УПРУГИЕ ЭЛЕМЕНТЫ

ЛЕКЦИЯ 26

План:

- 1. Общие сведения
- 2. Расчет упругих элементов

1. Общие сведения

При сборке многопоточных передач может получиться так, что зубья замыкающего зубчатого колеса не попадут во впадины сопряженного колеса. Это может произойти вследствие неизбежных погрешностей изготовления, например, в относительном угловом положении зуба и паза для шпонки в ступице колеса, смещения этого паза относительно оси отверстия, смещения шпоночного паза относительно оси вала, а также накопленных погрешностей окружных шагов колес.

Так, может оказаться, что после сборки передач и введения в зацепление колес 1, 2, 3, 4 и 6 (рис. 26.1, *а*) зуб колеса 5 расположится против зуба центральной шестерни 1 и сборка передачи окажется невозможной. Модуль зубчатых колес быстроходных ступеней многопоточных соосных передач желательно принимать по возможности меньшим, а число зубьев замыкающего колеса большим.

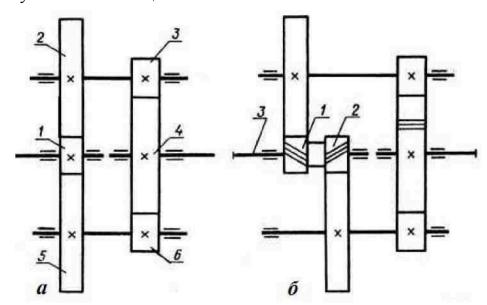


Рис. 26.1. Многопоточная соосная зубчатая передача

Суммарная угловая погрешность может быть снижена за счет повышения точности изготовления, а также путем проведения повторных сборок и нахождения наиболее благоприятного относительного расположения зубьев шестерни и колеса (имеющих разные угловые шаги) на каждом из промежуточных валов.

Осуществляя сборку передачи при наличии угловой погрешности принудительным поворотом замыкающего колеса, получают значительное предварительное нагружение передач, а в последующем неравномерное распределение внешнего вращающего момента по отдельным потокам.

Для выравнивания нагрузки между потоками применяют специальные уравнительные механизмы или встраивают упругие элементы. Так, если в двухпоточном соосном редукторе (рис. 26.1, δ) вместо одной сделать две ведущие шестерни 1 и 2 с взаимно противоположными углами наклона зубьев, а вал 3 выполнить плавающим, то нагрузка по потокам будет распределена более равномерно. Однако ширина редуктора при этом возрастает.

Чаще в многопоточных соосных передачах применяют упругие элементы: *металлические* (пружины, торсионные) или *резиновые* (бруски, коническо-цилиндрические шайбы и т. п.). Их встраивают по одной из двух схем.

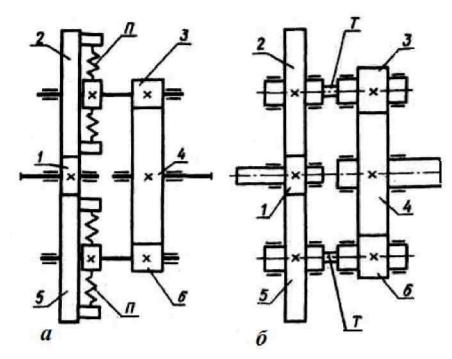


Рис.26.2. Схемы установки упругих элементов

Центральную ведущую шестерню 1 (рис. 26.2, а, 6) выполняют вместе с валом. В первой схеме (рис. 26.2, а) колеса 2 и 5 устанавливают на валах свободно. Вращающий момент с этих колес передают через пружины сжатия (или пластины) П на шестерни 3 и 6 и затем на ведомое колесо 4. Во второй схеме (рис. 26.2, б) колеса 2 и 5 свободно установлены в корпусе, а момент с них передают на шестерни 3 и 6 через торсионный вал Т.

