
@angular.io document which is shared outside of Google

Change-Detection mental model in Ivy
author: misko@

March 2020

Overview

This document suggests a mental-model for change-detection (CD) in Ivy. The goal is to both
simplify the mental model and improve the capabilities of the CD going forward.

What problem is this solving
This proposal is a follow-up for transplanted views. The transplanted views proposal solves a
particular issue of transplanted views, whereas this proposal is a more generic solution that also
solves transplanted views as a side-benefit. The proposal here is a mental model that can
handle all of the use cases in a generic way.

The specific issues which this proposal tries to solve:

●​ The current mental model does not clearly specify how transplanted views should be
handled.

●​ The current mental-model mixes the responsibility of marking a view dirty with knowing
that we need to descend into that view. This is why
ChangeDetectorRef.markForCheck() marks all ancestor views dirty as well. Without
marking ancestors' views as dirty, the change detection would not know which views to
descend into. This mixes the responsibility of descending with the responsibility of
processing the view.

○​ A check always views inside of the on-push component is shielded from change
detection processing in the current implementation.

●​ There is no way to easily mark a view for re-processing. Developers run into this often
and often use the setTimeout or Promise.resolve trick to get around it. This causes
whole change detection to re-run, which is a lot more expensive than just processing a
dirty view.

●​ This is a stepping stone for having Angular have explicit state management. Having
explicit state management will allow angular to make zone.js optional. Having the
markDirty method will allow future state management systems to communicate with
Angular when change detection should run.

●​ Properly fix transplanted views by:
○​ Having a CD always follows the insertion hierarchy.
○​ Have markDirty always follow the declaration hierarchy.

https://docs.google.com/document/d/1P-1MpiGPOvxidVEtiAk_S7TetotSVxWoGKGtbZgDToQ/edit?usp=sharing

@angular.io document which is shared outside of Google

●​ There is no easy way to mark other components as dirty. (The component can only ask
for ChangeDetectorRef for itself, never for another component.)

○​ There are also tree-shaking implications.

Developer documentation

This section shows the proposed documentation for the developer to be added to
angular.io. This section is written from the point of view of the application developer.

This document describes how the change detection is processed in Angular. Change detection
is the process by which Angular detects changes in the template bindings and then updates the
DOM to reflect the changes.

Mental model
Angular application is a tree of components. Each component has a view that is declared by the
template of the component. A component's view can have embedded-views. (Embedded-views
are usually defined inline in the component View as is the case with *ngFor for example. See
Transplanted embedded views for non-inline embedded views.)

When change detection runs, it visits all views (including embedded-views) in depth-first order.
Each view has a flag that marks if the view is "dirty" and should be processed. Processing a
view means that its bindings are checked, and the corresponding DOM view is updated. When
change detection runs and the view is not marked as "dirty," it is ignored.

There are two kinds of "dirty" flags:

1.​ Temporary "dirty" flag: This view will be checked as part of the next change-detection,
and the "dirty" flag will be cleared on the processing of the view.

2.​ Permanent "dirty" flag (also known as a check-always flag): This behaves the same as
the temporary-dirty flag above, but the flag is set on each new change detection pass.
The result is that such a view will participate in change detection every time the change
detection executes.

A view can be marked as dirty explicitly by the developer using markDirty API or implicitly by
the framework. Angular implicitly marks a view as dirty on:

●​ Initial view creation => All initial views are created in a dirty state and will participate in
the next change detection.

●​ A component input changes => automatically marks the component as dirty when the
component input changes. (see next rule for more details)

●​ A component is marked dirty => Automatically mark all embedded views which were
declared in the component dirty as well. (This is true even if the embedded view was

@angular.io document which is shared outside of Google

declared in this component but inserted in a different component. See Transplanted
embedded views for more details)

○​ This is needed because all embedded views which are associated with the
current component share the same evaluation context. Since the component is
the evaluation context, marking component dirty also needs to mark all
embedded views which use the evaluation context dirty as well.

When a view is marked dirty (either implicitly or explicitly), it is guaranteed that the view will be
processed after the markDirty API returns (but never as part of the markDirty API call). This
means that the view will be processed either:

●​ as part of the current change detection, which is already on-going OR
●​ new change detection will be scheduled (The exact mechanism for scheduling TBD.)

Components declared with ChangeDetectionStrategy:

●​ Default: This will mark all views and embedded views that were declared in the
component as permanently-dirty/check-always.

