the emissive lighting.

Bake Emission Must be checked in case you bake lightmaps.

Occlusion Lets you dampen the sampled occlusion.

Top Down Projected

Enable Top Down Projection Check this to make the shader add the top down projected
texture set.

Albedo (RGB) Smoothness (A) Albedo texture in RGB, Smoothness in Alpha.

Smoothness Scale Lets you remap the sampled smoothness value.

Get Mask from Normal If checked the shader expects a tweaked normal map
which also contains a mask map. See Get Mask from Normal for details.

Normal (RGB) or Normal (AG) Mask (B) The normal map. Either as regular
normal map (if Get Mask from Normal is unchecked or as combined normal and
mask texture)

Lux URP Essentials 1.91

Normal Scale Scale of the sampled normal.

Tiling Tiling in world space. A value of 0.25 means that the texture will be
repeated every 4 meters.

Terrain Position Describes the offset for the sampling in worldspace. Useful in
case you want to make the projected texture match a special detail texture on
the terrain.

Blending

Angle Limit Lets you limit the projection according to the y (or up) component of the
world space normal.

Strength Will scale the blend amount.

Base normal Influence Lets you determine the impact of the base normal on the blend
amount.

Base Normal Strength Lets you reveal the base normal – even if the projected layer
fully covers the surface.

Height Influence Lets you determine the impact of the height (or noise) sample on the
blend amount. This will only work if the Mask Map is enabled or you have checked
Enable Normal Map and Get Mask from Normal.

Fuzz Lighting

Enable Fuzz Lighting If checked the shader will add simple fuzzy lighting to the top
down projected texture which lets you create materials such as e.g. moss.

Diffuse Wrap The shader will apply smooth wrapped around diffuse lighting.
This value lets you adjust the light wrapping. Setting it to 0 will give you built in
Lambert lighting.

Fuzz Strength Fuzz color is derived from the albedo. So if the albedo is rather
dark you may raise this multiplier.

Fuzz Power Determines how far the fuzz lighting travels according to the
normals. The higher the value the less fuzz lighting will be applied.

Fuzz Bias Lets you add some fuzz lighting regardless of the given normal.

Ambient Strength Determines the Fuzz influence on ambient diffuse lighting.

Advanced

Enable Specular Highlights If unchecked the shader does not calculate direct specular
highlights which makes it cheaper.

Environment Reflections If unchecked the shader will not sample any reflection probes
which makes it cheaper.

Get Mask from Normal
Usually the shader samples the blend mask from the assigned Mask Map – if any. This texture
gets sampled based on the UVs of the given mesh. If the mesh has several UV shells the
sampled mask will most likely show up some discontinuities which may be quite distracting.

Lux URP Essentials 1.91

In case you enable Get Mask from Normal the shader will sample the mask from the top down
projected normal in world space instead – which never has any discontinuities.

In order to use this feature you have to prepare the projected normal:

1.​ Take a regular normal map and add an alpha channel.
2.​ Copy/paste the red color channel into the alpha channel.
3.​ Fill the red color channel with pure white. Important!
4.​ Copy the mask texture into the blue color channel.
5.​ Import the tweaked normal mask texture as linear texture by unchecking sRGB (Color

Texture) in the import settings. Compression should be set to High Quality.

Why do i do this to you? Because we want as less texture lookups as possible!

Have a look at the snow sample to find out more.

Masking artifacts from sampling the mask from the
Mask Map using the UVs.

No artifacts when sampling the mask from the tweaked
projected normal texture in world space.

Tips
As the projection heavily depends on geometry normals the final result on different LODs when
using LODGroups most likely will not match. So consider using cross fading – at least on large
objects.

Please note: The progressive CPU lightmapper may fail to calculate proper blending as it does
not always?! calculate a fitting world space normal. In order to fix this, disable lightmap static,
rebake, then enable lightmap static and bake again… Enlighten just works fine tho.

Lux URP Essentials 1.91

Water Shader
Please note: Make sure your lightweight scriptable render pipeline settings have Depth Texture
and Opaque Texture checked. Latter is only needed if Refraction is enabled.

In case your camera uses orthographic projection you have to check Enable Orthographic
Support in the material inspector.

Shader Inputs
Surface Options

ZWrite Lets you choose whether the shader writes to the depth map or not. Usually it
should write to the depth buffer

ZTest Lets you choose how the shader should do depth testing. Usually it should be set
to “LessEqual”. You may choose “Disabled” as well in case you use forward rendering,
MSAA do get artifacts around your objects on top of the water surface, do not displace
the water and look from above.

Dest BlendMode This has to be set to Zero if Refraction is enabled or
OneMinusSrcAlpha if Refraction is disabled. Should be set properly by the custom
ShaderGUI script LuxURPCustomWaterShaderGUI.cs.

Receive Shadows If unchecked the material will not receive shadows (faster).

Enable Orthographic Support In case your camera uses an orthographic perspective
you have to enable this to make water being rendered properly.

Surface Inputs

The water shader mixes two normal samples to create the final bumpiness.

Water Normal Map The normal map used by both samples. Adjust Tiling and Offset to
make the first sample fit your geometry.

Normal Scale Scale of the first sampled normal.

Speed (UV) Scroll speed in UV space. X equals U, Y equals V.

Secondary Bump This Vector4 combines all parameters for the second normal sample.

Tiling (X) acts as multiplier on the given Tiling from the first sample

Speed (Y) acts as multiplier on the given Speed (UV)

Refraction (Z) The amount of refraction added to the UVs based on the first
normal sample.

Bump Scale Scale of the sampled normal.

Smoothness Smoothness of the water surface which defines the size and shape of the
specular highlights.

Specular Specular color which defines the reflectivity and thus drives the relation
between refraction and reflection. Actually water has a pretty dark specular color.

Edge Blending Lets you fade out the shore line or borders of the water surface.

Lux URP Essentials 1.91

Enable Refraction If checked the shader will sample and refract the camera opaque
texture. Water and refracted background will be mixed within the shader and the final
result will be rendered to screen as if it was opaque.

If unchecked the shader will act like a transparent premultiplied shader. Thus the Dest
BlendMode has to be adjusted properly. Not using refraction saves two texture lookups.

Refraction Specifies the strength of the refraction effect.​
The shader does two refracted samples of the _CameraDepthTexture in order to
occlude objects in the foreground from being refracted. It does not do a 3rd
unrefracted sample which results in relatively unstable foam close to the camera
if the Refraction value is high. So consider using small Refraction values in case
you run into any trouble.

Reflection Bump Scale Specifies the influence of the normal maps as far as the
distortion on reflections is concerned: Choose values around 0.3 to get nice and
smooth reflections.

Underwater Fog

Fog Color Color of underwater fog added.

Density Density of the underwater fog according to depth along the view vector.

Foam

Enable Foam Check to enable dynamic foam at shore lines

Foam Albedo (RGB) Mask (A) RGB will tint the foam mask. Alpha drives the opacity.

Foam Tiling Tiling relative to the base UVs

Foam Speed (UV) Scroll speed of the foam texture.

Foam Scale Foam is masked by various inputs such as the water’s normals and the
edge blending factor so it might get more or less invisible. Use Scale to bring it back to
screen.

Foam Edge Blending Determines the size of the dynamically calculated foam border.

Foam Slope Strength Lets you add foam according to the normal up direction of the
water geometry.

Foam Smoothness The smoothness of the foam.

Advanced

Enable Specular Highlights If unchecked the shader does not calculate direct specular
highlights which makes it cheaper.

Environment Reflections If unchecked the shader will not sample any reflection probes
which makes it cheaper.

Tips
Use common UV tricks to:

●​ speed up water at special locations (by shrinking the UVs).

●​ distort water normals and foam.

Lux URP Essentials 1.91

●​ In case you need more foam at special locations just lower the distance between the
river bed and the river surface. The closer the river bed is to the river mesh the more
foam you will get.

Lux URP Essentials 1.91

Tree Creator Shaders
The tree creator shaders are a port of the tree creator shaders for the built in render pipeline
and allow you to use trees created using Unity’s tree creator along with LWRP and URP.

Please note: These shaders do not support the SRP batcher by design. Enable GPU instancing
to speed up rendering.

Usage
In order to make your trees use the Lux URP tree creator shaders you have to assign the Lux
URP Tree Creator Bark and the Lux URP Tree Creator Leaves shader to the base materials you
use to create the tree (the materials which are assigned e.g. in the Branch Material or Break
Material slot of the tree creator). Then refresh the tree.

The final tree will be rendered using the URP Tree Creator Bark Optimized and the Lux URP Tree
Creator Leaves Optimized shaders. These need the related “Rendertex” shaders which will be
used to render the billboard textures.

Please note: The Lux URP Tree Creator Bark and the Lux URP Tree Creator Leaves
shaders are only dummy shader and only contain a forward pass. They are only used to
create the base materials and will be replaced automatically in the final tree with their
Optimized variants. Do not assign these shaders to any go in your scene.

Shader Inputs
The inputs of the base shaders match those of the original Unity shaders. So please have a
look at Unity’s documentation in case you need more information.

However if you look into the optimized shaders you will notice that these contain some URP
related inputs:

Receive Shadows If unchecked the material will not receive shadows (faster).

Enable Dithering for VR If you are rendering for a VR device Unity will totally change the
rendering for trees and billboards. The original implementation solely relies on the keyword
“BILLBOARD_FACE_CAMERA_POS” to be enabled — which gets enabled if you enable
Billboards Face Camera Position in Project Settings → Quality — regardless if VR actually is
enabled or not.​
In order to prevent more expensive rendering if you have checked Billboards Face Camera
Position but do not use VR i added Enable Dithering for VR as a safeguard. So check this if you
are using VR and the shaders will do the expensive dithering. If you do not use VR keep it
unchecked.

VR only
If VR is enabled Unity will use the built in CameraFacingBillboardTree shader to render the
billboards. I could not locate or identify the shader, which is responsible for creating the
billboard textures (albedo, alpha and normals) – nevertheless this shader sometimes (?!)
seems to create false textures with leaves having a far too dark alpha. As the original
CameraFacingBillboardTree shader uses AlphaToCoverage this will give you more or less
transparent billboards :(

https://docs.unity3d.com/Manual/tree-FirstTree.html

Lux URP Essentials 1.91

So i added a hacked CameraFacingBillboardTree shader which does not use AlphaToCoverage
and applies a little different dithering. If you want to go with the built in one, deactivate this
shader by e.g. adding a “_” to its file name: “CameraFacingBillboardTree._shader”.

Changes compared to the original shaders
I added some little improvements to the shaders:

●​ Point and spot lights, wind and shadows (VR only) fade in and out over the billboard
Fade Length as specified in the terrain settings.

●​ When calculating the wind based bending the vertex shaders preserve the length of the
original vertex which will result in a little less distortion.

●​ Billboards will be lit using proper SH ambient lighting.

Tree Creator LOD trees
Since URP 14 LOD cross fading is supported also by the tree creator shaders which allows you
to use Tree Creator trees along with the built in LOD group component.

What you need are different mesh LODs you can easily create duplicating the original prefab
then tweak the LOD Quality settings in the tree script.

When it comes to billboards you however lose Unity’s automatically created billboards. I
simply created a cross based mesh then took some screenshots from the albedo and the
world space normal using the rendering debugger and an orthogonal view, slightly tweaked the
normals to actually fit and finally painted a simple translucency map.

Pros

Lod based trees placed using the terrain engine:

●​ may have different rotations creating more variety.
●​ may use custom billboards receiving real time lighting and casting shadows.

Cons

Lod based trees placed using the terrain engine:

●​ need you to create custom billboards (texture and meshes).
●​ do not react to the built in wind zone.

Note: Manually placed LOD trees do react to the build in wind zone. But as soon as you use the
terrain engine to place them all wind is gone. So in order to get at least directional wind work
with them you have to add the LuxURP_Wind to the wind zone.

As tree creator trees placed using the terrain engine do not receive any wind their prefabs do
not need the tree script at all. So you can just grab the mesh and materials from your original
prefabs and create new prefabs.

Overall i think it is a nice alternative when it comes to using tree creator trees in URP and i
might extend this if people find it interesting.

Lux URP Essentials 1.91

Lux URP Animated Billboard shader

This Shader Graph based shader is used by the simple billboards i created and supports
translucent lighting as well as a simple wind animation.

While the texture input definitely could be improved and the translucent inputs should be quite
familiar it comes with two unique inputs related to wind:

●​ BendStrength drives the final displacement along the wind direction according to the
incoming wind strength

●​ BendPower is the power used to calculate fall off of the applied wind along the y axis.

Note: In order to speed up rendering all shaders should use GPU instancing when you place
the trees using the terrain engine.

Lux URP Essentials 1.91

Terrain Shader
The terrain shader supports proper(!) normals, height based blending, parallax extrusion and
painted holes (Unity 2019.3. and above only). Since version 1.35 it also supports procedural
stochastic texturing on the first terrain layer which automatically eliminates tiling artifacts.

In order to make it work with GL ES 2.0 it uses multiple passes to draw the splats in case you
have assigned more than 4 layers – just like the built in terrain shaders.

Due to the texture limit of GL ES 2.0 Mask Maps are not supported. The heights for the height
based blending and parallax mapping instead have to be combined into a single RGBA texture
where red contains the height for layer 1, green the height for layer 2, … Please note: This
texture should be imported uncompressed using a rather low resolution. It must be imported as
linear texture,

Height based blending and parallax mapping are only supported for the first four terrain layers.
All higher layers will be rendered using a copy of the built in shader.

Procedural stochastic texturing is supported only on the first terrain layer. Please note: The
basemap shader does not support procedural stochastic texturing, so you may get a little pop as
far as texturing is concerned. But usually this is not really noticeable at all.

Usage
I recommend setting up your terrain just using the built in shader.​
When done:

1.​ Create a new material using the Lux URP Terrain shader.

2.​ Select the terrain settings (gear icon), set Material to Custom and assign your material
to the slot Custom Material.

3.​ Now the terrain should already be rendered using the Lux URP Terrain shader.

4.​ In order to fine tune the material and rendering select the material and edit it settings:

Material Settings

Lux URP Essentials 1.91

Enable Normal Map You have to check this in case you want to enable the normal
maps as defined in the terrain layers.

Enable Height Blend Check this if you want to use height based blending and/or
parallax mapping.

Height Maps (RGBA) The combined height map textures. The height map of
each layer goes to the corresponding color channel starting with layer 1 = red
channel.​
This texture must be imported as a linear texture. So uncheck sRGB Texture
(Color Texture) in the import settings. It should use Compression = High Quality
or even Compression = None. Please consider importing it with a rather low
resolution like Max Size = 512 or even 256 to speed up rendering.

Height Transition Lets you adjust the sharpness of the height based blending.

Enable Parallax If checked the shader will perform parallax extrusion.

Parallax Determines the strength of the extrusion.

Enable Procedural Texturing If checked the shader will sample the first terrain
layer using stochastic procedural texturing which hides all tiling artifacts
automatically. In order to do so the shader will have to sample the first layer’s
textures (albedo and normal) 3 times which makes this feature handy but a bit
expensive. Due to the costs the shader supports this feature only on the first
terrain layer. So assign your layers wisely and make sure that the first layer
contains the texture that covers most of your terrain.

Find out more about stochastic procedural texturing here →.

Blend Lets you adjust the sharpness of the blending between the 3
samples.

Scale Scales the hexadecimal pattern used by the blending. Keep this
around 1.0 to avoid artifacts.

Size in World Space Unlike all other textures the procedural one will be
sampled in world space. So here you have to define the desired size (m).

Lux URP Essentials 1.91

Enable Instanced per-pixel normal If checked the shader will reconstruct the
normal based on the internal terrain normal map if instancing is enabled.
Checking this will reduce popping.

Now everything should be fine.

The demo terrain contains 5 layers wich actually is pretty stupid: The fifth layer is the path
which is only applied at a pretty small region of the terrain – but forces the entire terrain to be
drawn twice. Furthermore the path would really benefit from height based blending but it does
not because height based blending is only supported on the first 4 layers.

Quick take away:

●​ Either use 4 or 8 layers, anything between will waste resources.
●​ Choose the first 4 layers wisely and assign textures to these where height based

blending and parallax mapping will make most sense.

Height Maps
Please make sure that your height maps do not contain pure black. Otherwise the texture will
never show up there even if it is painted with full strength.

Terrain Layers
Not all features of Unity’s terrain layers are supported due to performance and compatibility
reasons.

Diffuse Should contain albedo in RGB and smoothness in A.

Normal Map A regular normal map.

Normal Scale Scales the normal.

Mask Map Is not supported and should be empty.

Specular Is not supported by the terrain engine…

Metallic Metallness

Smoothness Multiplier on the smoothness as sampled from the Diffuse.a channel.​
Seems to be broken… and has no effect.

Lux URP Essentials 1.91

Terrain Blend Shader (deprecated)
The terrain blend shader allows you to smoothly blend meshes like cliffs or overhangs with
your terrain.

Please note: The shader relies on forward rendering and thus is marked as deprecated. This
does not mean that it does not work in URP > 10.0 but it does not always give you the desired
results.

The provided solution is still not perfect and suffers from visual glitches as well as some
shortcomings regarding LWRP and URP. Feedback is welcome!

There are different techniques to accomplish a smooth blending – like probably the most
common one which draws the mesh object twice using the terrain material for the first draw
and projecting it on top of your mesh, which may be rather expensive.

The terrain blend shader works differently and adds a soft intersection between terrain and
mesh using alpha blending: Although the mesh is rendered as opaque object (in order to
benefit from screen space shadows (these are dropped in URP >= 7.2.) and proper front to back
sorting) it uses alpha blending controlled by the distance between the mesh and the terrain.

Usually you would use the camera depth texture to calculate the distance, but as we use
Render Queue = Geometry -/+ x this texture is not available. For this reason we have to provide
a terrain height and normal map from which the shader then can calculate the terrain height at
a given position in world space.

When drawing the blended mesh on top of the terrain, the mesh usually is clipped according to
the terrain’s depth, so our blending could only happen above the terrain’s surface which would
result in slightly floating meshes and a small gap. How can we apply the blend below the
terrain’s surface?

In order to draw the mesh even when below the terrain’s surface the shader pulls the vertices
(actually the clip space depth) slightly towards the camera. Doing so however will introduce
shading artifacts because other meshes close to the blended one might be clipped like shown
in the images below.

Vertices not pushed towards the camera The blending
between mesh (tinted green) and the terrain happens
below the terrain and thus gets clipped.

Vertices pushed towards the camera Now the mesh
draws on top of the terrain and the blending gets visible
(green circle). But it also renders on top of the gray
cylinder and clips parts of it (magenta circle).

The solution to handle other objects close to the mesh is:

Lux URP Essentials 1.91

A.​ Only slightly pushing the vertices towards the camera. This will result in a fairly small
blend range.

B.​ Disable ZWrite in the Blend Shader and use a second material to write to depth which
does not push the vertices. This will need us to draw the mesh twice.

Depending on your terrain and the mesh you want to blend you may use A. or B.

Using a 2nd material to write proper depth This solves
the problem on the cylinder.

Final result.

Draw Order
Solution b) depends on a proper drawing order: The terrain has to be drawn first, then the
depth only, the blended mesh and finally all other objects.

The following settings are used in the demo and work with URP 14.0.4. and the SRP Batcher:

●​ Terrain: 1900

●​ Depth only: 1998

●​ Blend: 1999

●​ Other Materials which are close to the blended mesh: 2000​
When using the Lit shader this is the default “Priority” of 0.0.

Usage
In order to use the shader you first have to create the needed terrain height normal map.

1.​ Assign the GetTerrainHeightNormal script to your terrain and hit Get Height Normal Map.
This will let you save a combined height and normal texture to disc.

2.​ Create a new material and assign the "Lux URP/Terrain/Blend" shader.

3.​ Assign the created combined height and normal texture to the material and set Terrain
Position and Terrain Size.

4.​ Now you can assign the material to an object and should get some kind of soft
intersection with the terrain. If not please check Terrain Position, Terrain Size and the
Render Queue used by the material and the terrain: The terrain must render first.

5.​ If the soft intersection shows up, you now may tweak the blending by adjusting Depth
Shift, Alpha Shift and Alpha Contraction.

Lux URP Essentials 1.91

6.​ By default the blend material writes to depth. In case you use “large” Depth Shift values
you should add a 2nd material to the Mesh Renderer component and assign the M
Terrain Blend Depth Only material. Then set ZWrite to Off in your blend material. This will
prevent the blend material from clipping other objects close to it.​
Please note: When it comes to lightmapping you have to make sure that the depth only
material is the 1st one and the “real” material is the last one so the lightmapper will
pick up the correct material when it renders the meta albedo. Check it by switching to
the Baked Global Illumination → Albedo preview in the scene view.