В трехпоточных передачах упругие элементы встраивают аналогично.

Пружины и упругие элементы (торсионные валы) широко используют в конструкциях в качестве виброизолирующих, амортизирующих, аккумулирующих, натяжных, динамометрических и других устройств.

Классификация пружин. Она производится по ряду признаков. По виду воспринимаемой нагрузки различают пружины *растяжения*, *сжатия*,

кручения и изгиба. По геометрической форме их называют винтовыми, спиральными, прямыми и др. В зависимости от назначения пружины называют силовыми (аккумуляторы энергии или движители), измерительными (упругие чувствительные элементы), амортизирующими и т. д.

В машиностроении наиболее распространены винтовые цилиндрические пружины растяжения (рис. 26.3, a), сжатия (рис. 26.3, b) и кручения (рис. 26.3, b), а также фасонные пружины сжатия (рис. 26.3, a).

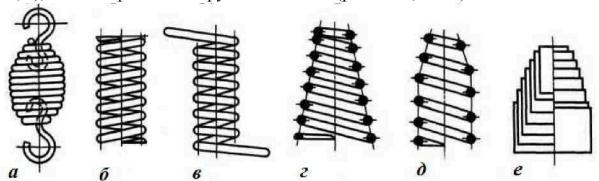


Рис. 26.3. Виды винтовых цилиндрических пружин

Их изготовляют из проволоки круглого сечения путем навивания (витые пружины) на оправке.

В конструкциях применяют реже специальные пружины тарельчатые и кольцевые (рис. 26.4, a, δ) - пружины сжатия; спиральные (рис. 26.4, ϵ) и стержневые (рис. 26.4, ϵ) - пружины кручения; листовые и рессоры (рис. 26.4, \mathcal{L}) - пружины изгиба.

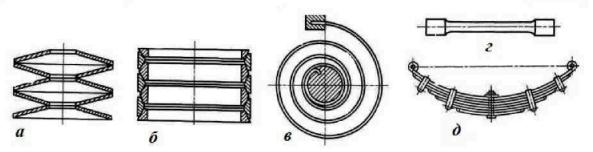


Рис.26.4. Специальные пружины

Общая характеристика пружин. *Пружины растияжения* (см. рис. 26.3, *а*) навивают без просветов между витками и даже с начальным надавливанием витков, компенсирующим частично внешнюю нагрузку. Компенсирующее усилие обычно составляет (0,25...0,3) Fnp, где Fnp — предельное растягивающее усилие, при котором полностью исчерпываются упругие свойства материала пружины.

Для передачи внешней нагрузки такие пружины снабжают зацепами (рис. 26.5).

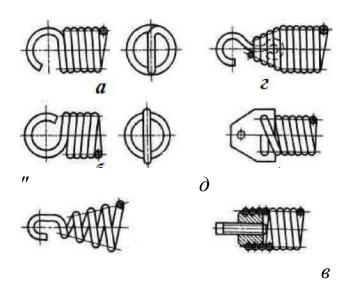


Рис.26.5. Зацепы пружин растяжения

Пружины кручения (рис. 26.3, ϵ) навивают обычно с малым углом подъема и небольшим зазором между витками (0,5 мм). Внешнюю нагрузку воспринимают с помощью зацепов, образуемых отгибом концевых витков.

26.2. Расчет упругих элементов

Материалы и допускаемые напряжения. Для плоских пружин (пластин) используют стальную пружинную термообработанную холоднокатаную ленту (ГОСТ 21996—76), а для цилиндрических пружин сжатия — проволоку стальную углеродистую пружинную (ГОСТ 9389—75). В качестве материала торсионных валов назначают стали одной из следующих групп:

- I. хромованадиевая термообработанная сталь марок 60C2XФA, 50XГ- ФА.
 - II. а) углеродистая закаленная в масле сталь марок 60, 65, 70, 85;
- б) углеродистая холоднотянутая и коррозионно-стойкая холоднотянутая сталь марок 60,65,40X13, 55ГС, 65Г.