7.​ Check various view angles and adjust the settings. You may even blend the normals.​
In order to tweak the normal settings I recommend to disable shadows.

Shadows
Since URP 7.2. there are no screen space shadows anymore which made handling shadows
quite easy. So now we have to prevent the terrain from shadowing the parts of the blended
mesh below it manually.

We do so by simply raising the shadow sampling position in world space by the portion the
mesh is below the terrain. This leads to small discontinuities regarding the shape of the
shadow which however are barely visible.

Furthermore this only works properly for slopes < 90° as otherwise we pull the shadow
sampling coordinates into the mesh itself as shown below. For this reason the shader also lets
you pull the shadows sampling coordinates along the view ray.

Shader Inputs
Surface Blending

Depth Shift Amount the vertices get shifted towards the camera. Keep this as small as
possible to avoid shading artifacts – or disable ZWrite as described above.

Terrain Height Normal The terrain height normal (as generated with the provided
script)

Terrain Position Position of the terrain in world space.

Lux URP Essentials 1.91

Terrain Size Length, height, width of the terrain like in the terrain settings. Please mind
the order!

Alpha Shift Lets you shift the start of the blending range above or below the terrain
surface.

Alpha Contraction Higher values will shrink the range over which the alpha gets
blended resulting in a sharper transition.

URP >= 7.2.

Shadow Shift Threshold In order to prevent the terrain from shadowing the
parts of the blended mesh below the terrain we have to lift the position in world
space the shadows are sampled at. Shadow Shift Threshold defines the
distance to the terrain surface in cm where this lifting kicks in. As we can not
100% precisely reconstruct the terrains height values around 0.05 (= 5cm)
should be fine in most cases.

Shadow Shift Factor which determines the final lift of the shadow sampling
position. Usually a value of 1.0 should be fine.

Shadow Shift View Pulls shadow sampling position towards the camera.

Normal Shift The shader will blend the geometry normals towards the normals from
the terrain to smooth the transition. Normal Shift lets you define if the blending shall
start above or below the terrain surface.

Normal Contraction Higher values will shrink the range over which the normals get
blended.

Normal Threshold Lets you reduce the influence of the terrain normal according to the
angle between geometry and terrain normal.

Surface Options

Culling Lets you specify if the shader shall cull back or front faces.

ZWrite Lets you choose whether the shader writes to the depth buffer or not. When
using “large” Depth Shift values you should set this to Off and assign an extra depth only
material.

Receive Shadows If unchecked the material will not receive shadows.

Surface Inputs

More or less common surface inputs. So i will not explain these in detail here.

Known Issues
As the effect works in view or clip space it changes according to the view angle. I recommend
using rather tight alpha blending ranges.

Due to the fact that we push vertices towards the camera they will get clipped – while the
vertices of the depth only draw still gets rendered. This may cause gaps if the camera gets
really close to the surface like shown below. You may improve this a bit by lowering the
camera’s near clipping plane but this will never solve it. So make sure that your camera never
gets that close to the blended meshes.

Lux URP Essentials 1.91

It is difficult if not impossible to solve all shading artifacts. The screenshot below shows a foot
which actually is clipped because of the depth written by the terrain. However as the stair
blends with the terrain it looks as if the foot blends with the stair as well.

You can not stack blended meshes on top of blended objects tightly. Take the stairs for
example: It is a single mesh which is fine as it gets drawn with a single call. If it was made out
of 3 meshes — one for each step — you would get a lot of shading artifacts depending on the
order they were rendered.

As you will most likely set the blend shader to not write to depth and use a depth only material
instead you may get some artifacts on your blended mesh where parts of faces lying in the
background poke through. Large, smooth and rather convex meshes do not suffer from this.

Lux URP Essentials 1.91

Versatile Blend Shader (deprecated)
The versatile blend shader allows you to smoothly blend meshes with any other opaque
geometry in your scene. So compared to the terrain blend shader it does not only blend with
the terrain.

Please note: The shader has been flagged as deprecated as it does not support all features of
the URP (URP 10 and above). As the shader is always transparent it does not support SSAO
itself. In order to make it react to SSAO properly you have to assign a 2nd material which uses
the “Lux URP Depth DepthNormal Only” shader (which writes to depth and depth/normal).

In case you do not want it to receive SSAO you have to comment:​
#pragma multi_compile_fragment _ _SCREEN_SPACE_OCCLUSION

It shares the principle idea of the Terrain Blend shader and lets you pull vertices slightly
towards the camera so that pixels which are actually below the pixels already on screen will
still pass the depth test and allow us to add the blend. So I recommend reading the description
of the Terrain Blend shader first.

This flexibility however comes at some costs and drawbacks:

●​ The shader relies on the camera depth texture to determine the distance to the
surrounding geometry (like e.g. soft particles do as well). As the camera depth texture
is sampled in screen space the final blending is quite view dependent.

●​ In order to be able to sample a frame accurate camera depth texture, the shader has to
be set to render queue = transparent. This will make Unity sort all objects using this
shader back to front. So we will not benefit from early depth testing if several objects
using this shader overlap. Regarding opaque objects occluding the blended objects
early depth testing still works.

●​ As transparent objects do not receive proper screen space shadows (from the
directional light) we have to sample and blur shadows from the original cascades and
offset the shadow sampling position slightly to avoid shadows at the intersection:
Using the real sampling positions of course would end in all blended pixels to be in
shadow as they are supposed to be beneath the geometry they blend with.

The shader still is rather fast :)

Compared to a regular opaque shader It does an extra camera depth texture lookup and
calculates the shadow cascades split per pixel instead of per vertex. Since URP 7.2. this is the
behavior of all shaders anyway…

Nevertheless I do not recommend adding this shader to any single stone you add to your scene.
And if you have a house whose foundation you would like to blend nicely just make sure that the
foundation uses its own material and only this material uses the versatile blend shader.

Unlike the Terrain Blend shader it renders on the transparent queue. This means that its tweaks
to the depth buffer only affect objects which render afterwards - namely all other transparent
materials. So clipping issues as caused by the Terrain Blend shader are kept to a minimum by
design and we do not have to add an additional material just to write proper depth. Anyway:
Using high Depth Shift values may introduce artifacts.

Orthographic projection is not supported. Does it make sense? Just let me know.

Lux URP Essentials 1.91

Shader Inputs
Surface Blending

Depth Shift Amount the vertices get shifted towards the camera. The more you shift
the more pixels below the surface the geometry intersects with will get visible. So this
defines the maximum zone you may blend within.​
Nevertheless: Keep this rather small to avoid shading artifacts.

Alpha Shift Lets you shift the start of the blending range above or below the
intersecting surface.​
This will affect the shadows sampling offset too. So keep an eye on the shadows when
tweaking this. High values will influence self shadowing and most likely eliminate too
many shadows ...

Alpha Contraction Higher values will shrink the range over which the alpha gets
blended resulting in a sharper transition.

URP >= 7.2.

Shadow Shift Threshold In order to prevent the scene already on screen from
shadowing the parts of the blended mesh below the scene we have to lift the
position in world space the shadows are sampled at. Shadow Shift Threshold
defines the distance to the scene’s on screen surface in cm where this lifting
kicks in. As we can not 100% precisely reconstruct the scene’s height values
around 0.05 (= 5cm) should be fine in most cases.

Shadow Shift Factor which determines the final lift of the shadow sampling
position. Usually a value of 1.0 should be fine.

Proper settings: We get a nice blending.

Lux URP Essentials 1.91

Improper settings: The blended pixels are shadowed by the geometry they intersect with because the
Alpha Shift value and/or Alpha Contraction are too high and Shadow Shift Threshold and Shadow Shift are
not set properly.

I admit: it is a pain to adjust the settings… and I have to work on them.

Surface Options

Regular surface options you know from other shaders. ZWrite should be set to on tho.

Surface Inputs

Regular surface inputs and nothing fancy here: Right now the shader only supports
albedo/smoothness and normal textures.

Known Issues
Blending objects with other objects also using the Versatile Blend shader is not supported.

Sometimes shadows vanish when you switch your pipeline settings to “No Cascades”, which
actually does not make much sense… Going forth and back between “No Cascades” and “Two
Cascades” fixes this for me.

Make sure you check shadows from directional and spot lights.

Lux URP Essentials 1.91

Skin Shader
The skin shader uses pre-integrated skin lighting based on the work of Eric Penner and adds
transmission from a static thickness map on top.

Diffuse and specular lighting use different normals giving you smooth diffuse lighting while
keeping all details when it comes to specular highlights.

Using a skin mask it allows you to mix standard lighting and skin lighting within a single
material. You can also fade out skin lighting over distance.

In order to make it match the Lux LWRP Lit Extended shader it supports (animated) rim lighting
and all stencil buffer features.

Shader Inputs
Surface Options

Receive Shadows If unchecked the material will not receive shadows (faster).

Due to the smooth diffuse normals skin is prone to self shadowing artifacts.
Usually Unity shifts the vertices along the surface normals in the shadow caster
pass according to the Normal Bias of the light. This may not always look well,
especially if you use smooth normals. Harsh normals would hide most artifacts
as shown in the screenshots below.

So the properties below allow you to finetune self shadowing.

Shadow Caster Bias Lets you determine the amount of “mesh inflation” when it
comes to the shadow caster pass. Unity default is 1.0. This affects how the skin
casts shadows.

Shadow Sample Bias Lets you shift the position where shadows are sampled
along the surface normals. A value of 0.01 would shift the position by 1 cm.
This affects how the skin samples shadows.

Surface Inputs

Albedo (RGB) Smoothness (A) Albedo texture in RGB, Smoothness in Alpha.

Smoothness Lets you remap the sampled smoothness value.

Specular Specular color.

Enable Normal Map If checked the shader will sample the assigned normal map.

Normal Map The normal map.

Normal Scale Scale of the sampled normal.

Lux URP Essentials 1.91

Enable Diffuse Normal If checked the shader will do a 2nd sample of the
assigned normal map and blur it according to the chosen Bias value.

Bias Amount of blur added to the sampled diffuse normal (by sampling a lower
mip level) In case you want to use subtle blur amounts the normal map should
be set to Filter Mode = Trilinear.

Use Vertex Normal for Diffuse If checked the shader will simply use the
vertex normals when it comes to diffuse lighting so diffuse lighting will
not show up any details. If unchecked diffuse will use the regular,
specular normal which gives you rather harsh lighting. This only has any
effect in case Enable Diffuse Normal is unchecked. Otherwise the diffuse
normal will always be taken from the diffuse sample.

Enable Diffuse Normal Sample disabled:​
The shader will simply use the vertex normals when
it comes to diffuse lighting so diffuse lighting will
not show up any details. This saves one texture
lookup in the shader.

Enable Diffuse Normal Sample enabled: The shader will
sample a “blurred” version of the normal map according
to the Bias and use it when it comes to diffuse lighting.
Please note the subtle changes in lighting on the cheek or
chin.

Enable Detail Normal Map If checked the shader will sample the assigned detail
normal map and combine it with the regular normal map sample (URP12.1 only).

Detail Normal Map The detail normal map.

Detail Normal Scale Scale of the sampled detail normal.

Skin lighting

Skin Mask (R) Thickness (G) Curvature (B) Occlusion (A) Texture which contains skin
mask in red, thickness in green and ambient occlusion in alpha.

Skin Mask White pixels in the mask define the parts which shall be lit using the
skin lighting. Black pixels define the parts where regular lighting shall be
applied.

Thickness Bright pixels define thin parts where there will be a lot of subsurface
scattering and transmission like on the nose or the ears.

Curvature Grayscale curvature map (optional).

Lux URP Essentials 1.91

Occlusion Ambient occlusion map.

Please note: The texture should be imported as linear texture, so uncheck
“sRGB (Color Texture)” in the import settings. Compression should be set to
High.

Sample Curvature In case this is checked the shader expects a curvature map in the
blue channel of the Skin Mask (R) Thickness (G) Curvature (B) Occlusion (A) texture.

Curvature Drives the pre-integrated diffuse lighting and lets you control small scale
light scattering. If Sample Curvature is checked this will be driven by the given curvature
map. Curvature will act as a multiplier. Otherwise the shader will take the given
thickness map into account and Curvature will lerp the value from the thickness map
towards 1.0.

Basically the pre-integrated diffuse lighting adds some kind of reddish tint (based on
the Skin LUT) according to the dot product of the normal and the light direction to
simulate the small scale light scattering within the human skin.

Curvature = 0 – rather subtle light scattering Curvature = 0.3 – stronger light scattering.

Subsurface Color Color used to tint transmission.

Transmission Power Drives the view dependency of the transmission effect. Larger
values will make it more view dependent.

Transmission Strength Lets you scale the transmission effect.

Shadow Strength As transmission might be totally eliminated by self shadowing this
parameter lets you suppress shadows when it comes to transmission. Other lighting
features (diffuse, specular) are not affected.

Mask by incoming shadow strength Lets you suppress transmission according to the
shadow strength as set on the given light source - or from point lights which do not
cast any shadows (here shadow strength is 0.0).

Transmission Distortion When calculating transmission the shader distorts the
inverted light direction vector slightly by the given normal to simulate the scattering.
Default value is 0.01. Higher values will give you more scattering and break up the
uniform look.

Enable Ambient Back Scattering If checked the shader will look up ambient lighting
from the back side and add it to the transmission lighting.

Ambient Back Scattering Strength for Ambient Back Scattering.

Ambient Reflection Strength Lets you adjust the intensity of the ambient reflections.

Lux URP Essentials 1.91

Skin LUT Holds the results of the pre-integration and acts as a lookup table in the
lighting function. For caucasin like human skin please use the provided LUT
“DiffuseScatteringOnRing”.

Please note: This texture is absolutely mandatory. If it is missing, the lighting will look
totally odd. But the shaderGUI should always load the default
“DiffuseScatteringOnRing” texture from the Resources folder if the slot was empty.

Please note: If you want to assign your own LUT make sure that its Wrap Mode is set to
Clamp. Compression should be None. The texture should be imported as a linear
texture, so uncheck “sRGB (Color Texture)” in the import settings.

Please note: The smaller the texture the faster its lookup will be. The default import
size is set to 64px.

Distance Fading

Enable Distance Fade If checked the shader will fade out skin related lighting such as
transmission and pre-integrated diffuse lighting. This lets you swap out the shader at
lower LODs so you might use the built in "Lit" shader or even create a unified material
for your characters.

Max Distance Determines the distance at which skin lighting will be fully faded out.

Fade Range Determines the fade range.

Please note: Both values are “manipulated” by the material editor. Max Distance maps
to _DistanceFade.x and Fade Range to _DistanceFade.y where _DistanceFade.x = Max
Distance * Max Distance; and _DistanceFade.y = 0.1f / (Fade Range * Fade Range);

Rim Lighting

Enable Rim Lighting Check to enable Rim Lighting

Rim Color The Rim Color

Rim Power Higher values will push the effect towards grazing angles only.

Rim Frequency Lets you add a simple sinus based animation. If set to values > 0.0 the
shader will lerp between Rim Power and Rim Min Power.

Rim Min Power Second Power value used if Rim Frequency is > 0.0.

Rim Per Position Frequency Slightly offsets the animation based on the object’s
pivot in worldspace and prevents objects all pulsating at the same frequency.

Advanced

Enable Specular Highlights If unchecked the shader does not calculate direct specular
highlights which makes it cheaper.

Environment Reflections If unchecked the shader will not sample any reflection probes
which makes it cheaper.

Lux URP Essentials 1.91

Hair Shader
The hair shader supports hair specific Kajiya-Kay anisotropic lighting and multiple specular
highlights: one representing the reflection at the outer shell of the hair fibre with the color of
the light (primary) and another that represents the backscatter from the other side of the hair
fibre’s shell and is a mix of hair color and light color (secondary).

The shader is derived from Unity’s implementation in the HDRP.

It does not support “correct” backface lighting (VFACE) but always lits the surfaces according to
the given geometry normal in order to achieve smooth shading.

In order to make it match the Lux URP Lit Extended shader it supports (animated) rim lighting
and all stencil buffer features.

The hair shader comes in two flavors: Lux URP/Human/Hair and Lux URP/Human/Hair Blend.

Lux URP/Human/Hair uses alpha testing and alpha to coverage (optional). It creates rather
harsh edges (which gets softened/dithered if Alpha To Coverage is set to On) but writes to
depth and receives proper shadows. Furthermore it does not cause any depth sorting issues.

Use this shader for hair which may not always be close to the head. Enabling MSAA will help to
get nicer edges and is rather cheap on mobile devices nowadays.

Lux URP/Human/Hair Blend uses alpha blending and gives you nicer edges. However it does
not write to depth (as it is a transparent shader), thus it will suffer from depth sorting issues.

Use this shader variant only on hair cards close to the skin, where proper depth sorting is not
really required – such as eyebrows or beards.

You may also add a 2nd material using this shader in case you really need HD hair. Make sure
that Depth Testing uses “Less” (not “LessEqual”) to only render the blended material where there
is no alpha tested hair already. This will save a lot of fill rate. Please have a look at the included
demo to find out more.

Make sure you have checked “Alpha preserves coverage” in the import settings of the hair texture
and play around with the “alpha cutout value” while you zoom in and out from the texture to make
sure that hair does not clump nor fade out over the different mip levels. Keep the values below in
the range between 0.1– 0.9, as 1.0 won’t do anything.

Shader Inputs
Surface Options

Lux URP Essentials 1.91

ZTest Lets you tweak depth based face culling. In case you use two stacked materials
for the hair, set it to “Less” for the blended version to save fill rate (blended only).

Culling Lets you specify if the shader shall cull back or front faces.

Enable VFACE If Culling is set to off the shader will also render back faces
– using the normals from the front faces. This will prevent back faces from
getting too dark in case you have assigned smooth normal and the hair cards
are very close to the head (like the challenger’s head in the demo). However if
you have “hair tubes” you should enable VFACE to get proper lit back faces as
otherwise they will be way too bright.

Shadow Culling Lets you specify if the shader shall cull back or front faces or none
during the shadow caster pass. You may set it to “back” to save some fill rate.

Alpha To Coverage In case your hair’s alpha contains very little and fine details hair
may just dither out over distance where lower mips are sampled. Try to work against
this by checking “Alpha preserves coverage” in the import settings of the hair texture
and playing around with the “alpha cutout value”. Also try to adjust the contrast of the
alpha channel. If none of this helps turn off Alpha To Coverage.

Receive Shadows If unchecked the material will not receive shadows (faster).

Surface Inputs

Base Color Color which tints the sample from the albedo texture.

Secondary Color Secondary tint color. The shader lerps between base and secondary
color based on vertex color alpha: Vertex color alpha = 1 → Base Color will be applied.​
Use this feature to create brown hair with some gray strands (like on the Challenger in the
demo) or to lerp from base to tip color.

Albedo (RGB) Alpha (A) The Albedo (RGB) and the Opacity mask (Alpha)

Alpha Cutoff If the alpha channel contains different shades of gray instead of just
black and white, you can manually determine the cutoff point by adjusting the slider.

Enable Normal Map If checked the shader will sample the assigned normal map.

Normal Map The normal map.

Normal Scale Scale of the sampled normal.

Enable secondary highlight If unchecked the shader will skip the secondary highlight,
which makes it faster.

Shift (B) Occlusion (G) Texture which contains Shift values in the blue and Ambient
Occlusion in the green color channel. The sampled Shift value breaks up the uniform
look over hair patches as derived from the Primary Specular Shift and Secondary
Specular Shift. The texture should be imported as a linear texture, so uncheck “sRGB
(Color Texture)” in the import settings.​
Please note: The sampled shift value from the texture will be multiplied with the shift
values from the sliders primary and secondary shift. So if your blue color channel (shift)
is black the sliders will not do anything.

Specular Specular color which drives fresnel on ambient reflections.

Lux URP Essentials 1.91

Smoothness Lets you remap Primary and Secondary Smoothness.​
Ambient Reflections are calculated based on the Primary Smoothness.

Hair Lighting

Strand Direction Lets you choose between Bitangent (hair strands are laid out from top
to bottom) and Tangent (hair strands are laid out left to right).

Primary Specular Shift Shift the primary specular highlight towards the hair tip

Primary Specular Tint Specular color used to calculate the primary reflection. Should
be grayscale.

Primary Smoothness Smoothness used to calculate the primary reflection.

Enable Secondary Highlight If unchecked the shader will skip the secondary highlight,
which makes it faster.

Secondary Specular Shift Shift the secondary specular highlight towards the hair root.

Secondary Specular Tint Specular color used to calculate the secondary reflection.
Should somehow match the hair color.

Secondary Smoothness Smoothness used to calculate the secondary reflection.

Rim Transmission Intensity Lets you adjust the intensity of transmitted rim lighting.
This rim lighting has nothing to do with the Rim Lighting further down in the inspector.

Ambient Reflection Strength Lets you adjust the intensity of ambient specular
reflections.

Rim Lighting

Enable Rim Lighting Check to enable Rim Lighting

Rim Color The Rim Color

Rim Power Higher values will push the effect towards grazing angles only.

Rim Frequency Lets you add a simple sinus based animation. If set to values > 0.0 the
shader will lerp between Rim Power and Rim Min Power.

Rim Min Power Second Power value used if Rim Frequency is > 0.0.

Rim Per Position Frequency Slightly offsets the animation based on the object’s
pivot in worldspace and prevents objects all pulsating at the same frequency.

Advanced

Enable Specular Highlights is missing here, as it simply does not make any sense: If you
disabled specular highlights you would not need a hair shader.

Environment Reflections If unchecked the shader will not sample any reflection probes
which makes it cheaper.

Stencil

Stencil Reference The value to be compared against

Read Mask Bit mask which determines which bit will be read from.

Write Mask Bit mask which determines which bit will be written to.

Lux URP Essentials 1.91

Stencil Comparison The function used to compare the reference value to the current
contents of the buffer.

Stencil Pass Op What to do with the contents of the buffer if the stencil test (and the
depth test) passes.

Stencil Fail Op What to do with the contents of the buffer if the stencil test fails.

Stencil Z Fail Op What to do with the contents of the buffer if the stencil test passes,
but the depth test fails.

Lux URP Essentials 1.91

Cloth Shader
The cloth shader supports Charlie Sheen and GGX anisotropic lighting to cover a wide range of
different fabrics and uses functions provided by the SRP Core.

Charlie Sheen lighting versus GGX anisotropic. ​
Please note that the GGX anisotropic material uses a darker albedo and less transmission.​

The shader supports correct backface lighting using VFACE and transmission.

In order to make it match the Lux URP Lit Extended shader it supports (animated) rim lighting
and all stencil buffer features.

Shader Inputs
Please note: The package ships with an alternative cloth shader as well: Lux URP Cloth STL
(Standard Texture Layout) which - like its name says - stores opacity in the alpha channel of the
albedo texture. I personally prefer the custom texture layout as it lets us get away with only 2
texture samples in most cases, but some people may need the standard one.

Surface Options

Culling Lets you choose between rendering front faces, back faces or both.

Alpha Clipping If checked the shader will perform alpha clipping or alpha testing.​
Enabling Alpha Clipping needs you to enable and assign the Mask Map as well, because
alpha is stored in the Mask Map only.

Threshold aka Alpha Cutoff: If Alpha Clipping is enabled this value determines
where the alpha clipping starts.

Receive Shadows If unchecked the material will not receive shadows (faster).

Shadow Offset Lets you offset the casted shadows in order to prevent or minimize self
shadowing.

Charlie Sheen Lighting

Lux URP Essentials 1.91

Enable Charlie Sheen Lighting If checked the shader will apply Charlie Sheen lighting
which is suitable for materials like cotton or wool. If unchecked the shader will use
GGX anisotropic lighting.

Sheen Color Color which tints the specular highlights.

GGX anisotropic lighting

If Enable Charlie Sheen Lighting is unchecked the shader will use GGX anisotropic
lighting.

Anisotropy Controls the scale factor for anisotropy. 0 would be standard isotropic
lighting, values smaller or greater 0 will shift the specular highlights according to the
tangent or bitangent.

Transmission

Enable Transmission Check this to enable transmission.

Power Determines view dependency. Higher values will make transmission kick in only
when the view ray more or less directly points towards the light source.

Strength Lets you scale transmission

Shadow Strength As transmission might be totally eliminated by self shadowing this
parameter lets you suppress shadows when it comes to transmission. Other lighting
features (diffuse, specular) are not affected.

Distortion When calculating transmission the shader distorts the inverted light
direction vector slightly by the given normal to simulate the scattering. Default value is
0.01. Higher values will give you more scattering and break up the uniform look.

The subsurface color will be derived from albedo.

Surface Inputs

Color Color which gets multiplied on top of the base texture sample.

Albedo (RGB) Smoothness (A) Base texture which contains albedo (RGB) and
smoothness (A). Tiling and Offset will drive the sampling of this texture and the
assigned normal map.

Smoothness Lets you scale down the sampled smoothness from the base texture .

Specular The specular color.

Enable Normal Map If checked the shader will sample the assigned normal map.

Normal Map The normal map.

Normal Scale Scale of the sampled normal.

Enable Mask Map If checked the shader will sample the assigned mask map below.

Thickness (G) Occlusion (B) Alpha (A) The mask map which contains thickness
(G) ambient occlusion (B) opacity (A). Thickness is needed by transmission,
opacity is only needed in case you check Enable Alpha Testing.

Please note: The mask map gets sampled using unique tiling and offset values.
This way it can store thickness, occlusion and alpha for the entire mesh while
albedo, smoothness and the normal will use a higher tiling.

Lux URP Essentials 1.91

Occlusion Lets you dampen the sampled occlusion.

Enable Alpha Testing If checked the shader will perform alpha testing. Alpha
Testing needs the mask map to be enabled as well.

Alpha Cutoff If the alpha channel contains different shades of gray instead of
just black and white, you can manually determine the cutoff point by adjusting
the slider.

Rim Lighting

Enable Rim Lighting Check to enable Rim Lighting

Rim Color The Rim Color

Rim Power Higher values will push the effect towards grazing angles only.

Rim Frequency Lets you add a simple sinus based animation. If set to values > 0.0 the
shader will lerp between Rim Power and Rim Min Power.

Rim Min Power Second Power value used if Rim Frequency is > 0.0.

Rim Per Position Frequency Slightly offsets the animation based on the object’s
pivot in worldspace and prevents objects all pulsating at the same frequency.

Stencil

Stencil Reference The value to be compared against

Read Mask Bit mask which determines which bit will be read from.

Write Mask Bit mask which determines which bit will be written to.

Stencil Comparison The function used to compare the reference value to the current
contents of the buffer.

Stencil Pass Op What to do with the contents of the buffer if the stencil test (and the
depth test) passes.

Stencil Fail Op What to do with the contents of the buffer if the stencil test fails.

Stencil Z Fail Op What to do with the contents of the buffer if the stencil test passes,
but the depth test fails.

Advanced

Enable Specular Highlights is missing here, as it simply does not make any sense: If you
disabled specular highlights you would not need a cloth shader.

Environment Reflections If unchecked the shader will not sample any reflection probes
which makes it cheaper.

Render Queue

Queue Offset Equals Priority in the standard Lit shader. As the material inspector sets
the render queue based on Enable Alpha Testing you are not able to edit the Render
Queue property at the bottom of the inspector manually. Use Queue Offset to adjust the
final Render Queue.

Lux URP Essentials 1.91

Clear Coat Shader
Versatile clear coat shader that lets you use duo coloring, add metallic flakes and even mix
clear coat with standard lighting within the same material.

In order to make it match the Lux LWRP Lit Extended shader it supports (animated) rim lighting
and all stencil buffer features.

Please note: The clear coat shader effectively doubles the cost of specular computations.

Shader Inputs
Surface Options

Receive Shadows If unchecked the material will not receive shadows (faster).

Clear Coat Inputs

Clear Coat Drives the thickness of the coat which influences the darkening of the
albedo of the base layer towards grazing angles.

Clear Coat Smoothness Smoothness of the clear coat.

Clear Coat Specular Specular of the clear coat. Default is RGB(51,51,51). Actually you
should not really change it as some calculations are based upon the default value.

Enable Coat Mask Map If checked the shader will sample the maske map.

Mask (G) Smoothness (A) Mask map which stores the clear coat mask in G and
smoothness in A. The sampled mask value will be multiplied on top of the Clear
Coat value and lets you adjust the thickness.

Enable Standard Lighting If checked and if Enable Coat Mask Map is checked as
well the shader will fall back to standard lighting where the Clear Coat value
(thickness) equals 0. Expensive as the shader will use branching. It may however
save you one more material.

Base Layer Inputs

Color Primary albedo color.

Enable Secondary Color If checked the shader will mix Color and Secondary Color
according to the view angle.

Secondary Color Color which will be applied at grazing angles.

Lux URP Essentials 1.91

Smoothness Smoothness of the base layer.

Metallic Metallness of the base layer.

Enable Normal Map If checked the shader will sample the normal map.

Normal Map The normal map.

Normal Scale Lets you scale the normal.

Enable Base Layer Mask Map If checked the shader will sample the maske map.

Metallic (R) Occlusion (G) Smoothness (A) Mask map which stores metallic in
R, ambient occlusion in G and smoothness in A.

Occlusion Lets you scale the occlusion.

Enable secondary Reflection Sample If checked the shader will sample the given
reflection probe twice: once for the coat layer and once for the base layer. By default
reflections get only applied to the coat layer. Expensive but worth it on certain materials
such as coated carbon fibres.

Rim Lighting

Enable Rim Lighting Check to enable Rim Lighting

Rim Color The Rim Color

Rim Power Higher values will push the effect towards grazing angles only.

Rim Frequency Lets you add a simple sinus based animation. If set to values > 0.0 the
shader will lerp between Rim Power and Rim Min Power.

Rim Min Power Second Power value used if Rim Frequency is > 0.0.

Rim Per Position Frequency Slightly offsets the animation based on the object’s
pivot in worldspace and prevents objects all pulsating at the same frequency.

Stencil

Stencil Reference The value to be compared against

Read Mask Bit mask which determines which bits will be read from.

Write Mask Bit mask which determines which bits will be written to.

Stencil Comparison The function used to compare the reference value to the current
contents of the buffer.

Stencil Pass Op What to do with the contents of the buffer if the stencil test (and the
depth test) passes.

Stencil Fail Op What to do with the contents of the buffer if the stencil test fails.

Stencil Z Fail Op What to do with the contents of the buffer if the stencil test passes,
but the depth test fails.

Advanced

Enable Specular Highlights is missing here, as it simply does not make any sense: If you
disabled specular highlights you would not need a clear coat shader.

Environment Reflections If unchecked the shader will not sample any reflection probes
which makes it cheaper.

Lux URP Essentials 1.91

Transmission Shader

Shader Inputs
Surface Options

Culling Lets you choose between rendering front faces, back faces or both.

Alpha Clipping If checked the shader will perform alpha clipping or alpha testing.​
Enabling Alpha Clipping needs you to enable and assign the Mask Map as well, because
alpha is stored in the Mask Map only.

Threshold aka Alpha Cutoff: If Alpha Clipping is enabled this value determines
where the alpha clipping starts.

Receive Shadows If unchecked the material will not receive shadows (faster).

Shadow Offset Lets you offset the casted shadows in order to prevent or minimize self
shadowing.

Surface Inputs

Color Color which gets multiplied on top of the base texture sample.

Albedo (RGB) Alpha (A) Base texture which contains albedo (RGB) and opacity (A).
Tiling and Offset will drive the sampling of this texture and the assigned normal map.

Smoothness Smoothness or smoothness factor.

Enable Normal Map If checked the shader will sample the normal map.

Normal Map The normal map.

Normal Scale Lets you scale the normal.

Enable Mask Map If checked the shader will sample the mask map.

Mask (R) Thickness (G) Occlusion (B) Smoothness (A) Texture which stores a
mask, thickness, occlusion and smoothness in the according channels.

Please note that “mask” in this case is not a metallic mask (the shader uses the
specular setup). Instead it masks transmission lighting, so parts which are black
in the mask will use standard lighting.

The mask map gets sampled using unique tiling and offset values. This way it can
store mask, thickness, occlusion and smoothness for the entire mesh while
albedo, alpha and the normal might use a higher tiling.

Transmission

Power Determines view dependency. Higher values will make transmission kick in only
when the view ray more or less directly points towards the light source.

Strength Lets you scale transmission.

Shadow Strength As transmission might be totally eliminated by self shadowing this
parameter lets you suppress shadows when it comes to transmission. Other lighting
features (diffuse, specular) are not affected.

Lux URP Essentials 1.91

Mask by incoming shadow strength Lets you suppress transmission according to the
shadow strength as set on the given light source - or from point lights which do not
cast any shadows.

Distortion When calculating transmission the shader distorts the inverted light
direction vector slightly by the given normal to simulate the scattering. Default value is
0.01. Higher values will give you more scattering and break up the uniform look.

The subsurface color will be derived from albedo.

Wrapped Lighting The shader will apply smooth wrapped around diffuse lighting. This
value lets you adjust the light wrapping. Setting it to 0 will give you built in Lambert
lighting.

Rim Lighting

Enable Rim Lighting Check to enable Rim Lighting

Rim Color The Rim Color

Rim Power Higher values will push the effect towards grazing angles only.

Rim Frequency Lets you add a simple sinus based animation. If set to values > 0.0 the
shader will lerp between Rim Power and Rim Min Power.

Rim Min Power Second Power value used if Rim Frequency is > 0.0.

Rim Per Position Frequency Slightly offsets the animation based on the object’s
pivot in worldspace and prevents objects all pulsating at the same frequency.

Stencil

Stencil Reference The value to be compared against

Read Mask Bit mask which determines which bits will be read from.

Write Mask Bit mask which determines which bits will be written to.

Stencil Comparison The function used to compare the reference value to the current
contents of the buffer.

Stencil Pass Op What to do with the contents of the buffer if the stencil test (and the
depth test) passes.

Stencil Fail Op What to do with the contents of the buffer if the stencil test fails.

Stencil Z Fail Op What to do with the contents of the buffer if the stencil test passes,
but the depth test fails.

Advanced

Enable Specular Highlights If unchecked the shader does not calculate direct specular
highlights which makes it cheaper.

Environment Reflections If unchecked the shader will not sample any reflection probes
which makes it cheaper.

Lux URP Essentials 1.91

Fuzz Shader
The fuzz shader lets you create materials such as e.g. moss – materials which do not follow a
standard microfacet brdf model because they are a lot more porous and show up transmitted
light. It uses standard PBR lighting and adds fuzzy diffuse lighting on top. You even may add
transmission. Specular lighting is not influenced by fuzz lighting.

Using a mask you are able to combine fuzzy moss and standard lit ground and wood within a
single material.

Fuzz vs. standard lighting Fuzz lighting on the left, standard lighting on the right. The fuzz shader uses a mask to
exclude non moss parts from fuzz lighting. Model and textures from Quixel.

Shader Inputs
Surface Options

Culling Lets you choose between rendering front faces, back faces or both.

Alpha Clipping If checked the shader will perform alpha clipping or alpha testing.​
Enabling Alpha Clipping needs you to enable and assign the Mask Map as well, because
alpha is stored in the Mask Map only.

Threshold aka Alpha Cutoff: If Alpha Clipping is enabled this value determines
where the alpha clipping starts.

Alpha To Coverage Lets you enable/disable Alpha To Coverage which dithers
the alpha and produces less harsh edges than a simple cut off.

Receive Shadows If unchecked the material will not receive shadows (faster).

Fuzz Lighting

Enable Fuzz Lighting If checked the shader will add simple fuzzy lighting which lets
you create materials such as e.g. moss.

Diffuse Wrap The shader will apply smooth wrapped around diffuse lighting.
This value lets you adjust the light wrapping. Setting it to 0 will give you built in
Lambert lighting.

Fuzz Strength Fuzz color is derived from the albedo. So if the albedo is rather
dark you may raise this multiplier.

Lux URP Essentials 1.91

Fuzz Power Determines how far the fuzz lighting travels according to the
normals. The higher the value the less fuzz lighting will be applied.

Fuzz Bias Lets you add some fuzz lighting regardless of the given normal.

Ambient Strength Determines the Fuzz influence on ambient diffuse lighting.

Transmission

Enable Transmission On top of the fuzz lighting you may even add translucent lighting
if needed.

Power Determines view dependency. Higher values will make transmission kick
in only when the view ray more or less directly points towards the light source.

Strength Lets you scale transmission.

Shadow Strength As transmission might be totally eliminated by self
shadowing this parameter lets you suppress shadows when it comes to
transmission. Other lighting features (diffuse, specular) are not affected.

Distortion When calculating transmission the shader distorts the inverted light
direction vector slightly by the given normal to simulate the scattering. Default
value is 0.01. Higher values will give you more scattering and break up the
uniform look.

The subsurface color will be derived from albedo.

Surface Inputs

Color Color which gets multiplied on top of the base texture sample.

Albedo (RGB) Smoothness (A) Base texture which contains albedo (RGB) and
smoothness (A). Tiling and Offset will drive the sampling of this texture and the
assigned normal map.

Smoothness Smoothness or smoothness factor.

Specular The specular color.

Enable Normal Map If checked the shader will sample the normal map.

Normal Map The normal map.

Normal Scale Lets you scale the normal.

Enable Mask Map If checked the shader will sample the assigned mask map.

FuzzMask (R) Thickness (G) Occlusion (B) Alpha (A) Texture which stores a
fuzz mask, thickness, occlusion and alpha in the according channels.

The FuzzMask here lets you apply fuzz lighting only on certain parts of the
model so you can easily mix standard and fuzz lighting.

Rim Lighting, Stencil and Advanced are described in other shaders already. So I won't go into
details here.

Lux URP Essentials 1.91

Glass Shader

Limitations
The glass shader uses a non physically correct but eyeballed solution to simulate refraction.

As we do not use any fancy techniques such as ray tracing we can only refract what already is
on screen. This means that a) we can only refract what actually is on screen already and b) will
refract everything that is on screen.

a)​ If a refraction ray leaves the screen we will get heavy stretching on the refraction
sample as the _CameraOpaqueTexture is clamped. This will most likely affect objects
which are rather close to the screen border only.​
In order to get rid of the stretching you may check Enable Screen Edge Fade which
however will only make the refractions lerp towards the unrefracted sample.

b)​ By default the shader refract everything – even objects which are in front of the
refracting surface.​
In order to get rid of these you can check Exclude Foreground in the shader. Doing so
however will add a lookup into the depth buffer (not free) and leave “holes” in the final
refraction sample, as the shader simply falls back to the unrefracted sample.

Furthermore LWRP and URP do not support grabbing the framebuffer once for each draw
– like the built-in render pipeline does. So we can not stack glass on top of glass: Glass in front
of another glass will make the glass lying in the background fully vanish.

You will find help regarding issues using the glass shader and DOF here →

Alpha or transparency
Although the shader renders on the transparent queue, it actually is an “opaque” shader by
design: Adding the refractions just overwrites anything in the background.

So alpha or transparency only control the mix between opaque parts plus the specular
reflections and refraction.

Complex glass objects
Not being able to render “glass refracting glass” already makes a problem when it comes to a
simple glass as – when looking at the bowl – you should see both outer and inner faces.
However, only the outer faces get rendered (due to depth testing and writing). Disabling depth
writing would lead to quite unpredictable results, because faces lying in the back may
randomly overwrite faces lying in the front (depending only on the triangle order in the mesh).

So we have to split up the bowl into two materials: One used on the outer faces (Outer
Material, the second one (Inner Material) used on the faces forming the inner parts of the
bowl.

In case you want to use opaque “decals” on the outer faces of the bowl (like the glass with the
Lux logo applied) you have to make the inner faces render first. Outer faces then get rendered
on top using one of the two provided blending methods:

Inner Material

Lux URP Essentials 1.91

This material should render first.

If Culling is set to Back we do not have to write to the Z Buffer as we do not have any
overlapping front facing faces in a shape such as the bowl.

Outer Material

This material should render on top of the inner material. Do so by:​
a)​ either tweaking the Render Queue to e.g. Transparent+1, which is not ideal as it
breaks proper back to front sorting...​
b)​ or make sure that the order of the materials (= submeshes) is set up properly
from material which shall render first to the material which should render on top. This
keeps back to front sorting intact. As all materials can share the same Render Queue
which should be: Transparent.​
As i am no expert in modelling i had to go with a), sorry.​
Rendering the outer material on top of the inner material will make sure that any “decal”
defined in the base map (Albedo Alpha) will fully overwrite the inner faces and thus not
receive any glass specific lighting.

Using Alpha Blending will only reveal opaque parts and specular reflections if Final
Alpha is set to 0. Raising Final Alpha will also reveal the refraction.

Using Additive Blending will reveal the inner faces even more – but of course will
corrupt the final shading as the bowl and the refractions get too bright (additive!).
Adjust the Final Alpha to reduce these artifacts.

Glass using one single material for ​
the bowl Back faces of the bowl are
invisible.

Glass using two materials for the
bowl Back faces of the bowl are
visible. The Outer Material uses
Transparent Blending and a Final
Alpha value of 0.4.