Допускаемые напряжения для проволоки и прутков выбирают в зависимости от диаметра.

Торсионные валы применяют в высоконагруженных многопоточных передачах ответственного назначения. На рис. 26.6 приведена конструктивная схема промежуточной ступени одного потока передачи. Торсионный вал соединяют с валами колеса и шестерни шлицевым соединением. В этой схеме обеспечено надежное центрирование зубчатых колес на валах. Недостаток — увеличенная ширина редуктора, большое число подшипников.

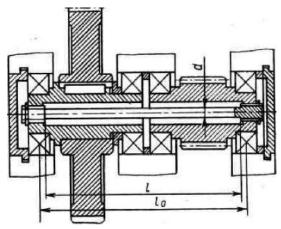


Рис. 26.6. Схема промежуточной ступени с применением торсионного вала

Пружины сжатия применяют в средненагруженных многопоточных передачах. На рис. 26.7 показана конструкция сборного зубчатого колеса со встроенными в него цилиндрическими пружинами сжатия 3, опирающимися на сегменты 4. Через эти пружины момент с зубчатого венца 1 передают на ступицу 2 Пружины ставят с предварительным сжатием.

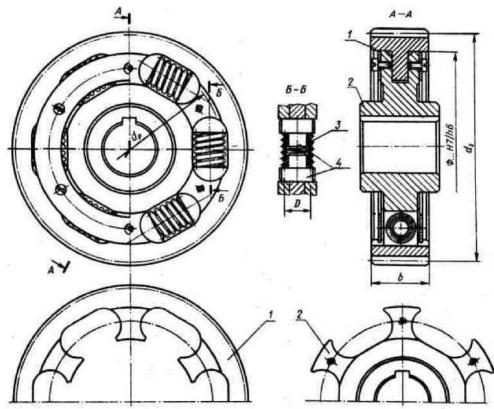


Рис. 26.7. Конструкция колеса со встроенными пружинами

Достоинством этого вида упругих элементов является возможность вписывания в габариты зубчатого колеса, а **недостатком** — невысокая точность центрирования зубчатого венца: наличие зазора в сопряжении со ступицей снижает точность зацепления.

При монтаже подшипниковых узлов (рис. 26.8) для создания постоянной жесткости опор применяют пружины, компенсирующие износ. Пружины

располагают по окружности и устанавливают в кольцах.

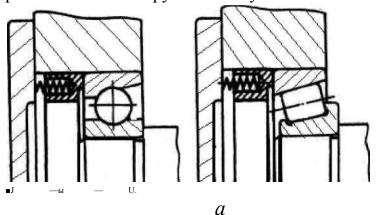


Рис. 26.8. Применение пружин при установке подшипников

б

Расчеты упругих элементов проводят из условия необходимой жесткости и прочности. Например, диаметр d торсионного вала вычисляют из условия необходимой жесткости. Найденный диаметр торсионного вала проверяют на прочность при кручении.

Аналогично, диаметр d проволоки пружины вычисляют из условия необходимой жесткости и проверяют на прочность пружины при кручении.

Контрольные вопросы и задания

- 1. Что понимают под муфтой?
- 2. Назначение муфты?
 - 3. Как подбирают требуемые муфты?
 - 4. Какие муфты относят к глухим?
 - 5. Назначение глухих муфт?
 - 6. Какие муфты относят к компенсирующим?
 - 7. Назначение компенсирующих муфт?
 - 8. Какие муфты относят к управляемым?
 - 9. Назначение управляемых муфт?
 - 10. Какие муфты относят к самоуправляемым? Их назначение?
 - 11. Назначение упругих элементов?
 - 12. Перечислите виды пружин
 - 13. Из каких материалов изготавливают пружины?
 - 14. По каким условиям ведут расчет упругих элементов?