Glass using two materials for the
bowl Back faces of the bowl are
visible. The Outer Material uses
Transparent Blending and a Final
Alpha value of 0.4. Base Map is
enabled and adds tinting to the
glass and the “Lux'' logo decal.

In case you do NOT want to use opaque “decals” on the outer faces of the bowl you may swap
the settings of the outer and inner material and render the outer material first. This way you

Lux URP Essentials 1.91

will ensure that the refraction on the outer material will be fully tinted. Otherwise it depends on
the chosen Final Alpha value.

The importance of enabling ZWrite
The following screenshots demonstrate the importance of writing to the depth buffer:

ZWrite disabled Stem gets partly overwritten by the foot. Zwrite enabled Stem is rendered properly.

Shader Inputs
Surface Options

ZWrite Lets you choose whether the shader writes to the depth buffer or not. Usually it
should write to the depth buffer. In case you use multiple materials for certain parts of
your glass object you may want to set it to Off.

Culling Lets you choose between rendering front faces, back faces or both.

Blending

None Will make the shader simply overwrite the current frame buffer value. Use
this for simple objects only using one glass material.

Transparent Will make the shader blend the shaded pixel with the frame buffer
using “traditional transparency” or alpha blending.

Additive Will make the shader blend the shaded pixel with the frame buffer
additively.

Final Alpha If blending is activated this lets you adjust how much the
given pass will contribute to the final image. It uses a max operator, so it
will lift the visibility of parts (like refractions), which do not have a
corresponding alpha value.

Receive Shadows If unchecked the material will not receive shadows (faster).​
Please note: As glass does not contribute to the screen space shadows it may not
receive proper shadows but simply pick them up from the underlying geometry (which
may be very far away…).

Lux URP Essentials 1.91

In order to receive proper shadows you have to render an invisible object using the
“Depth Only” shader. Please have a look at the “Glass Demo” where you will find a
proper example. Since URP 7.2. There are no screen space shadows any more.

Surface Inputs

Color (RGB) Alpha (A) Color which tints the refractions and opaque parts.​
Alpha in this case does not drive the opacity of the material but the fade between glass
lighting and standard lighting as used by the decals. In order to get fully transparent
glass, alpha must be set to 0.0.

Enable Base Map If checked the shader will sample the base map.

Albedo (RGB) Alpha (A) Albedo (RGB) allows you to achieve multi colored glass
or add decals. Alpha in this case does not drive the opacity of the material but
the fade between glass lighting and standard lighting as used by the decals. In
order to get fully transparent glass, alpha must be set to 0.0.

Tiling and Offset of this texture will drive sampling of the mask and bump map as
well – even if it is disabled.

Smoothness Smoothness of the glass layer.

Smoothness Opaque Smoothness of the opaque parts as defined by alpha.

Specular Specular color of the glass.

Specular Opaque Specular color of the opaque parts.

Enable Mask Map If check the shader will sample the mask map.

Thickness Mask (R) Smoothness (A) Texture which contains the “invers” glass
thickness (solid = 0, thin shell = 1) in the red color channel and the smoothness
in the alpha channel. Please note: The texture should be imported as linear
texture, so uncheck “sRGB (Color Texture)” in the import settings.

Enable Normal Map If checked the shader will sample the normal map.

Normal Map The normal map.

Normal Scale Lets you scale the normal.

Refraction

Enable geometric Refractions If checked the shader will refract the given background
based on the normals of the geometry and the following settings:

Index of Refraction The material specific index of refraction which drives the
amount of refraction. Glass has an IOR of roughly 1.5.

Thin Shell A solid glass sphere would use a value of 0.0, while a hollow sphere
like a christmas ornament should use a value of 0.98. A value of 1.0 would give
you no refraction. This parameter drives the final shape of the refraction.​
See: Solid and Thin Shell Glass in the demo.

Enable Screen Edge Fade If checked the shader will fade out geometry driven
refractions towards the screen edges to suppress stretchings.

Lux URP Essentials 1.91

Fade Width Lets you define a falloff used to fade out geometric driven
refraction towards the edges of the screen.

Bump Distortion Distortion of the refraction based on the normal map.

Exclude Foreground If checked the shader will not refract objects lying in front of the
given pixel but return a refraction sample from the actual screen position.​
This will make the shader sample the _CameraDepthTexture (more expensive) and will
cause holes in the refraction sample.

Rim Lighting

Enable Rim Lighting Check to enable Rim Lighting

Rim Color The Rim Color

Rim Power Higher values will push the effect towards grazing angles only.

Rim Frequency Lets you add a simple sinus based animation. If set to values > 0.0 the
shader will lerp between Rim Power and Rim Min Power.

Rim Min Power Second Power value used if Rim Frequency is > 0.0.

Rim Per Position Frequency Slightly offsets the animation based on the object’s
pivot in worldspace and prevents objects all pulsating at the same frequency.

Stencil

Stencil Reference The value to be compared against.

Read Mask Bit mask which determines which bits will be read from.

Write Mask Bit mask which determines which bits will be written to.

Stencil Comparison The function used to compare the reference value to the current
contents of the buffer.

Stencil Pass Op What to do with the contents of the buffer if the stencil test (and the
depth test) passes.

Stencil Fail Op What to do with the contents of the buffer if the stencil test fails.

Stencil Z Fail Op What to do with the contents of the buffer if the stencil test passes,
but the depth test fails.

Advanced

Enable Specular Highlights If unchecked the shader does not calculate direct specular
highlights which makes it cheaper.

Environment Reflections If unchecked the shader will not sample any reflection probes
which makes it cheaper.

Lux URP Essentials 1.91

Lit Particles Shaders (deprecated)
The lit particle shaders are derived from the URP Particle SimpleLit shader and support Blinn
Phong Lighting and all other options you may know from this shader. Lux URP lit particles
shaders however enable all light types and add support for real time shadows and cheap
transmission lighting next to some minor optimizations on top.

Please note: The shaders are flagged as deprecated as one if their core features (per vertex
shadow sampling) does not work with Forward+ rendering: Vertex to fragment interpolation
could just cross the tiles’ borders which would result in jagged lighting. If you use Forward+
the shaders fall back to per pixel shadows which especially makes the tessellation shader kind
of obsolete. Well, at least directional shadows get sampled per vertex and smoothed out.

The particle shaders have been written with classic camera aligned alpha blended billboards in
mind. Other billboard modes like Horizontal Billboards are only partly supported. Alpha tested
or solid particles using a custom mesh are not supported but covered well with the built in
shaders.

Additive blending like other blending modes is supported but most likely not suitable as it is
mainly used to render emissive materials like flames which do not need to receive real time
shadows.

Real Time Shadows
Classical billboarded particles are just flat surfaces pointing towards the camera. As they are
transparent they do not write into the depth buffer and thus may not receive any screen space
shadows from the sun. Furthermore Unity deactivated the support for additional lights in the
built in particle shaders so they of course do not receive shadows from spot lights either.

URP 7.2. enabled shadows on particles, however these get always sampled per pixel.

Lux URP lit particles sample all shadows in world space, either per pixel – which may get
pretty expensive – or per vertex.

Per pixel shadows suffer the most from the fact particles being a flat surface only while per
vertex sampled shadows may already look smoother due to the interpolation from vertex to
fragment shader.

In order to make the per vertex sampled shadows even smoother the shaders offer two
possibilities:

1.​ Tessellation: While being a bit expensive and not supported on all platforms this will
just increase the number of vertices and thus give you more accurate shadows.
Tessellation affects all light types and shadows.

2.​ Using Sample Offset: If this parameter is set to 0 the shader will only do a single look
up into the shadow map of the directional light per vertex. As soon as you raise it, the
shader will perform three lookups and mix the final result. The additional sample
locations in world space are calculated according to the vertex’s velocity and the
chosen Sample Offset. This only affects shadows from the main directional light.​
In order to provide the shader with the Velocity you have to add the according vertex
stream to your particle system.

Lux URP Essentials 1.91

Vertex Streams
Unity can output a bunch of different combinations of vertex streams depending on their order
and the selection. The shaders however only support two different vertex streams layouts
when it comes to features such as Flipbook Blending and Sample Offset:

Supported Vertex Stream Layouts

Full feature Vertex Stream: Flipbook Blending and
Sample Offset active If Sample Offset was deactivated
the last stream Velocity would be obsolete.

Vertex Stream: Only Sample Offset active If Sample
Offset was deactivated the last stream Velocity would be
obsolete.

Of course if normal mapping is deactivated no Tangent stream is needed. Same goes with the
Color in case your particle system did not write to any color – which however hardly ever
happens.

In order to fix or check your streams you can use the button “Check Vertex Streams” at the very
bottom of the material inspector. The particle system will also inform you about missing or
obsolete streams.

Normal Direction
When it comes to particle lighting the Normal Direction of the particles as set in the Renderer
module of the particle system plays an important role. Unity Docs >

A Normal Direction of 1 will give you quite accurate ambient lighting from the Skybox or a
Gradient as the particle normals will more or less will fit the world normal of the particle’s
billboard. Per vertex lighting however might look a bit harsh. Values around 0.5 should be fine.

Shader Inputs
Tessellation Tessellation shader only

Tessellation Number of subdivisions created by the tessellator. Keep this number as
low as possible for performance reasons. Make sure you always use an odd value (like
3, 5, 7, …) as even values will create odd tessellation.

Near (X) Far (Y) Near: Distance from the camera where the specified number of
subdivisions will be reached. Far: Distance from the camera where no tessellation will
be applied anymore.

Surface Options

ZTest Lets you tweak depth based face culling.

https://docs.unity3d.com/Manual/PartSysRendererModule.html

Lux URP Essentials 1.91

Cull Lets you choose between rendering front faces, back faces or both. For classical
billboarded particles “Back” is the right choice.

Blending Mode

Alpha Will make the shader blend the shaded pixel with the frame buffer using
“traditional transparency” or alpha blending.

Premultiply Will make the shader multiply alpha on top of the albedo. Usually
needed for pbr lighting - which is not supported by the shaders.

Additive Blends particles using additively blending.

Multiply Blends particles using multiplicative blending.

Color Mode

Controls how the particle color (color added to vertex colors by the particle
system) and Material color blend together.

Receive Shadows If checked the material will receive real time per pixel shadows from
the main directional light.

Additional Light Shadows If checked the material will receive real time per pixel
shadows from the additional spotlights.

Per Vertex Shadows If checked all shadows will be fetched per vertex instead
of per pixel which speeds up rendering. Soft shadows will be disabled and
smooth borders come from the vertex to fragment interpolation only. Will be
deactivated automatically if you use Forward+. See: Known Issues below.

Sample Offset If set to > 0.0 the shader will sample the shadow map three
times for the main directional light and offset the sample position according to
the given velocity of the particle and the chosen value. Needs Velocity to be
added to the vertex streams of the particle system. See: Vertex Streams above.

Surface Inputs

Base Color

Base Map

Specular Highlights

Enable Spec Gloss Map

Spec Gloss Map

Specular Color (RGB) Shininess (A)

Enable Normal Map If checked the shader will sample the assigned normal map.

Normal Map The normal map.

Enable Emission If checked the shader will sample the Emission Map

Emission Map Emission texture (RGB)

Color Color which will multiplied on top of the sampled emission

Enable Transmission If checked the shader will add fast transmission lighting which is
derived from the dot product between view vector and light vector and masked by (1.0 -
alpha) so less opaque parts get more transmission.

Transmission Lets you scale the transmission.

Lux URP Essentials 1.91

Distortion Distorts the light vector by the given normal and breaks up the
uniform transmission.

Particle Options

Enable Flipbook Blending If checked frames in a flip book will be blended together
smoothly. Needs a 2nd UV coord and Animblend to be added to the vertex stream. See:
Vertex Streams above.

Enable Distortion Creates a distortion effect by making particles refract objects drawn
before them.

Strength Controls how much the particle distorts the background

Blend Controls how visible the distortion effect is.

Enable Soft Particles If checked particles will smoothly fade out when intersection
with other geometry in the depth buffer.

Near (X) Far (Y) Near: Distance from the other surface where the particle is fully
transparent. Far: Distance from the other surface where the particle is fully
opaque.

Enable Camera Fading Makes particles fade out close to the camera

Near (X) Far (Y) Near: Distance from the camera surface where the particle is
fully transparent. Far: Distance from the camera where the particle is fully
opaque.

Check Vertex Streams Press this button to check your vertex streams. If all are fine the
material editor will simply prompt a message into the Console. Otherwise you will get a
message that renderers do not fit the material settings and the possibility to fix them.

Known Issues
●​ Unity’s built in particle shaders render at render queue 3050 by default – for whatever

reason ever. This will make them appear on top of any other transparent object which
uses the standard transparent queue which is 3000. You may fix this by setting their
Priority to 50 which will make them render at 3000 so they get regularly sorted from
back to front respecting all other transparent materials.

●​ If spot lights shall cast shadows onto particle systems ALL visible spot lights have to
cast shadows! I thought this was a bug in my shader… but in fact this is a bug or
feature in LWRP (tested in unity 2019.1. and LWRP 5.16.1, 2019.2 and LWRP 6.9.1.)
Using LWRP 6.9.1. it looks as if it was fixed in the scene view. In game view (play
mode) shadows vanish as soon as there is one spot light without shadows visible on
screen. On all objects – even the opaque ones using the built in shaders.

●​ Per vertex sampled shadows do not work with Forward+ rendering - as the vertex to
fragment interpolation we use to smooth the shadows may cross the border between
different tiles. So in case Forward+ is active the shader always falls back to per pixel
shadows which makes it a bit worthless.

Lux URP Essentials 1.91

Toon Shading Shader
Since version 1.6 Lux URP Essentials contain an HLSL toon shader as well.
It is described in a separate documentation →

Flat Shading Shader
The flat shading shader allows you to apply flat shading to any mesh – regardless of its vertex
normals: It simply skips these in the fragment shader and calculates the normals as used by
the lighting function only based on the gradient of the world space position.

It is a simple HLSL equivalent to the included Flat shading Node for Shader Graph, so you will
find in depth information here →

Unlike the node for Shade Graph this shader offers full stencil buffer support and rim lighting
as well as normal mapping!? so you can use it along with the highlight shaders.

Shader Inputs
As this documentation is already pretty long I will not repeat common inputs here.

However special to flat shading is the fact that you might not assign a base map (Albedo
(RGB) Alpha (A)) but fully rely on the base color and smoothness coming from a slider value.

Nevertheless you may activate Alpha Clipping or specify the alpha channel of the base texture
to contain smoothness if Enable Base Map is checked.

Alpha Clipping and Albedo Alpha contains Smoothness are mutually exclusive which means
that you can check only one. If both are checked Albedo Alpha contains Smoothness will
disable Alpha Clipping. If Enable Base Map is unchecked both will be disabled.

In case Enable Base Map is unchecked this shader should be slightly faster than the shader
graph version.

Receive SSAO (in section Surface Options, URP 10.1.+) If unchecked the shader will “cast”
SSAO but not receive any.

https://docs.google.com/document/d/1GpJwOeaXh_K1SqGcDYgA51JnpUV6e5x8n35SebR3W5o/edit

Lux URP Essentials 1.91

Highlight Shaders

Lux URP/Fast Outline Shader
Please note: When using deferred you will need the Lux URP/Fast Outline Double Pass shader.

The Fast Outline shader allows you to highlight objects by adding a colored outline to them
without having to use any expensive full screen image effect. The shader instead is based on
the stencil buffer and needs the objects to be drawn twice:

1.​ First you render the object using a “regular” shader which renders your material just as
is but also writes a reference value x into the stencil buffer. Do so by assigning e.g. the
Lux URP/Lit Uber Shader

2.​ Then you render the object a second time just on top using the Lux URP/Outline shader.
This will draw a slightly extruded version of the mesh taking the stencil buffer into
account: It writes only to screen if the stencil buffer does not contain the reference
value x.

3.​ All pixels covered by the regular mesh (where it wrote to the stencil buffer) will be
excluded in the second pass giving you the desired outline.

Further information about the stencil buffer can be found in Unity’s documentation.

Using a method like this allows you to create various outline effects like the one shown below,
just by editing the materials’ depth write property and setting the stencil options.

Outline Overview Demo
The Outline Overview Demo shows various outline effects and how to set these up.

https://docs.unity3d.com/Manual/SL-Stencil.html

Lux URP Essentials 1.91

Basic Outline

The outline will always be drawn regardless if the object is
(partly) visible or not.

●​ Base Material simply writes to the stencil buffer, always.
●​ Outline Material uses Stencil Comparison = NotEqual and does

not do depth testing: ZTest = Always

Depth Culling

Only the visible parts of the objects will be outlined.

●​ Base Material simply writes to the stencil buffer.
●​ Outline Material uses Stencil Comparison = NotEqual and does

regular depth testing: ZTest = LessEqual.

Depth Culling inverted

Only the invisible parts of the objects will be outlined.

●​ Base Material simply writes to the stencil buffer
●​ Outline Material uses Stencil Comparison = NotEqual and does

inverted depth testing: ZTest = GreaterEqual

Hidden Surfaces

Invisible parts of the objects will be drawn as flat, tinted
surfaces.

●​ Actually this effect does not need any stencil buffer usage as
we do not draw any outline but just the “regular” faces.

●​ So the Outline Material simply is set to: Ztest = Greater.

Setup
As mentioned before: The object or mesh has to be drawn twice. The easiest way to do this is
just to apply two materials to the renderer component – in case your mesh does not have any
submeshes/already uses multiple materials. Letter would actually need you to copy the mesh,
assign proper outline materials and let unity do the rest. Or draw it from script.

In order to keep things simple, let's assume that our mesh has only one material assigned.

Lux URP Essentials 1.91

●​ Duplicate the material in the project tab.

●​ Assign the Lux URP Lit Extended or Uber shader to the new material. It is a copy of the
built in Lit shader but offers some extra features such as the configuration of the
stencil. And as the base material has to prepare the stencil buffer we will need such
features.

●​ In the foldout Surface Option find Advanced Options and set Stencil Reference to 1, set
Stencil Comparison to Always. This will make the shader always write 1 into the stencil
buffer:

●​ Next create a new material and assign the Lux URP Outline shader.

●​ Set its Stencel Reference to 1 as well.

●​ Now select the Mesh Renderer component of the game object you want to add the
outline to and set Material → Size to 2. Assign the new material using the Lux URP Lit
Extended shader to the first slot and the outline material to the second slot.

●​ Done. Unity now should draw the object twice: First using the Lux URP Lit Extended
shader and then using the outline shader.

●​ In case your mesh uses multiple materials this method will fail. Please have a look here
to find out how to solve this.

Limitations

Overlapping outlines

As both spheres write 1 as stencil reference value the blue
outline of the sphere in the foreground will be partly
suppressed by the sphere in the background.

You would have to use different stencil reference values
here which unfortunately breaks when using the SRP
batcher right now.

Mixing outline modes

Mixing various outline modes within a single scene might
lead to quite unpredictable results – especially if you mix
depth culling and depth culling inverted or Stencil Z Fail Op =
Replace and Stencil Z Fail Op = Keep.

Lux URP Essentials 1.91

Concave and complex models

The outline is generated by extruding the vertices along
their normals. This works absolutely fine on convex objects
– however may not always produce perfect outlines
regarding complex and concave models and harsh normals.
The results are still pleasant.

Alpha testing

Alpha tested objects are not supported by design. Here e.g. using rim lighting would be a fast
alternative to highlight the objects.

However you can have a look into the Fast Outline AlphaTested shader which uses another
technique to create the outline.

In order to create an outline like in the scene view in the Unity editor you have to use a full
screen image effect – expensive.

Outline Runtime Demo
Let’s have a look if we can combine the outline effects (always visible and not hidden
according to depth to highlight selected objects) and hidden surfaces (to always show certain
objects): Here we have two concurring demands as both outlines and hidden surfaces shall
always be visible regardless of depth… Do some funky stencil things?

Luckily we do not need a stencil test in order to draw hidden surfaces: A simple depth test
done by the second material (that draws the hidden) surfaces is enough. So we will start with
this material:

M Hidden Surfaces Base​
Like said we do not need to write anything to the stencil buffer when drawing the regular mesh.
So this material simply uses the built in Lit shader.

M Hidden Surfaces Surfaces​
This material shall draw the hidden surfaces. Therefore we have to assign a material that lets
us choose how the depth test will be performed. We use the Lux URP Outline shader because
of this and set ZTest to Greater. Assign this material as second material – done. Stencil tests
are not needed.

We do not need a scriptable render pass or Renderer Features or anything else. We just have to
make sure that the hidden surfaces are drawn after all opaque objects and most likely after all
transparent objects as well. As the shader by default uses the Queue = 3059 (which is
Transparent+59) in order to get drawn on top of other transparent materials you may want to
change it to Transparent in the material editor in case you want proper back to front sorting. In
case you need front to back sorting consider using AlphaTest.

If you want to exclude hidden surfaces from being drawn behind selected objects you may
activate the stencil test and check against the reference value as written by the selected
objects.

M Outline Base always visible​
The selectables which shall always show an outline (when selected) however have to write to
the stencil buffer due to the fact that we want to draw an outline. So this material uses the Lux

Lux URP Essentials 1.91

LWRP/Lit Extended shader. The stencil buffer options are straight forward: we simply write our
reference value (1) under all conditions: So Compare is set to Always (which means no
compare), all other operations use Replace.

M Outline Outline always visible

This material is used to draw the outline and checks the stencil buffer for the reference value
(1). Compare is set to NotEqual so it only gets drawn on top of pixels if the corresponding
stencil value is not 1.

Hidden surfaces

In case you want to use the outline shader to make hidden surfaces visible you can simply
assign the second needed material permanently to your prefabs.

Selection outline

In this case we have to dynamically change the materials. Not selected objects should not use
the base shader as it writes to the stencil buffer and would block outlines on other objects.

But we do not want to change materials at runtime as these most likely are shared materials.
We have to swap materials on the desired game object/renderer as there might be several
enemies or pickables using the same shared material.

The demo ships with two simple scripts (MouseSelect.cs and ToggleOutlineSelection.cs) that
show how you can handle this without producing any garbage or spikes.

Usage

In order to add an outline effect select the Renderer component of your object, open the
Materials foldout and set the Size to 2. Then assign an outline material as second material.

In case your mesh uses multiple materials this method will fail. Please have a look here to find
out how to solve this.

Shader Inputs

Surface Options

ZTest Lets you tweak depth based face culling.

Culling Lets you choose between rendering front faces, back faces or both.

Stencil Reference The value to be compared against.

Read Mask Bit mask which determines which bits of the stencil buffer will be
read from.

Stencil Comparison The function used to compare the reference value to the current
contents of the buffer.

Outline
Color The color (RGB) and opacity (Alpha) of the outline

Width Width of the outline in pixels

Enable Fog If checked the outline will receive fog.

Lux URP Essentials 1.91

Lux URP/Fast Outline AlphaTested Shader
Please note: When using deferred you will need the Lux URP/Fast Outline AlphaTested Double
Pass shader.

This shader lets you add a rough outline even to materials applying alpha testing.
It uses the stencil buffer as described above but instead of extruding the mesh to create the
outline it samples the alpha texture 5 times and slightly shifts the uvs for each sample:

Combined, shifted alpha samples Final result

As you can see we can create a really rough outline shifting the uvs. However the thicker the
outline the more jaggy it will look. Furthermore, the thickness of the outline is dependent on
view (anisotropic filtering) and distance to the camera (mip maps). Nevertheless it looks some
kind of ok and is quite fast to render.

Just like the Fast Outline shader this shader needs you to draw the mesh twice:

1.​ Draw the mesh using a regular shader with alpha testing enabled. You may or may not
write to the stencil buffer.

2.​ Then draw the mesh using the Fast Outline AlphaTested shader.

In order to draw the mesh twice just assign the two materials to the renderer component and
ignore Unity’s warning. Actually we could draw the inner parts and the outline in a single pass but
this would break some features like: only show the outline if hidden. So this shader did not make
it into the package.

Regarding the stencil usage please have a look at the chapter above and check out the
included example in the Outline Runtime Demo.

Shader Inputs

Surface Options

ZTest Lets you tweak depth based face culling.

Culling Lets you choose between rendering front faces, back faces or both.

Alpha To Coverage As we use alpha testing MSAA will not smooth any edges. So you
may turn on Alpha To Coverage to get some softer borders (only visible in game view).

Stencil Reference The value to be compared against.

Lux URP Essentials 1.91

Read Mask Bit mask which determines which bits of the stencil buffer will be
read from.

Stencil Comparison The function used to compare the reference value to the current
contents of the buffer.

Outline

Color The color (RGB) and opacity (Alpha) of the outline

Width Width of the outline in pixels (roughly)

Surface Inputs

Color Color that gets multiplied on top of the albedo and alpha sample. Here we are
only interested in the alpha part of the color.

Albedo (RGB) Alpha (A) Base texture containing allbedo in RGB and alpha in A. Here we
are only interested in alpha.

Alpha Cutoff The cutoff value. Please note: this should match the value used in the base
material!

Writing to the stencil buffer using the Lit Extended Uber Shader
In case you want to draw outlines as described above, you need a special shader which
prepares the stencil buffer accordingly. The Lux Lit Extended Uber shader is derived from the
built in Lit one and offers the needed functionality. Details →

Adding stencil options to custom shaders
Shader graph currently does not support stencil operations. If you have a manually written
shader: fine. If you use Shader Graph: Get the shader code (right click into the master node’s
header and select “Copy Shader”. Create a new file in your IDE or text editor and paste the
code).

Now that you have the shader code you have to a) add the needed properties and b) add the
actual stencil operations.

a) In order to add the needed properties you can simply copy and paste the following lines to
the property block of the shader:

[Header(Stencil)]

[Space(5)]

[IntRange] _Stencil ("Stencil Reference", Range (0, 255)) = 0

[IntRange] _ReadMask (" Read Mask", Range (0, 255)) = 255

[IntRange] _WriteMask (" Write Mask", Range (0, 255)) = 255

[Enum(UnityEngine.Rendering.CompareFunction)]

_StencilComp ("Stencil Comparison", Int) = 8 // always

[Enum(UnityEngine.Rendering.StencilOp)]

_StencilOp ("Stencil Operation", Int) = 0 // 0 = keep, 2 =
replace

Lux URP Essentials 1.91

[Enum(UnityEngine.Rendering.StencilOp)]

_StencilFail ("Stencil Fail Op", Int) = 0 // 0 = keep

[Enum(UnityEngine.Rendering.StencilOp)]

_StencilZFail ("Stencil ZFail Op", Int) = 0 // 0 = keep

b) At the beginning of the lighting pass you have to add the stencil operations:

Pass

{

Name "ForwardLit"

Tags{"LightMode" = "LightweightForward"}

Stencil {
Ref [_Stencil]
ReadMask [_ReadMask]
WriteMask [_WriteMask]
Comp [_StencilComp]
Pass [_StencilOp]
Fail [_StencilFail]
ZFail [_StencilZFail]

}

Using Rim Lighting to highlight selected objects
In case you want to use rim lighting to highlight selected objects you can have a look at the
ToggleOutlineSelection.cs and derive your script from this:

Basically you have to swap 2 materials: 1st with rim disabled, 2nd with rim enabled — as rim is
compiled as "shader_feature_local" and can not be enabled at runtime.

As the 2nd material is referenced in the script the needed shader variant should be included in
the build automatically. Please note: I have not tested it. If the shader variant is missing in the
build you could add an object somewhere in the scene (like below the terrain / behind the
camera) and assign the material which has rim enabled.

Another possibility is to enable rim by default and set its alpha value (Rim Color) to 0.0. Then
set the proper alpha value to enable the rim lighting effect by script. This however will make
the shader always do some calculations within the fragment shader even if rim lighting is
virtually disabled. Tip: setting the frequency to 0.0 in the disabled state and setting it to the
desired frequency when rim is enabled should make it a little bit faster.

In case it is a shared material things get a bit more complicated. Just imagine you have 5
pickable flowers. Changing their shared material would tint all 5 instances although only one is
selected. Changing the material will Unity make instantiate the shared material which
produces a spike. So you can use materialpropertyblocks to only highlight the selected object.

The included ToggleRimSelection script uses this method. Just create 2 spheres, create a
material using e.g. the Lit Extended shader, check Enable Rim Lighting and assign this material
as well as the script to both of them. Hit play, then select one of the spheres and
check/uncheck Selected in the script’s inspector.

Lux URP Essentials 1.91

Toon outline shader
The toon outline shader is a rather simple shader which creates outlines by drawing the
geometry a second time, extruding the vertices along the geometry’s normals.

Alpha tested materials or feathered outlines are not supported. These would require a full
screen image effect.

Usage
In order to add a toon outline select the Renderer component of your object, open the Materials
foldout and set the Size to 2. Then assign a toon outline material as second material.

In case your mesh uses multiple materials this method will fail. Please have a look here to find
out how to solve this.

Shader Inputs
ZTest Lets you specify how the shader performs depth testing. Regular LessEqual should just
be fine.

Culling Lets you specify if the shade shall cull back or front faces. I recommend to let it cull
front faces.

Outline

Color Color of the outline. You may set the alpha here as well as the shader uses alpha
blending.

Width Width of the outline. Depends on the scale of the object unless you check
“Compensate Scale” or “Calculate width in screen space”.

Compensate Scale If checked the outline will have the same width regardless
of the scale of the object. Otherwise the width will scale with the scale of the
object. Useful if you have several instances of the same mesh at different scales.​
In case you have complex hierarchies of skinned mesh renderers this may not
produce the desired result tho as scale in this case is handled in a special way.

Calculate width in screen space If checked the shader will calculate the width
of the outline in screen space and keep it stable over distance - just like the
regular outline shader does. However – this does not really look nice on a toon
outline shader...

Lux URP Essentials 1.91

Decals
Please note: Make sure your URP pipeline settings have Depth Texture checked.

In case your camera uses orthographic projection you have to check Enable Orthographic
Support in the material inspector.

Lux URP Essentials ship with two rather simple decal shaders which allow you to project
decals on arbitrary geometry – just like you might know from deferred decals: If you draw a
cube onto screen using a proper decal material then everything within the cube’s volume will
receive the decal:

Decal projected onto a mesh terrain and two rocks. The blueish volume marks the volume of the decal. The local up
or y axis (green arrow) shows the decal’s projection axis.

The decal shaders reconstruct the world position of the underlying geometry from the depth
buffer and then calculate a corresponding decal UVs – according to the decal’s projection axis.

Limitations
In case you use the lit decal shader the shader also reconstructs the underlying normals from
the depth buffer. This leads to quantized normals and a common “flat shading” look:

Lux URP Essentials 1.91

Usage
●​ Make sure that you have checked Depth Texture in the Scriptable Render Pipeline

Settings assigned under Project Settings → Graphics.

●​ Drag the PF Decal Manager into your Scene. This manager and the assigned script is
only needed in the editor and lets you draw the decal gizmos which are needed to be
able to select decals. Check/uncheck Gizmos to toggle the decal gizmos.

●​ Drag the PF Decal on top of any geometry in the scene. This prefab contains a simple
mesh renderer and uses the built in cube as decal mesh. It furthermore contains the
Decal.cs which is only needed in the editor and identifies the game object as decal so it
will be found by the DecalGizmos.cs script (editor only as well). The script also offers
the possibility to simply align the decal to the underlying normal by checking “Align”
once.

●​ Move, scale and rotate the PF Decal to your needs.

●​ Please note:

○​ The decal gets projected along its main axis which equals the local y-axis
(green arrow). The decal texture will be stretched if the normal of the underlying
surface is not aligned with the decal main axis.

○​ Shading costs are determined by the size of the decal’s volume. So try to make
it as small as possible.

●​ Do not use decals on flat geometry as they would be too expensive. If you have flat
geometry like a wall or floor use a simple quad or any other geometry and a
transparent material instead.

Performance
Unlit decals of course are faster than lit decals.

In order to improve performance use layer based culling → so decals will be skipped at a
distance of e.g. 50 meters (lightweight!). The decal shaders support distance based fading so
you can hide any popping.​
Decals in the Decal Demo are set to layer “Water” which gets culled at 50m according to the
settings in “00 Wind and Settings” → LuxURP_LayerBasedCulling.cs

Do not check Enable Orthographic Support unless you need it.

HQ Sampling
Decals rely on the depth buffer which is used to calculate the decal UVs. However when
computing texture coordinates from the depth buffer we get discontinuities wherever there is
an edge between a triangle and the background or just a great jump in depth. This causes
artifacts in 2x2 pixel blocks as the gradients get messed up:

Lux URP Essentials 1.91

HQ Sampling disabled: 2x2px artifacts around edges in the depth buffer.

HQ Sampling enabled: 2x2px artifacts are gone.

HQ Sampling avoids these artifacts by sampling the depth buffer multiple times (5 times to be
exact) and manually calculating the mip level based upon the closest depth sample. This
means that this technique is rather performance heavy and only should be used where really
needed.

Enable Normal Buffer (SSAO)
Only available when using URP 10.2.2.+

In case you use URP 10.2.2+ and enable SAAO Unity will render a Depth & Normal map which
gives us smooth normals for the underlying geometry – unlike the reconstruction from the
depth buffer will do.

So in case you use SSAO checking this feature will give you way better normals on lit decals:

Reconstructed normals: will reveal the original geometry without any smoothing.

Lux URP Essentials 1.91

Sampled normals: will show up the smoothed normals as you would expect.

Exclude objects from receiving decals

Using the Stencil Buffer
The decal shaders support stencil buffer operations and may be masked out on certain
objects if these use a shader that writes to the stencil buffer (like provided by the Lit Extended
Shader). So if the decal shader compares against the stencil reference value of 0 you may
simply create a material using the Lit Extended Shader which writes 1 to the stencil buffer and
assign it e.g. to the player or your npcs.

Please have a look at the Decals Demo which uses two materials which are set up properly:

M Exclude Decals This material is used by the red capsules which shall not receive any
decals. It uses the Lit Extended Shader and writes Stencil Reference = 1 into the stencil
buffer. Stencil Comparison is set to Always as we do not want the stencil buffer drive
the rendering of the objects but rely on depth testing solely.

M Default Decal The default decal material. Stencil Reference is set to 0 and Stencil
Comparison is set to Equal – so the decal will only be drawn if the stencil buffer
contains 0.

Mesh Terrain and Top Down Projection Shader Excluding decals on materials using
these shaders does not make much sense in my opinion. But in case you need variants
of these shaders which allow you to write to the stencil buffer just let me know.

Using the Render Queue

Rendering certain objects after the decals have been drawn will automatically exclude these
from receiving decals.

This method is not absolutely accurate as – when rendering the decals on the geometry queue
– they will use the depth buffer of the previous frame. Furthermore enabling Depth Priming will
break these decals.

This method is used in the Decals Demo to prevent decals on grass and water:

Grass Shader The grass shader does not support stencil operations – so grass would
always receive decals. In order to exclude grass you may however make the decal
shader run before the grass shader by editing its render queue: Grass renders at Render

Lux URP Essentials 1.91

Queue = Alpha Test (2450). So if you set the decal shader to e.g. Render Queue = 2448
grass will not be affected by the decals.

Water Shader Like the grass shader the water shader does not support stencil
operations. So in order to exclude water from receiving decals make sure the decals
use a lower Render Queue. If you set the decal shader to Render Queue < 3000 water
will not be affected by the decals.

Decals on top of decals
Decals on top of decals are not automatically supported. And if you place decals on top of
decals the sorting order might suddenly change according to the camera position.

In order to receive predictable results stacked decals will have to use different Render Queues
– like Render Queue = 2448 for the lower decal and Render Queue = 2449 for the upper one.

Decals and Outlines
Decals and outlines (objects highlighted using the outline shader) are somewhat tricky as both
usually depend on the stencil buffer – especially when the outline always shall be visible.

In order to mix both i exposed Write and Read Mask in the stencil options. This lets us use the
stencil buffer together with a bit mask. So you may think of stencil values like flags: If a certain
bit is set render or do not render special features.

Outline material receiving decals
Stencil Shader – using M Basic Lit Stencilwrite Receive Decals
Stencil Reference 2 00000010
Write Mask 2 00000010
Stencil Buffer 2 00000010

Outline Shader
Stencil Buffer 2 00000010
Read Mask 2 00000010
Final Ref Value 2 00000010 The masked value equals the used Stencil Reference value

in the Outline material. So the outline gets properly drawn.
Decal Shader
Stencil Buffer 2 00000010
Read Mask 1 00000001 Only the lowest bit will be taken into account.
Final Ref Value 0 00000000 The masked value from the stencil buffer equals the used

Stencil Reference value. So decals will appear on top.

Outline material not receiving decals
Stencil Shader – using M Basic Lit Stencilwrite Dont Receive Decals
Stencil Reference 3 00000011
Write Mask 3 00000011
Stencil Buffer 3 00000011

Outline Shader

Lux URP Essentials 1.91

Stencil Buffer 3 00000011
Read Mask 2 00000010
Final Ref Value 2 00000010 → The masked value equals the used Stencil

Decal Shader
Stencil Buffer 3 00000011
Read Mask 1 00000001
Final Ref Value 0 00000001 The masked value from the stencil buffer is greater than

the used Stencil Reference value. So no decals will be
drawn on top.

Shader Inputs
Surface Options

Receive Shadows If unchecked the material will not receive shadows (faster). Lit only.

Enable Orthographic Support In case your camera uses an orthographic perspective
you have to enable this to make decals being rendered properly.

Enable HQ Sampling In case you come across 2x2 pixel artifacts at steep slopes you
may enable this feature to get rid of these artifacts. Please have a look at the chapter
HQ Sampling above. HQ Sampling is not supported if Orthographic Support is enabled.

Enable Normal Buffer (SSAO) Will sample the normals from the Depth/Normal buffer if
SSAO is enabled (needs URP 10.2.2+)

Surface Inputs

Color Tints the color sample from the texture input (HDR).

Albedo (RGB) Alpha (A) Albedo in RGB and Alpha in A.

Smoothness Overall smoothness. Will be multiplied with Smoothness sampled from
the Mask Map if it is enabled. Lit only.

Specular Specular color. Lit only.

Enable Normal Map Check this to sample the normal map. Lit only.

Normal Map Normal map. Lit only.

Normal Scale Scale of the sampled normal. Lit only.

Mask Map Lit only.

Enable Mask Map Check to make the shader sample the mask map.

Metallness (R) Occlusion (G) Emission (B) Smoothness (A) This combined texture
contains masks/maps for all other features supported on the lit decals.​
Please note: The texture should be imported as linear texture, so uncheck “sRGB (Color
Texture)” in the import settings.

Emission Color Tint color for the emissive lighting.

Occlusion Lets you dampen the sampled occlusion.

Stencil

Stencil Reference The value to be compared against.

Lux URP Essentials 1.91

Read Mask Bit mask which determines which bit will be read from.

Write Mask Bit mask which determines which bit will be written to.

Stencil Comparison The function used to compare the reference value to the current
contents of the buffer.

Advanced

Enable Fog If checked the decals will receive fog. Unlit only.

Enable Specular Highlights If unchecked the shader does not calculate direct specular
highlights which makes it cheaper. Lit only.

Environment Reflections If unchecked the shader will not sample any reflection probes
which makes it cheaper. Lit only.

Lux URP Essentials 1.91

Billboard Shader
The billboard shader lets you create all kinds of camera facing billboards. It expects the
default Unity quad as mesh input but should work with other geometry as well.

It collapses all vertices towards the pivot in the vertex shader and expands them in view space
according to the uv coordinates.

Due to this dynamically or statically batched meshes will not work: Both methods will create one
big mesh in world space with just a single pivot. GPU instancing works.​

Shader Inputs
Surface Options

ZTest Lets you tweak depth based face culling.

Alpha Lest you choose between alpha testing and alpha blending. Alpha testing is
needed to cast and receive real time shadows and writes to depth. Alpha blending
creates way softer edges and is suitable for all kinds of unlit billboards.

Threshold aka Alpha Cutoff: If Alpha is set to Testing this value determines
where the alpha clipping starts.

Blending If Alpha is set to Blending you may choose between Transparent
(traditional transparency based on the alpha channel in the Albedo (RGB) Alpha
(A) texture), Additive (additive blending) and SoftAdditive (soft additive
blending).​
If Alpha is set to Tested the shader will always use traditional transparency and
Blending will be ignored.

Receive Shadows If unchecked the material will not receive shadows (faster).

Billboard Shadow Offset Lets you offset the shadows to prevent odd self shadowing.​
Please have a look at the “PF Billboard Sphere” which uses this feature.

Billboard Options

Enable upright oriented Billboards If checked the shader will extrude the mesh along
the world y axis resulting in billboards such as from SpeedTree. By default the shader
will create camera aligned billboards. Please note: When using upright oriented
billboards you may NOT rotate its transform as otherwise you will get odd results as the
billboarding breaks. Moving and scaling is fine, of course.

Set Pivot to Bottom Especially if Enable upright oriented Billboards is checked it might
be helpful to expand to the billboard only upwards. This option is used by the “PF
Billboard Spruce” as the bottom aligned pivots makes it easier to place it.

Please note: In order to make the culling work properly it uses the
“LuxBillboardQuadPivotBottom” mesh. Unlike the built in quad the pivot of theis quad is
not centered but set to bottom so if you scale the mesh the automatically calculated
bounding box used to cull the renderer will cover the entire visible billboard.

Expand X Lets you scale down the expansion of the billboard along the x axis. This
feature is helpful to reduce overdraw and safe fill rate in case the billboard texture does

Lux URP Essentials 1.91

not cover the entire geometry.​
Please have a look at the “PF Billboard Spruce” which uses this feature.

Surface Inputs

Base Color Color which tints the sample from the albedo texture.

Albedo (RGB) Alpha (A) The Albedo (RGB) and the Opacity mask (Alpha)

Lighting

Enable Lighting If checked the shader will perform full pbr lighting. Please note: The
Normal Map will always be sampled – as lighting with just the billboard normal does
not make much sense.

Normal Map The normal map.

Normal Scale Scale of the sampled normal.

Smoothness Overall smoothness.

Specular The specular color.

Shadow Offset Lets you offset the shadows to prevent odd self shadowing.​
Please have a look at the “PF Billboard Sphere” which uses this feature.

Fog

​ Enable Fog If checked the shader will apply fog.

Render Queue

Queue Offset Equals Priority in the standard Lit shader. As the material inspector sets
the render queue based on chosen Alpha property you are not able to edit the Render
Queue property at the bottom of the inspector manually. Use Queue Offset to adjust the
final Render Queue.

Advanced

Enable Specular Highlights If unchecked the shader does not calculate direct specular
highlights which makes it cheaper.

Environment Reflections If unchecked the shader will not sample any reflection probes
which makes it cheaper.

LuxURP_BillboardBounds.cs
As billboards are just flat geometry like a simple quad the bounding box of the used mesh
does not fit the “volume” the billboard covers on screen which will lead to billboards being
culled too early at the borders of the screen. Use this script to tweak the bounds of the used
mesh and make them fit the visual representation of the billboard.

​ Scale Scale of the tweaked bounding box used in playmode.

Create Unique Mesh If checked Unity will instantiate the assigned mesh on Start().
Useful if you use the same mesh for different billboards with different scales along x, y
and z. In case you use multiple instances of the same billboard prefab you do not need to
check this. Furthermore: Only one of the instances needs the script.

Draw Bounds Check this to preview the scaled bounding box.

Lux URP Essentials 1.91

Volumetric Shaders
The volumetric shaders let you create fast volumetric light beams or simple box or sphere
volumes.

Please note: All shaders need the _CameraDepthTexture to be available.

Light Beams

Light beams are based upon the old UDK implementation which still looks quite convincing
and renders pretty fast.

Apart from the shader light beams need a proper mesh and two fall off textures:

●​ The mesh should be a double sided cone with uvs covering the entire 0-1 uv space.
Proper uvs are important because the shader relies on calculations done in tangent
space.

●​ The first fall off texture describes the light fall off along the light’s forward direction

●​ The 2nd one will add the spot light fall off when looking from underneath.

Make sure the textures are set to Clamp in the import settings. And always use the best quality.

Further information can be found in the UDK documentation →.

Shader inputs
Surface Options

ZTest Lets you tweak depth based face culling.

Culling Lets you specify if the shade shall cull back or front faces. Default is front faces
whereas back faces may allow you to actually enter the light beam.

Enable Orthographic Support In case your camera uses an orthographic perspective
you have to enable this to make light beams being rendered properly.

Surface Inputs

https://api.unrealengine.com/udk/Three/VolumetricLightbeamTutorial.html

Lux URP Essentials 1.91

Color Color (RGB) and Opacity (A) of the light beam.

Fall Off (G) Light fall off mask along the beam in the green color channel. Red and blue
should be set to 0 (black) to improve the texture quality.

Spot Mask (G) Light fall off mask perpendicular to the beam in the green color channel.
Red and blue should be set to 0 (black) to improve the texture quality.

Cone Width and Spot Mask Intensity Use these params to shape your light beam and
hide sharp and ugly edges.

Detail Noise

Enable detail noise If checked the shader will sample the assigned Detail Noise Texture
two times.

Detail Noise (G) Detail noise texture. Noise in the green color channel. Red and blue
should be set to 0 (black) to improve the texture quality.

Strength Lets you specify the strength of the detail noise.

Scroll Speed 1:(XY) 2:(ZW) Determines the scroll speed of the two texture samples. XY
controls the scroll speed for the first sample whereas ZW controls the scroll speed for
the second sample.

Scene Fade

Near The distance between the intersection of the beam and the scene’s geometry at
which the beam shall start to fade in. Usually 0.0.

Soft Edge Factor Describes the feather between beam and scene geometry.

Camera Fade

Near Dist Distance to camera at which the beam is fully transparent.

Far Dist Distance to camera at which the beam has reached its full opacity..

Limit Length Length in object space the beam will be drawn. Although the package does not
contain any script you could write your own one doing some simple raycasts to find out if the ray
should be blocked by any geometry in the scene. If so you may lower the limit length to shorten
the ray while keeping its shape.

Render Queue The Render Queue is set to 3050 by default which matches the queue any
transparent object using the built in Lit shader is rendered at. This ensures that transparent
objects are properly rendered back to front. Nevertheless you may get sorting issues and may
have to tweak the queue.

Lux URP Essentials 1.91

Box and Sphere Volumes

The box and sphere volume shaders both are rather simple and do not support any textures
apart from simple gradients, which however may break the immersion as the shaders do not
do any ray marching.

They allow you to create rather huge volumes which can be entered by the camera.

Please note: If you are looking for some super cheap light halos please have a look at the
billboard shaders.

Default Settings

In order to support entering the volume the shaders render the back faces and skip the front
faces by default. They furthermore ignore standard depth testing so that even if we are
rendering the back faces the shader may create the desired effect on geometry which lies in
front of the back faces.

Proper depth based occlusion is solely achieved by sampling the _CamerDepthTexture and
tweaking the opacity accordingly.

Please note: For these reasons the shaders using the default settings do not benefit from early
depth testing and all pixels will always be drawn.

Please note: If “depth priming” is activated tdepth testing in the scene view might be broken. It
looks fine in game view tho.

This makes it very important to have your volumes properly adjusted and placed. It does not
make any sense to stick them into the ground and create a huge overlap because this overlap
will cause overdraw and cost fill rate. Box volumes may simply be scaled accordingly. When it
comes the sphere volumes consider using a half sphere if you just need a common dome. The
package ships with some proper sample meshes.

Lux URP Essentials 1.91

Optimize Rendering

In case your camera never enters a certain volume you can speed up rendering by setting
ZTest to “LessEqual” and Culling to “Back”. This will activate early depth testing and the GPU
will skip the fragment shader for all hidden pixels.

You may even think about swapping two materials based on the distance to the camera.

Box and Sphere Meshes

Box and sphere intersection calculations are done in object space and rely on a unit box and a
unit sphere. Unity’s built in box is just fine as mesh for the box volume shader. When it comes
to the sphere volume shader consider using a simple sphere or half sphere mesh like provided
with the package.

Shader Inputs

Surface Options

ZTest Lets you tweak depth based face culling. Default is Always.

Culling Lets you specify if the shade shall cull back or front faces. Default is Back Faces
which allows you to actually enter the volume.

In case you never enter the volume you may set ZTest to “LessEqual” and Culling to
“Back”. Doing so will speed up rendering as the shader benefits from early depth testing.

Enable Orthographic Support In case your camera uses an orthographic perspective
you have to enable this. Experimental...

Surface Inputs

Color Color (RGB) and Opacity (A) of the volume.

Enable Gradient If checked the shader will sample the assigned gradient (RGB).

Vertical Gradient (Box shader) Gradient texture applied vertically from bottom (left) to
top (right).

Thickness Gradient (Sphere shader) Gradient texture applied according to the
thickness (way the view ray travels through the sphere volume).

Thickness Remap

Lower and Upper act as lower and upper bound of a smoothstep function within the
shader and let you remap the fall off.

Enable Fog In case you want the volumes to fade nicely with the rest of your scene you should
check this.

HQ Fog If enabled the shader will recalculate the fog factor based on the result from
the depth buffer instead of the clip space z position of the volume as provided by the
vertex shader. This will give you the most accurate results but is more expensive and
not really needed if your volumes are rather small.​
The big box volume in the demo uses this feature while all other volumes do not.

Lux URP Essentials 1.91

HQ Fog disabled The cube in the middle of the volume
receives fog as calculated at the backface of the
volume which breaks the volumetric effect as parts of
it receive too little fog.

HQ Fog enabled The cube in the middle of the volume
blocks the fog and receives fog right at its surface which
keeps the immersion intact.

Render Queue The Render Queue is set to 3050 by default which matches the queue any
transparent object using the built in Lit shader is rendered at. This ensures that transparent
objects are properly rendered back to front. Nevertheless you may get sorting issues and may
have to tweak the queue.

Transparent objects within the volumes most likely will look odd anyway. Depending on their pivot
and position within the volume they will get drawn:

●​ after the volume (if they are closer to the camera) → they won’t be affected at all.

●​ before the volume (if their pivot is further away than the volume’s one) → they will be
affected by the volumes depending on the closest opaque geometry behind them as the
volume calculates opacity based on the depth buffer.

However additively rendered particles like flames still may look correct - like shown with the torch
light in the demo scene.

Lux URP Essentials 1.91

Custom Nodes for Shader Graph
Starting with version 1.11 Lux URP Essentials ships with a collection of custom nodes for
Shader Graph. Most nodes are custom lighting functions which hijack the PBR master node to
get access to all variables and shader keywords.

You can read an in depth explanation of how and why it works on Medium →.

Custom lighting nodes — Introduction
The basic idea is to “mute” the PBR Master node by nulling all its inputs so its result will always
be half3(0,0,0) and the shader compiler will strip it. The custom lighting then is plugged into
the Emission node.

Please note: Workflow must be set to Specular.​
Using Metallic instead would make lighting be calculated twice. You may use the LuxURP
Metallic Albedo to Specular Albedo node to convert from metallic to specular.

Manually nulled PBR Master node Albedo and specular are set to black, smoothness and occlusion to 0.0.

In case you use GI just setting Albedo and Specular to black won’t let the material contribute to
GI. So the lighting functions provide “Meta” outputs that will set Albedo and Specular to black
in the regular lighting pass but provide proper values in the meta pass.

Nulled PBR Master node with proper inputs for albedo and specular in the meta pass Albedo and specular are fed
by the “Meta” outputs of the lighting function.

https://medium.com/@larsbertram1/lwrp-and-custom-lighting-in-shader-graph-6a7c48008a1d

Lux URP Essentials 1.91

Please note: URP 12.1+ needs a slightly different setup to null the PBR master node.

Unfortunately we do not have access to per vertex lighting. So the lighting function will force
Unity to render all additional lights per pixel — even if the pipeline asset defines them per
vertex.

The lighting functions are written in HLSL and wrapped in a Sub Graph. So in order to add them
to your Shader Graph just add the desired Sub Graph.

Next to the already mentioned shortcomings we have further restrictions when it comes to
Shader Graph at the time of writing: No alpha to coverage, no stencil support. So Shader Graph
and custom nodes will let you achieve a lot of things not possible without custom nodes but
they do not fully replace the need for manually written HSLS shaders.

Adding Emisission

In case it is not obvious :) — adding a “real” emission feature is straightforward: Just combine
your custom emission with the FinalLighting most likely using “add” and plug the result to the
Emission slot of the PBR Master. FinalLighting will be set to black = 0,0,0 in the meta pass, so
the meta pass actually only sees the custom emission.

Unfortunately Shader Graph’s material inspector does not set the Lightmap Flags for emission.
This one can be fixed by editing the material: Select the material, change the inspector to
Debug mode, then set the Lightmap Flags from 4 to 2.

Feature variants

As Shader Graph does not support custom keywords, optional features such as normal
mapping or rim lighting are controlled by booleans exposed by the lighting functions. You have
to feed these inputs with constant(!) values (which are known at compile time), so that the
shader compiler can wipe out all related “if” constructions and will produce performant code.
Do not expose these booleans in the inspector. At least not in the final build :)

So in order to create feature variants for different materials you actually have to duplicate the
shader graph, then edit the constants within the graph.

Lux URP Essentials 1.91

Please have a look at the provided sample graphs.

Toon Lighting
I never ever looked into toon lighting before. So this is my first toon lighting function inspired
by Unity’s Chan project. It supports duo tone lighting by letting you define lit and unlit albedo
values, supports rim lighting as well as eyeballed BlinnPhong specular highlights (no PBR).

A simple Toon Outline shader is included in the package as well.

Please note: Version 1.6 added a new version of toon lighting offering which is described in a
separate documentation [>]​

Toon lighting using duo tone shading and rim lighting. Specular lighting is muted as Specular is set to black in the
example materials. Deactivating Specular lighting in the shader however would be more performant.

Sub Graph Inputs
Albedo Diffuse color

Shaded Albedo Darkened diffuse color which is used on unlit pixels.

Specular Color of the specular highlights.

Shininess Drives the brightness and size of the specular highlights.

NormalTS Normal in tangent space (needs Enable Normal Mapping to be checked at compile
time).

Occlusion Ambient occlusion.

Diffuse Step Lets you define where the shader switches from unlit to lit.

Diffuse Falloff Lety you define the edge or feather between unlit and lit. Smaller values will
result in a sharper edge.

https://docs.google.com/document/d/1GpJwOeaXh_K1SqGcDYgA51JnpUV6e5x8n35SebR3W5o/edit

Lux URP Essentials 1.91

Specular Step Lets you define where the shader switches from no highlight to highlight. Should
be around 0.5

Specular Falloff Lets you define the edge or feather of the highlight. Smaller values will result in
a sharper edge.

Shadow Falloff Lets you define the edge or feather of the real time shadows. Smaller values
will result in a sharper edge.

Shadow Bias Directional Defines the shadow strength of the directional light. Values > 0.0 will
reduce the shadow strength and let you create a Zelda like lighting.

Shadow Bias Additional Defines the shadow strength of the additional lights. Values > 0.0 will
reduce the shadow strength and let you create a Zelda like lighting.

Rim Power Defines the width of the rim lighting

Rim Falloff Lets you define the edge or feather of the rim lighting. Smaller values will result in a
sharper edge.

Rim Color Rim color.

Rim Attenuation Drives the influence of diffuse lighting (angle attenuation and shadows) on
rim lighting.

LightMapUV In case you use lightmaps feed in the proper lightmap UV channel (UV1)

Enable Specular (Feature variant to be defined at compile time) If checked the shader will
calculate specular BlinnPhong based highlights.

Enable Normal Mapping (Feature variant to be defined at compile time) If checked the shader
will transfer the provided normal in tangent space to world space. Otherwise the vertex normal
will be used for shading.

Enable Rim Lighting (Feature variant to be defined at compile time) If checked the shader will
calculate rim lighting.

Main light colorizes shadows (Feature variant to be defined at compile time) If checked the
directional light will colorize all pixels of the material — even the unlit ones. NdotL and
shadows will be ignored.

Add lights colorize shadows (Feature variant to be defined at compile time) If checked
additional lights will colorize all pixels of the material — even the unlit ones – based on
distance attenuation only. NdotL and shadows will be ignored.

Lux URP Essentials 1.91

Additional Lights colorize the shaded parts. Additional Lights do not colorize the shaded parts.

Receive SSAO (Feature variant to be defined at compile time, HDRP 10.1+) If checked the
shader will receive SSAO. SSAO sharpness is driven by Diffuse Step and Diffuse Falloff.

Sub Graph Outputs
FinalLighting The final lighting to be plugged into the Emission slot of the PBR node.

MetaAlbedo Outputs black for the regular lighting pass, contains albedo for the meta pass.

MetaSpecular Outputs black for the regular lighting pass, contains a standard dielectric
specular value for the meta pass (the specular color as used by the shader is not physically
based).

Transmission Lighting
The transmission lighting function is a slightly simplified version of the lighting used by the
HLSL shaders as it does not support wrapped around diffuse lighting.

The package provides two shader examples with different complexity.

Sub Graph Inputs
Albedo Diffuse color

Specular Specular color.

Smoothness Smoothness.

NormalTS Normal in tangent space (needs Enable Normal Mapping to be checked at compile
time).

Occlusion Ambient occlusion.

Alpha In case you switch your shader graph to transparent you have to feed in an alpha value
here.

Transmission Strength Lets you scale transmission. Usually fed with thickness and a
multiplier.

Transmission Power Determines view dependency. Higher values will make transmission kick
in only when the view ray more or less directly points towards the light source.

Transmission Distortion When calculating transmission the shader distorts the inverted light
direction vector slightly by the given normal to simulate the scattering. Default value is 0.01.
Higher values will give you more scattering and break up the uniform look.

Transmission Shadow Strength As transmission might be totally eliminated by self shadowing
this parameter lets you suppress shadows when it comes to transmission. Other lighting
features (diffuse, specular) are not affected.

Mask by incoming shadow strength Lets you suppress transmission according to the shadow
strength as set on the given light source - or from point lights which do not cast any shadows.

LightMapUV In case you use lightmaps feed in the proper lightmap UV channel (UV1)

Lux URP Essentials 1.91

Enable Normal Mapping (Feature variant to be defined at compile time) If checked the shader
will transfer the provided normal in tangent space to world space. Otherwise the vertex normal
will be used for shading.

Sub Graph Outputs
FinalLighting The final lighting to be plugged into the Emission slot of the PBR node.

MetaAlbedo Outputs black for the regular lighting pass, contains albedo for the meta pass.

MetaSpecular Outputs black for the regular lighting pass, contains the specular value for the
meta pass.

MetaSmoothness Outputs 0 for the regular lighting pass, contains smoothness for the debug
pass.

MetaOcclusion Outputs 0 for the regular lighting pass, contains occlusion for the debug pass.

MetaNormal Outputs half3(0,0,1) for the regular lighting pass, contains the normalTS for the
debug pass.

Charlie Sheen Lighting
Charlie Sheen lighting is suitable for most cloth materials as it adds some sheen or fuzz
lighting at grazing angles — caused by little fibres stinging out of the material.

The provided Shader Graph is set up to support single sided materials as well using the Double
sided flipped normalTS node handle normals on back faces properly.

Subgraph Inputs
Albedo Diffuse color

Specular Specular color.

Smoothness Smoothness.

NormalTS Normal in tangent space (needs Enable Normal Mapping to be checked at compile
time).

Occlusion Ambient occlusion.

Alpha In case you switch your shader graph to transparent you have to feed in an alpha value
here.

Sheen Color Color which tints the specular highlights.

Transmission Strength Lets you scale transmission. Usually fed with thickness and a
multiplier.

Transmission Power Determines view dependency. Higher values will make transmission kick
in only when the view ray more or less directly points towards the light source.

Transmission Distortion When calculating transmission the shader distorts the inverted light
direction vector slightly by the given normal to simulate the scattering. Default value is 0.01.
Higher values will give you more scattering and break up the uniform look.

Lux URP Essentials 1.91

Transmission Shadow Strength As transmission might be totally eliminated by self shadowing
this parameter lets you suppress shadows when it comes to transmission. Other lighting
features (diffuse, specular) are not affected.

LightMapUV In case you use lightmaps feed in the proper lightmap UV channel (UV1)

Enable Normal Mapping (Feature variant to be defined at compile time) If checked the shader
will transfer the provided normal in tangent space to world space. Otherwise the vertex normal
will be used for shading.

Enable Transmission (Feature variant to be defined at compile time) If checked the shader will
add transmission lighting.

Subgraph Outputs
FinalLighting The final lighting to be plugged into the Emission slot of the PBR node.

MetaAlbedo Outputs black for the regular lighting pass, contains albedo for the meta pass.

MetaSpecular Outputs black for the regular lighting pass, contains the specular value for the
meta pass.

MetaSmoothness Outputs 0 for the regular lighting pass, contains smoothness for the debug
pass.

MetaOcclusion Outputs 0 for the regular lighting pass, contains occlusion for the debug pass.

MetaNormal Outputs half3(0,0,1) for the regular lighting pass, contains the normalTS for the
debug pass.

GGX Anisotropic Lighting
GGX Anisotropic lighting is suitable for cloth materials, which have a rather closed surface and
more or less no fibers stinging out. It can be used for any other anisotropic surface as well. It
is a quite expensive lighting model tho.

The provided Shader Graph is set up to support single sided materials as well. It uses the Double
sided flipped normalTS node to handle normals on back faces properly.

Subgraph Inputs
Albedo Diffuse color

Specular Specular color.

Smoothness Smoothness.

NormalTS Normal in tangent space (needs Enable Normal Mapping to be checked at compile
time).

Occlusion Ambient occlusion.

Alpha In case you switch your shader graph to transparent you have to feed in an alpha value
here.

Anisotropy Controls the scale factor for anisotropy. 0 would be standard isotropic lighting,
values smaller or greater 0 will shift the specular highlights according to the tangent or
bitangent.

Lux URP Essentials 1.91

Transmission Strength Lets you scale transmission. Usually fed with thickness and a
multiplier.

Transmission Power Determines view dependency. Higher values will make transmission kick
in only when the view ray more or less directly points towards the light source.

Transmission Distortion When calculating transmission the shader distorts the inverted light
direction vector slightly by the given normal to simulate the scattering. Default value is 0.01.
Higher values will give you more scattering and break up the uniform look.

Transmission Shadow Strength As transmission might be totally eliminated by self shadowing
this parameter lets you suppress shadows when it comes to transmission. Other lighting
features (diffuse, specular) are not affected.

LightMapUV In case you use lightmaps feed in the proper lightmap UV channel (UV1)

Enable Normal Mapping (Feature variant to be defined at compile time) If checked the shader
will transfer the provided normal in tangent space to world space. Otherwise the vertex normal
will be used for shading.

Enable Transmission (Feature variant to be defined at compile time) If checked the shader will
add transmission lighting.

Subgraph Outputs
FinalLighting The final lighting to be plugged into the Emission slot of the PBR node.

MetaAlbedo Outputs black for the regular lighting pass, contains albedo for the meta pass.

MetaSpecular Outputs black for the regular lighting pass, contains the specular value for the
meta pass.

MetaSmoothness Outputs 0 for the regular lighting pass, contains smoothness for the debug
pass.

MetaOcclusion Outputs 0 for the regular lighting pass, contains occlusion for the debug pass.

MetaNormal Outputs half3(0,0,1) for the regular lighting pass, contains the normalTS for the
debug pass.

Clear Coat Lighting
Clear coat lighting for materials such as car paint.​
Please note: The clear coat lighting effectively doubles the cost of specular computations.

The provided Shader Graph uses simple slider inputs for most properties. You may however
change it to texture lookups of course.

Subgraph Inputs
Base Color Diffuse color (albedo) of the base layer.

Secondary Color secondary diffuse color of the base layer which will be applied at grazing
angles (needs Enable Secondary Color to be checked at compile time).

Base Layer Specular Specular color of the base layer.

Lux URP Essentials 1.91

Base Layer Smoothness Smoothness of the base layer.

Base Layer NormalTS Normal of the base layer in tangent space (needs Enable Normal
Mapping to be checked at compile time).

Base Layer Occlusion Ambient occlusion for the base layer.

Alpha Would be needed if you created a transparent material. Default is 1.

Clear Coat Drives the thickness of the coat which influences the darkening of the albedo of the
base layer towards grazing angles.

Clear Coat Smoothness Smoothness of the clear coat.

Clear Coat Specular Specular of the clear coat. Default is RGB(51,51,51). Actually you should
not really change it as some calculations are based upon the default value.

LightMapUV In case you use lightmaps feed in the proper lightmap UV channel (UV1)

Enable Normal Mapping (Feature variant to be defined at compile time) If checked the shader
will transfer the provided normal in tangent space to world space. Otherwise the vertex normal
will be used for shading.

Enable Secondary Color (Feature variant to be defined at compile time) If checked the shader
will mix Base Color and Secondary Color according to the viewDirection.

Enable Secondary Reflection Sample (Feature variant to be defined at compile time) If
checked the shader will sample the given reflection probe twice: once for the coat layer and
once for the base layer. By default reflections get only applied to the coat layer. Expensive but
worth it on certain materials such as coated carbon fibres.

Subgraph Outputs
FinalLighting The final lighting to be plugged into the Emission slot of the PBR node.

MetaAlbedo Outputs black for the regular lighting pass, contains albedo for the meta pass.

MetaSpecular Outputs black for the regular lighting pass, contains the specular value for the
meta pass.

MetaSmoothness Outputs 0 for the regular lighting pass, contains smoothness for the debug
pass.

MetaOcclusion Outputs 0 for the regular lighting pass, contains occlusion for the debug pass.

MetaNormal Outputs half3(0,0,1) for the regular lighting pass, contains the normalTS for the
debug pass.

Skin Lighting
This lighting subgraph offers the pre integrated skin lighting features also used by the Lux
HLSL skin shader. It uses up to two different normal samples for diffuse and specular lighting
and supports small scale scattering as well as large scale transmission.

Please note: Shader inputs have to provide a skin LUT texture (referenced as _SkinLUT) to give
you proper lighting.

Lux URP Essentials 1.91

Subgraph Inputs
Base Color Diffuse color (albedo) sample as RGB.

Smoothness The smoothness value as a single half.

Specular Specular color as RGB.

Alpha Currently not used.

Emission Emission color (RGB) which will be added on top of the final lighting.

Normal Samples Provided If checked the lighting function expects proper normals in tangent
space to be plugged into the nodes: Diffuse NormalTS and Specular NormalTS.​
Enable this if you want to provide custom normals in order to e.g. implement wrinkle maps.

If checked you have to provide:

Diffuse NormalTS The normal in tangent space which is used to calculate the diffuse
lighting. This normal should be smoother than the Specular NormalTS which is why the
original implementation uses SAMPLE_TEXTURE2D_BIAS to sample a smoother
version of the normals from lower mip levels of the normal map.​
As Shader Graph does not offer a node for SAMPLE_TEXTURE2D_BIAS the included
demo shader uses a custom function to sample the textures, then blends these and
finally unpack the diffuse normal - for performance reasons.

Specular NormalTS The normal in tangent space which is used to calculate the
specular lighting.

If you do not need blended normals you may just provide the inputs and the lighting function will
sample the textures:

Normal Map The normal texture.

UV The UVs to sample the normal texture. Usually UV0.

Normal Scale Scale of the sampled normal.

Diffuse Normal Bias Amount of blur added to the sampled diffuse normal (by sampling
a lower mip level)

Subsurface Color Color used to tint transmission.

Ambient Reflection Strength Lets you adjust the intensity of the ambient reflections.

Skin Mask Must be 1.0 on parts which shall use skin lighting and 0.0 on parts which shall use
standard lighting. The metalness shader graph variation converts pixels masked with black here
to metallic pixels which lets you add Cyberpunk like details to the skin.

Thickness Values around 1.0 define thin parts where there will be a lot of subsurface
scattering and transmission like on the nose or the ears.

Occlusion Ambient occlusion value.

Transmission Power Drives the view dependency of the transmission effect. Larger values will
make it more view dependent.

Transmission Strength Lets you scale the transmission effect.

Lux URP Essentials 1.91

Shadow Strength As transmission might be totally eliminated by self shadowing this
parameter lets you suppress shadows when it comes to transmission. Other lighting features
(diffuse, specular) are not affected.

Mask by incoming shadow strength Lets you suppress transmission according to the shadow
strength as set on the given light source - or from point lights which do not cast any shadows
(here shadow strength is 0.0).

Ambient Back Scattering Strength for Ambient Back Scattering. Needs to be enabled at
compile time.

Transmission Distortion When calculating transmission the shader distorts the inverted light
direction vector slightly by the given normal to simulate the scattering. Default value is 0.01.
Higher values will give you more scattering and break up the uniform look.

Curvature Drives the pre-integrated diffuse lighting and lets you control small scale light
scattering. The example shader supports sampling a curvature texture as well as deriving it from
the thickness value.

Light Map UV Usually not needed on skin...

Enable Normal Mapping If checked at compile time the final shader will look up the provided
normal map.

Enable Diffuse Normal Sampling If checked at compile time the final shader will perform a 2nd
normal map texture lookup to get the blurred diffuse normal. Needs Enable Normal Mapping to
be checked as well.

Enable Ambient Back Scattering If checked at compile time the shader will look up ambient
lighting from the back side and add it to the transmission lighting.

Use Vertex Normal for Diffuse If checked the shader will simply use the vertex normals when it
comes to diffuse lighting so diffuse lighting will not show up any details. If unchecked diffuse
will use the regular, specular normal which gives you rather harsh lighting. This only has any
effect in case Enable Diffuse Normal Sampling is unchecked. Otherwise the diffuse normal will
always be taken from the diffuse sample.

Subgraph Outputs
FinalLighting The final lighting to be plugged into the Emission slot of the PBR node.

MetaAlbedo Outputs black for the regular lighting pass, contains albedo for the meta pass.

MetaSpecular Outputs black for the regular lighting pass, contains the specular value for the
meta pass.

MetaSmoothness Outputs 0 for the regular lighting pass, contains smoothness for the debug
pass.

MetaOcclusion Outputs 0 for the regular lighting pass, contains occlusion for the debug pass.

MetaNormal Outputs half3(0,0,1) for the regular lighting pass, contains the normalTS for the
debug pass.

Hair Lighting
This lighting subgraph offers the same lighting features used by the Lux HLSL hair shader. It
uses up to two specular lobes for front and back face reflections and rim transmission.

Lux URP Essentials 1.91

Subgraph Inputs
Albedo Diffuse color (albedo) as RGB.

Specular Specular color as RGB.

Smoothness Smoothness multiplier for Primary and Secondary Smoothness.

NormalTS Normal in tangent space

Occlusion Ambient Occlusion

Alpha The alpha

Strand Direction Boolean: False means bitangent , true is tangent.

Primary Specular Shift Shift the primary specular highlight towards the hair tip

Primary Specular Tint Specular color used to calculate the primary reflection. Should be
grayscale.

Primary Smoothness Smoothness used to calculate the primary reflection.

Enable Secondary Lobe If unchecked the shader will skip the secondary highlight, which
makes it faster.

Secondary Specular Shift Shift the secondary specular highlight towards the hair root.

Secondary Specular Tint Specular color used to calculate the secondary reflection. Should
somehow match the hair color.

Secondary Smoothness Smoothness used to calculate the secondary reflection.

Rim Transmission Intensity Lets you adjust the intensity of transmitted rim lighting.

LightMapUV In case you use lightmaps feed in the proper lightmap UV channel (UV1).

DynamicLightMapUV In case you use dynamic lightmaps feed in the proper lightmap UV
channel (UV2)

Enable VFACE Boolean. If checked the shader will calculate proper normals for back faces.

Enable Normal Mapping Boolean. If checked the shader will sample and apply the Normal
Map.

Subgraph Outputs
FinalLighting The final lighting to be plugged into the Emission slot of the PBR node.

MetaAlbedo Outputs black for the regular lighting pass, contains albedo for the meta pass.

MetaSpecular Outputs black for the regular lighting pass, contains the specular value for the
meta pass.

MetaSmoothness Outputs 0 for the regular lighting pass, contains smoothness for the debug
pass.

MetaOcclusion Outputs 0 for the regular lighting pass, contains occlusion for the debug pass.

MetaNormal Outputs half3(0,0,1) for the regular lighting pass, contains the normalTS for the
debug pass.

Lux URP Essentials 1.91

Transparent Lighting
Kind of Deprecated as URP >= 7.2. now supports proper shadows on transparent materials.
But it still handles fog better…

This lighting node offers advanced lighting for transparent surfaces and makes them receive
proper directional light shadows.

You may combine a material using this shader with a material using the Lux simple multiply
Shader Graph to actually tint transparent objects or tweak the albedo/alpha input so that it
looks as if it would somehow tint the background. Please have a look at the Custom Shader
Graphs Demo scene to find out more.

Important: In order to get proper PBR lighting you have to set PBR Master → Blend to
Premultiply. You also have to feed Alpha in the PBR Master node as otherwise Shader Graph
will not set the needed keyword _ALPHAPREMULTIPLY_ON will not be set.

Subgraph Inputs
Albedo Diffuse color

Specular Specular color.

Smoothness Smoothness.

LightMapUV In case you use lightmaps feed in the proper lightmap UV channel (UV1)

NormalTS Normal in tangent space (needs Enable Normal Mapping to be checked at compile
time).

Occlusion Ambient occlusion.

Alpha The alpha value here. Please note: You also have to feed Alpha in the PBR Master node
as otherwise Shader Graph will not set the needed keyword _ALPHAPREMULTIPLY_ON.

LightMapUV In case you use lightmaps feed in the proper lightmap UV channel (UV1)

Enable Normal Mapping (Feature variant to be defined at compile time) If checked the shader
will transfer the provided normal in tangent space to world space. Otherwise the vertex normal
will be used for shading.

Sub Graph Outputs
FinalLighting The final lighting to be plugged into the Emission slot of the PBR node.

MetaAlbedo Outputs black for the regular lighting pass, contains albedo for the meta pass.

MetaSpecular Outputs black for the regular lighting pass, contains the specular value for the
meta pass.

MetaSmoothness Outputs 0 for the regular lighting pass, contains smoothness for the debug
pass.

MetaOcclusion Outputs 0 for the regular lighting pass, contains occlusion for the debug pass.

MetaNormal Outputs half3(0,0,1) for the regular lighting pass, contains the normalTS for the
debug pass.

Lux URP Essentials 1.91

Standard Lighting
This lighting node seems to be ridiculous at a first glance but it allows us to grab the final lit
result in Shader Graph and tweak it. This is needed if you want to use the tone mapping node.

Subgraph Inputs
Albedo Diffuse color

Specular Specular color.

Smoothness Smoothness.

NormalTS Normal in tangent space (needs Enable Normal Mapping to be checked at compile
time).

Occlusion Ambient occlusion.

Alpha Currently not used.

LightMapUV In case you use lightmaps feed in the proper lightmap UV channel (UV1)

DynamicLightMapUV In case you use dynamic lightmaps feed in the proper lightmap UV
channel (UV2)

Enable Normal Mapping (Feature variant to be defined at compile time) If checked the shader
will transfer the provided normal in tangent space to world space. Otherwise the vertex normal
will be used for shading.

Subgraph Outputs
FinalLighting The final lighting to be plugged into the Emission slot of the PBR node.

MetaAlbedo Outputs black for the regular lighting pass, contains albedo for the meta pass.

MetaSpecular Outputs black for the regular lighting pass, contains the specular value for the
meta pass.

MetaSmoothness Outputs 0 for the regular lighting pass, contains smoothness for the debug
pass.

MetaOcclusion Outputs 0 for the regular lighting pass, contains occlusion for the debug pass.

MetaNormal Outputs half3(0,0,1) for the regular lighting pass, contains the normalTS for the
debug pass.

Tone mapping
This Sub Graph lets you add some basic tone mapping features right within the shader so you
can drop the full screen image effects.

This graph is neither my idea nor do i have any use for it but as it was discussed on the forum,
some developers working for the Quest may need it and the included custom lighting functions
just make it possible it added it to the package.

Tone mapping can be driven globally or on a per material base (local tone mapping) and both
modes can be mixed within a scene.

Lux URP Essentials 1.91

Global tone mapping will be driven by the “LuxURP_Tonemapping.cs” script. Just add it
somewhere in your scene.

Local tone mapping Alternatively you can enable the keyword “_LOCALTONEMAPPING” and
push per material settings to the function.

Do so by adding a Boolean Keyword to the blackboard, name it just like you want but make sure
the Reference is set to “_LOCALTONEMAPPING”. Scope should be set to local, Stages should
be set to Fragment. Next you would have to create the needed inputs (gamma, saturation etc)
and connect these to the inputs of the tone mapping node.

The package contains a Shader Graph which has all this already set up so you can simply start
from this. The tone mapping node is added to the graph and the blackboard offers all properties
needed to chose between global or local tone mapping and adjust the local tone mapping if
enabled.

Graph Inputs
Final Lighting as provided by one of the custom lighting functions.

Only needed in case you want to control it per material, needs “_LOCALTONEMAPPING”
keword to be enabled:

LocalACES If true only ACES tone mapping will be applied and the shader will skip all
other inputs.

LocalNeutral If checked neutral tone mapping will be applied first.

LocalGamma Lets you adjust gamma using a simple power function.

LocalContrast Acts as a simple multiplier on the brightness, so do not expect too much
here…

LocalSaturation Lets you tweak the saturation.

LocalHue Lets you shift the color.

LocalFilter Lets you add a final color multiplier.

Graph Outputs
Result the tone mapped result. Must be plugged into the Emission input of the master node.

Usage
Plug this node between “FinalLighting” from the custom lighting function and the “Emission”
input of the master node:

Lux URP Essentials 1.91

Script Inputs
Enable Tonemapping Lets you globally enable or disable custom tone mapping on all shaders
that use the custom Sub Graph. This will only affect the globally driven tone mapping. If you use
per material overrides and have enabled the “_LOCALTONEMAPPING” keyword it will not do
anything.

Mode Lets you choose between “Custom” and “ACES”

​ ACES If ACES is selected the Sub Graph will just apply default ACES tone mapping.

Custom If Custom is selected you can tweak the following settings:

Enable Neutral If checked neutral tone mapping will be applied first.

Gamma Lets you adjust gamma using a simple power function.

Contrast Acts as a simple multiplier on the brightness, so do not expect too much
here…

Saturation Lets you tweak the saturation.

Hue Lets you shift the color.

Filter Lets you add a final color multiplier.

Simple Multiply
This Shader Graph lets you create a material which will just multiply on top of the given screen
buffer and therefore tint it.

Important: In order to get proper results you have to set Unlit Master node → Blend to Multiply.

Graph Inputs
Tint Color The tint color.

Power The strength of the tint color is calculated according to the NdotV product to add more
tint to areas where we might assume a longer way of the light to travel through the medium..

Lux URP Essentials 1.91

Tint min Lets you specify the minimum amount of tint at flat viewing angles.

Using Multiply we can not handle fog properly. The shader currently simply fades out according
to the fog density which makes it vanish when looking towards the skybox.

Flat Shading

The flat shading lighting node allows you to apply flat shading to any mesh – regardless of its
vertex normals: It simply skips these in the fragment shader and calculates the normals as
used by the lighting function only based on the gradient of the world space position.

Actually we could even drop the vertex normals entirely if they were not needed in the vertex
shader to apply an offset and reduce shadow acne...

So instead of importing the mesh with a normal smoothing angle of 0° you should import it
with fully smoothed normals using a normal smoothing angle of 180° (or any other reasonable
value).

This will fix all issues when it comes to cracks in the shadows (like shown below) and saves a
lot of vertices, memory and bandwidth. The fragment shader benefits from less work as it
does not have to interpolate the vertex normal which should more or less compensate for the
work that has to be done to calculate the derivatives.

Cracks in the shadows could mostly be fixed using: Cast Shadows = Two Sided – but this
would increase overdraw.

However normals will be calculated based on the actual geometry which in our case always
consists of triangles – whereas using quads in your DCC app and setting the normal
smoothing angle to 0° in the import settings will make Unity calculate quad based normals.

The following images compare imported hard vertex normals and Lux flat shading:

Lux URP Essentials 1.91

Standard Lit shader using hard vertex normals. Lux flat shading shader​
It works fine on most surfaces. The opening of the
cannon however clearly reveals some triangles.

In order to keep quad based shading you have to make planar quads – e.g. using Blender and
Mesh → Clean Up → Make Planar Faces. This will slightly change your geometry and won’t
work for all faces but should fix most problems.

If this does not work or is no option – well, then you have to go with hard vertex normals.

Subgraph Inputs
Albedo Diffuse color

Specular Specular color.

Smoothness Smoothness.

Occlusion Ambient occlusion.

Alpha The alpha value here. Please note: You also have to feed Alpha in the PBR Master node
as otherwise Shader Graph will not set the needed keyword _ALPHAPREMULTIPLY_ON will not
be set.

LightMapUV In case you use lightmaps feed in the proper lightmap UV channel (UV1)

Subgraph Outputs
FinalLighting The final lighting to be plugged into the Emission slot of the PBR node.

MetaAlbedo Outputs black for the regular lighting pass, contains albedo for the meta pass.

Lux URP Essentials 1.91

MetaSpecular Outputs black for the regular lighting pass, contains the specular value for the
meta pass.

Instanced Mesh Particles
This Sub Graph adds support for GPU instanced mesh particles to your Shader Graph.

Subgraph Outputs
PositionOS Vertex Position in object space. Has to be connected to the Position node of the
Vertex Shader.

VertexColor Vertex Colors. Has to be connected to the CustomInterpolator node of the Vertex
Shader. If you do not have any, then you have to add one.

Note: Unfortunately Shader Graph only lets us tweak position, normal and tangent in the vertex
shader. We can access UVs or vertex colors as well, but we can not tweak them. For this reason
we have to use the CustomInterpolator to push the instanced vertex colors to the pixel shader. As
the CustomInterpolator only is a float4 we can not add any further information from custom
vertex streams, but you could “compress” vertex colors by only sending e.g. alpha which would
free 3 floats you can use to add other data.

Top Down Projection
This node lets you add a pretty cheap top down projected texture as it does not need complex
tangent space conversions but does all the normal mapping by some simple swizzles. THis
makes it really fast compared to other solutions.

Subgraph Inputs
Albedo Base diffuse color

Metallic Base metallic value.

Occlusion Base ambient occlusion.

Smoothness Base smoothness.

NormalTS Base normal in tangent space.

Top Down Mask A mask value (0-1) in case you want to limit the projected texture to
certain areas of the given mesh.

Top Down Albedo Top down albedo sample. In order to give you more freedom the node
expects the sampling to be done beforehand. The provided example shader comes with
proper code for top down uvs in world space and proper samples.

Top Down Normal TS Top down normal in tangent space as float3.

Top Down Metallic The metallic value.

Top Down Smothness The top down smoothness value.

The following params will drive the blend.

Lux URP Essentials 1.91

Top Down Normal Limit Lets you limit the projection according to the y (or up) component of
the world space normal.

Top Down Sharpness Will scale the blend amount.

Top Down Lower Pixel Normal Influence Lets you determine the impact of the base normal on
the blend amount.

Top Down Lower Normal Min Strength Lets you reveal the base normal – even if the projected
layer fully covers the surface.

The node only provides a simple version of the fuzzy lighting as it does not take ambient into
account:

Top Down Fuzz If checked the shader will add simple fuzzy lighting to the top down projected
texture which lets you create materials such as e.g. moss.

Top Down Fuzz Strength Fuzz color is derived from the albedo. So if the albedo is
rather dark you may raise this multiplier.

Top Down Fuzz Power Determines how far the fuzz lighting travels according to the
normals. The higher the value the less fuzz lighting will be applied.

Top Down Fuzz Bias Lets you add some fuzz lighting regardless of the given normal.

Please note: The final normal provided by the node will be in world space. So you have to
tweak the master node accordingly and set the “Fragment Normal Space” to “World”.

Double sided flipped normalTS
Helper node for double sided materials which flips the tangent space normal according to
VFACE.

Subgraph Inputs
NormalTS Normal in tangent space.

Subgraph Outputs
NormalTS Flipped or unflipped normal in tangent space based on VFACE.

Metallic Albedo to Specular Albedo
Helper node to convert Metallic/Albedo to Specular/Albedo as needed by the custom lighting
nodes.

Subgraph Inputs
Albedo Albedo input.

Metallic Metallic input.

Subgraph Outputs
Albedo Calculated albedo output.

Lux URP Essentials 1.91

Metallic Calculated specular color.

Procedural Stochastic Texturing
Node which implements procedural stochastic texturing like introduced by Eric Heitz and
Thomas Deliot and removes tiling artifacts. Read more about this on the Unity Blog.

Please have a look at Procedural Stochastic Texturing Simple as well.

Regular texturing on the left, procedural stochastic texturing on the right (Image taken from Unity Blog).

This node is really a beast as it needs a lot of inputs, which even have to be exposed in the
editor in order to make Unity serialize the properties. So making a sub graph out of it did not
make any sense to me.

It is also a beast when it comes to performance because a regular texture sample will be
transformed into up to 7 samples (3 regular samples and 4 into the LUT which actually is
rather small).

Usage

1.​ Create a new material using the Lux Procedural Texturing shader graph and assign it to
your object.

2.​ Create a ProceduralTexture2D asset using right click/Create or Assets/Create. Assign
the desired texture input, select its type (Color for strictly color information such as
albedo or emission, Normal for normal maps, Other for other data such as occlusion,
roughness, height, etc.) and hit Apply. You have to create one ProceduralTexture2D asset
for each albedo, normal and mask map.​
Do not forget the check “Include Alpha” in case you want Smoothness or Alpha from the
albedo texture.

https://blogs.unity3d.com/2019/02/14/procedural-stochastic-texturing-in-unity/

Lux URP Essentials 1.91

3.​ The ProceduralTexture2D asset contains two textures next to a bunch of parameters
which are not exposed in its inspector. As there are many of these it would be a pain to
copy these manually. So simply assign the ApplyProceduralTextureProperties script to
your object, assign your material and the ProceduralTexture2D assets for albedo,
normal and mask, then hit Apply.

4.​ Adjust Blend if needed in the material inspector. This value should be between 0 and 1.
A value of 0 works well for most cases, but higher values can produce less messy
results for textures featuring strong lines and shapes. A value too high will however
start showing a hexadecimal pattern due to the blending scheme.

5.​ Set Tiling in the material inspector.

Tweaking the Shader Graph

Like written before: It is a monster… But actually you can leave most of the inputs untouched
and focus on the outputs of the custom function node.

Inputs

The procedural stochastic custom function may convert three textures at once: Albedo (RGB)
including Alpha or Smoothness (A), Normal and a Mask Map (RGBA).

The Mask Map can be anything like a Specular/Smoothness or e.g. a combined
Metallic/Occlusion/Smoothness texture. Important however is to set the bool Mask sRGB
properly: In case you use the Mask Map as Specular/Smoothness it should be set to true as
this texture is an sRGB texture. In case the input texture is in linear color space just leave it at
false. Set Mask sRGB at compile time so the shader compiler can stripp out any branching.

Albedo will always be treated as sRGB texture while the Normal will be treated as normal.

Outputs

More interesting than the inputs are the outputs.

Albedo(3) returns sRGB color sample.

Alpha(1) returns the sample from the alpha channel. It may contain Smoothness or Alpha –
depending on what you added to the alpha channel in your input texture.

Normal(3) returns the unpacked tangent normal.

Mask(4) returns the sample from the Mask Map – either in sRGB or linear color space.

The included shader graph and demo material use the Mask Map to store Ambient Occlusion.

Optimizing

Optimize the shader by simply disconnecting outputs of the custom function from the master
node: The shader compiler will automatically stripp all unused code.

Procedural Texturing
This node is a simplified version of the node described above. It skips all ProceduralTexture2D
asset inputs and works on the original textures instead. Although it is way less accurate and
crisp or vivid especially at low Blend values, it still produces nice results, is faster to render (3
lookups per texture only) and easier to handle, which allows us to include it as a sub graph :)

Lux URP Essentials 1.91

The sub graph is able to handle up to 4 textures at once (albedo, normal and two arbitrary
textures).

Blend weights as calculated by the original formula are modulated by the luminance of the
albedo sample.

Subgraph Inputs
Blend Lets you adjust the sharpness of the blending between the 3 samples.

UV Base UV coordinates used for all texture samples.

Procedural Scale Scales the hexadecimal pattern used by the blending. Keep this around 1.0 to
avoid artifacts.

Albedo Texture (RGBA) Albedo input (A may contain Alpha or Smoothness)

Normal Map Normal Map.

Normal Scale Scale applied to the normal.

Metallic Specular (RGBA) Arbitrary – e.g. a metallic or specular texture. Actually just any kind
of input.

Mask Map (RGBA) Arbitrary – anything like a combined Thickness/Occlusion/Smoothness
texture.

Subgraph Outputs
Albedo Sampled albedo output.

Alpha Sampled alpha output.

Normal Scaled normal in tangent space.

Metallic Specular Sampled metallic specular output.

Mask Sampled mask output.

Optimizing

Optimize the shader by simply disconnecting outputs of the sub graph from the master node:
The shader compiler will automatically stripp all unused code.

Improved Sampling
This node eliminates the common diamond “crosses” caused by bilinearly sampling a low res
texture at virtually no cost as only a few ALUs are added - adopting the work of Inigo Quilez.

Lux URP Essentials 1.91

Inputs

Base Texture Assign your base texture here.

Base UVs Assign the proper UV channel here - most likely UV0.

Outputs

Improved UVs Use these UVs to finally sample your texture(s)

Advanced Parallax
This subgraph allows you to use advanced parallax mapping as used by the Uber shader. It
combines 2 samples of the provided heightmap in order to reduce pancaking artifacts you
usually get from parallax mapping. This being said it is still rather cheap compared to other
methods like parallax occlusion mapping which do actual ray marching using 8-32 heightmap
samples if not even more.

Inputs

HeightMap The heightmap.

Parallax Describes the amount of parallax extrusion.

UV the original UV coordinates.

Outputs

ParallaxUV The final parallax UVs you should use to sample all textures.

Height Final height which may be used in some way…

You will find an example of how to use it in the Lux Advanced Parallax shader graph.

Lux URP Essentials 1.91

Camera Fade
This subgraph allows you to fade out objects according to the distance to the camera.​
It will enable alpha testing so early depth testing will be disabled.

Please note: You may want to use LODs in order to benefit from early depth testing on lower
LODs (using another shader). Alternatively you may swap materials by script if the camera
approaches.

Inputs

CameraFadeDistance Distance to camera where the fade should start.

CameraInversFadeRange Lets you control the range over which the fade will take place.
Higher values will sharpen the transition.

IN Alpha The original alpha value which gets combined with the alpha from the fade.

Outputs

OUT AlphaThe final alpha value which must be plugged into the alpha value of the master
node..

You will find an example of how to use it in the Lux Advanced Parallax shader graph.

Additional Inputs

Fade Shadows In case you declare a keyword -> boolean -> “FADESHADOWS_ON” in the graph
inputs you may control if shadows will fade out or not.

You will find an example of how to use it in the Lux Advanced Parallax shader graph.

Lux URP Essentials 1.91

FAQ

Fast or Toon Outlines and multiple Materials
As we can’t use multiple passes in LWRP/URP we add the outline effect by adding an
additional material to the renderer component. This works fine if your mesh just uses one
single material but does not work with multiple materials on the same mesh as Unity will
always only draw the last submesh.

So you can either:

1.​ Use an additional proxy mesh which only consists of a single material used to only
render the outline.​
Might be expensive in case you use skinned meshes.

2.​ Split up the mesh into 2 meshes = 2 renderers = 2 game objects.​
This is far from being ideal but the only solution right now in case the materials use
different shaders, different fixed functions or alpha testing and non alpha testing (well,
alpha testing is not supported by the outline shaders anyway).​
Please note that some Lux HSLS shaders support advanced and standard lighting like
skin and clear coat.

3.​ Merge the submeshes into one. Then you "simulate" two materials by assigning vertex
colors. So material 0 uses e.g. vertex color 0,0,0,0 while material 1 is set to vertex color
= 1,0,0,0. In the pixel shader you do not sample a texture2D but a texture array with 2
layers. Which layer will be sampled is then determined by the vertex color. In shader
graph this might look like this:

If you do not want to add vertex colors to the mesh (as they will make the mesh data a bit
fatter) you could also use different uv shell positions to determine material 0 and material 1:
Just put the uv shell for material 1 into the negative uv (u) space and keep the shell of material
0 in the positive space.

Lux URP Essentials 1.91

Then get the index by using: float index = (uv.x < 0) ? 1.0f : 0.0f;​
Please note that this needs the uvs of mat 1 always to be smaller than 0.0.

In Shader Graph this might look like this:

You will have to do this for all the used textures like albedo, shaded albedo and normal. But of
course you have to get the Index only once.

In order to create texture arrays you may use this free tool from the asset store:

https://assetstore.unity.com/packages/tools/utilities/texture-array-inspector-109547

Creating a tinting glass material
No matter which blending mode you use — you won’t be able to create a tinting glass material:
Either tinting will look fine or your specular highlights will do. But there is no blending mode
which will cover both: Tinting needs multiply, transparent glass however needs premultiply...

The “in shader” solution would be to grab the background, tint it in shader code and render the
reflections on top. Then write the result back to the frame buffer. This however would need a
“grab pass”, read the “grab texture” in the shader, combine both and write the result back to the
frame buffer. This is how the included glass HLSL shader does it.

So the question is: Can we get away cheaper?

The answer is yes: If we can afford to render the mesh twice using two different materials.

The first material just tints the background using blendmode = multiply. The second material
will add all the lighting using premultiplied alpha blending.

Please have a look at the Custom Shader Graphs Demo → _Transparent Lighting.

https://assetstore.unity.com/packages/tools/utilities/texture-array-inspector-109547

Lux URP Essentials 1.91

Refractive Glass and DOF
Like any other material using the transparent render queue, refractive glass may write into the
depth buffer but will not be included in the _CameraDepthTexture which is used by the DOF
image effect as this snapshot of the depth buffer is always taken right after the opaque
passes.

Making the glass material writing to depth or not does not make any difference as far as DOF
is concerned. It makes sense for glass and all other transparent passes – but it renders simply
too late to be included in the snapshot.

This will lead to glass being less blurry where it is close to opaque objects in the background
(red cube) and glass being way more blurry where there is nothing in the background at all as
shown below:

Refractive glass and DOF Notice the different blur on the glass where the geometry behind it is rather far away
(pretty blurry glass) and where is rather close (red cube) – which results in less blurriness.

The solution

In order to make the entire glass show up proper blurriness according to its distance to the
camera or depth we have to make sure that it writes to depth during the opaque pass and
before Unity grabs the _CameraDepth Texture. But as we want glass to refract the background
we need the _CameraOpaqueTexture which means that glass has to be rendered on the
transparent queue.

Luckily Lux URP comes with the "Depth Only" shader.

So simply create a new material using the Depth Only shader and apply it as 2nd material on
the glass geometry.

Lux URP Essentials 1.91

This will make sure that the glass geometry actually writes to the depth buffer already during
the opaque passes and will be seen by the DOF effect.

The transparent glass material, which renders later on the transparent queue, uses ZTest
LEqual (less or equal) – and as it should have equal depth it will render even if there is
something in the depth buffer already at exact the same position.

Refractive glass and DOF – using 2 materials and the Depth Only shader Now the entire glass surface shows up a
proper blurriness.

You may play with the render queue settings of the Depth Only material: Highest allowed value
should be 2999 which is Transparent-1. Another breakpoint would be 2450 where cutout
materials usually render.

Unfortunately, this technique does not work with transparent materials which rely on the
_CameraDepthTexture in order to do some distance based calculations like Water and Soft
Particles: Making these write to depth using a Depth Only material will corrupt rendering.

Mixing Cloth and standard metallic lighting
Other shaders support mixing different lighting features (like skin or clear coat) – cloth does
not as it is based on totally different lighting functions compared to standard. So you would
have to apply cloth and standard lighting to each pixel and then finally lerp based on a mask…

This is true in the case of Charlie Sheen lighting.

GGX anisotropic lighting however lets you more or less mimic standard lighting by setting
anisotropy to 0.0 on certain parts.

So you would need to add an rgba texture, where (rgb) defines specular color and (a) works as
a mask to lerp between the anisotropy from the slider input and 0.0. actually you can mask the
metal part with alpha = 0 and simply use:

Lux URP Essentials 1.91

anisotropy = inputFromSlider * specularTextureSample.a

if you take the shader graph version this should be straight forward as specular color and
anisotropy are exposed in the lighting node.

if you want to add it to the hlsl shader, well then you have to dig through its code…

Please note that custom lighting functions always use the specular setup. So albedo should be
black and specular should contain the spec color of your metal.

	Lux URP Essentials
	Compatibility
	Table of Content
	Getting started
	
	Shader Overview
	The new standard Lit
	Lit extended* and Lit Uber shader

	Environment related shaders
	Mesh Terrain Shader
	Grass and Foliage Shaders
	Top Down Projection Shader
	Water Shader
	Tree Creator Shaders
	Terrain Shader
	Terrain Blend Shader
	Versatile Blend Shader (experimental)

	Advanced Materials and Lighting
	Skin Shader
	Hair Shader
	Cloth Shader
	Clear Coat Shader
	Transmission Shader
	Fuzz Shader
	Glass Shader
	Lit and shadowed Particles Shaders
	Flat shaded Shader
	Toon Shader

	Effects
	Fast Outline Shader
	Toon Outline Shader
	Decal Shaders
	Billboard Shader
	Volumetric shaders

	
	Lux URP/Lit Extended Shader
	Special Shader Inputs

	Lux URP/Lit Extended Uber Shader
	Special Shader Inputs

	
	
	Mesh Terrain Shader
	Shader Inputs
	Tips

	Grass and Foliage Shaders
	Performance
	LuxURP_LayerBasedCulling Script
	Wind Input
	LuxURP_Wind Script
	Grass Shader Inputs
	Foliage Shader Inputs
	Custom Grass and Foliage Models
	Vertex Colors Grass Shader
	​Vertex Colors Foliage Shader
	Normals Grass Shader
	Normals Foliage Shader
	Adding Bending on Import

	Setting up Wind
	Bending quality

	
	Top Down Projection Shader
	Shader Inputs
	Get Mask from Normal
	Tips

	
	Water Shader
	Shader Inputs
	Tips

	
	Tree Creator Shaders
	Usage
	Shader Inputs
	VR only
	Changes compared to the original shaders
	Tree Creator LOD trees
	Lux URP Animated Billboard shader

	Terrain Shader
	Usage
	Material Settings

	
	Height Maps
	Terrain Layers

	Terrain Blend Shader (deprecated)
	Draw Order
	Usage
	Shadows
	Shader Inputs
	Known Issues

	
	Versatile Blend Shader (deprecated)
	Shader Inputs
	Known Issues

	
	Skin Shader
	Shader Inputs

	
	Hair Shader
	Shader Inputs

	
	Cloth Shader
	Shader Inputs

	
	Clear Coat Shader
	Shader Inputs

	Transmission Shader
	Shader Inputs

	Fuzz Shader
	Shader Inputs

	
	Glass Shader
	Limitations
	Alpha or transparency
	Complex glass objects
	The importance of enabling ZWrite
	
	Shader Inputs

	Lit Particles Shaders (deprecated)
	Real Time Shadows
	Vertex Streams
	Normal Direction
	Shader Inputs
	Known Issues

	
	Toon Shading Shader
	Flat Shading Shader
	Shader Inputs

	Highlight Shaders
	Lux URP/Fast Outline Shader
	Outline Overview Demo
	
	
	

	Setup
	Limitations
	Outline Runtime Demo
	Hidden surfaces
	Selection outline

	Usage
	Shader Inputs

	Lux URP/Fast Outline AlphaTested Shader
	Shader Inputs

	Writing to the stencil buffer using the Lit Extended Uber Shader
	Adding stencil options to custom shaders
	Using Rim Lighting to highlight selected objects

	Toon outline shader
	Usage
	Shader Inputs

	
	Decals
	Limitations
	Usage
	Performance
	HQ Sampling
	Enable Normal Buffer (SSAO)
	Exclude objects from receiving decals
	Using the Stencil Buffer
	Using the Render Queue

	Decals on top of decals
	Decals and Outlines
	Outline material receiving decals
	Outline material not receiving decals

	Shader Inputs

	
	Billboard Shader
	Shader Inputs
	LuxURP_BillboardBounds.cs

	Volumetric Shaders
	Light Beams
	Shader inputs

	Box and Sphere Volumes
	Default Settings
	Optimize Rendering
	Box and Sphere Meshes
	Shader Inputs

	
	Custom Nodes for Shader Graph
	Custom lighting nodes — Introduction
	Adding Emisission
	Feature variants

	
	Toon Lighting
	Sub Graph Inputs
	Sub Graph Outputs

	
	Transmission Lighting
	Sub Graph Inputs
	Sub Graph Outputs

	Charlie Sheen Lighting
	Subgraph Inputs
	Subgraph Outputs

	GGX Anisotropic Lighting
	Subgraph Inputs
	Subgraph Outputs

	
	Clear Coat Lighting
	Subgraph Inputs
	Subgraph Outputs

	Skin Lighting
	Subgraph Inputs
	Subgraph Outputs

	Hair Lighting
	Subgraph Inputs
	Subgraph Outputs

	Transparent Lighting
	Subgraph Inputs
	Sub Graph Outputs

	Standard Lighting
	Subgraph Inputs
	Subgraph Outputs

	Tone mapping
	Graph Inputs
	Graph Outputs
	Usage
	Script Inputs

	Simple Multiply
	Graph Inputs

	Flat Shading
	Subgraph Inputs
	Subgraph Outputs

	Instanced Mesh Particles
	Subgraph Outputs

	Top Down Projection
	Subgraph Inputs

	Double sided flipped normalTS
	Subgraph Inputs
	Subgraph Outputs

	Metallic Albedo to Specular Albedo
	Subgraph Inputs
	Subgraph Outputs

	Procedural Stochastic Texturing
	Usage
	Tweaking the Shader Graph
	Inputs
	Outputs
	Optimizing

	Procedural Texturing
	Subgraph Inputs
	Subgraph Outputs
	Optimizing

	Improved Sampling
	Inputs
	Outputs

	Advanced Parallax
	Inputs
	Outputs

	Camera Fade
	Inputs
	Outputs
	Additional Inputs

	FAQ
	Fast or Toon Outlines and multiple Materials
	Creating a tinting glass material
	Refractive Glass and DOF
	The solution

	Mixing Cloth and standard metallic lighting