●​ OnPush: This will mark all views and embedded views that are declared in the
component without a dirty flag. The implication is that the view will only be processed if
they are implicitly or explicitly marked dirty.

NOTE:

●​ A special consideration exists for views that are marked dirty AND change detection is
currently active AND that view has already been visited (views are visited in depth-first
order). In such a situation, the change detection is effectively re-wound back to the first
dirty view in depth-first order once the change detection processing ascends to the least
common ancestor between the current change detection cursor and the first dirty view.
(Views with permanent "dirty"/check-always flags will not be re-processed second time
unless explicitly marked by markDirty API as dirty)

●​ A view that is marked dirty will be processed regardless of if the ancestor views are dirty
or not. (A disconnected view will not participate in change detection and will not be
processed)

Transplanted embedded views
There is a special case of transplanted views that requires clarification. A component can have
an embedded view that is declared outside of the current component (for example using *ngFor
with an explicitly passed template that comes from a different component.) This situation is
referred to as a transplanted embedded view.

There are no special rules for transplanted embedded views other than those already stated
above, but we think it is worth discussing the implications of the above rules with respect to the
transplanted embedded views.

@angular.io document which is shared outside of Google

Implications:
●​ Change detection is always processed in depth-first traversal, which always follows

insertion order (never declaration order.)
○​ It does not matter where the view was declared; we should always reason about

where it was inserted, which matters for the purposes of the change detection.
○​ A disconnected view will not be reachable, and those will not execute as part of

change detection.
●​ Whether or not a view is marked permanent "dirty"/check-always flags dependent on the

component where it was declared (not where it was inserted.)
○​ A transplanted embedded view may have different flags than the view in which it

was inserted into.
●​ When a component is marked dirty, it also marks all declared views as dirty.

○​ A transplanted embedded view may get marked dirty independently of the parent
view into which it is inserted.

API

/**

 * Mark a view as dirty and schedule it for change detection.

 *

 * Mark the view as dirty. If the function was called outside of the existing

change

 * detection than schedule a new change detection (unless `option.scheduleCD` is

 * `false`)

 *

 * @param ref Reference to the view. This can either be a component instance or

 * host element associated with the component.

 * @param options:

 * - `parent` If set mark all ancestor views as dirty as well.

 * - `scheduleCD` If set fall then prevent the scheduling of

 * change detection

 * - `afterCD` callback to execute after change detection processes the the

 * view. This is inline with views vs the return promise which is after

 * all views.

 * @returns A promise which resolves when change detection is completed. (this runs

 * after all views are processed vs `afterCD` which is inlined with the

 * view)

 */

function markDirty(ref: ComponentInstance|HTMLElement, options: {

 parent?: boolean,

 scheduleCD?: boolean,

 afterCD?: () => void

@angular.io document which is shared outside of Google

}): Promise<null>;

END of developer documentation

Glossary

processing view: Invoking the LView template function and also invoke any life-cycle hooks
associated with the component if applicable.

structural directive: Directive which creates and inserts embedded views. This is done by
directive injecting ViewContainerRef (and optionally TemplateRef).

transplanted view: An LView where the declaration LView and parent LView are different.

Basic proposed mental-model:

1.​ An Angular application consists of a tree of LViews
a.​ A parent LView can have a child LView, as is the case for component views.
b.​ A parent LView can have an LContainer, as is the case with any structural

directive such as *ngFor, which in turn can contain zero or more LViews.
c.​ Each LView keeps track if it is DIRTY/CHECK_ALWAYS (or if it contains children

who are DIRTY/CHECK_ALWAYS.)
2.​ Root LView is just an LView that has no parents. (A disconnected LView is a root LView)
3.​ Marking an LView as dirty:

a.​ markDirty() set current LView's DIRTY flag (and schedules CD.)
i.​ All invocations of markDirty() guarantee that the LView will be CDed

either as part of:
1.​ currently active CD; OR
2.​ as part of a future CD, which markDirty() schedules through

scheduleCD().
ii.​ Optionally we can include markDirty({parents: true}) to set current

LView as well as all ancestor LViews as DIRTY. This is similar to
ChangeDetectorRef.markForCheck(), but unlike
ChangeDetectorRef.markForCheck(), markDirty also schedules CD.
This API would be optional and would be included only as a transition
from ChangeDetectorRef.markForCheck().

b.​ scheduleCD() will schedule CD starting at the root LView of the current LView,
which is being marked as dirty.

4.​ When CD runs, it starts at some LView (usually root) and traverses it in a depth-first

@angular.io document which is shared outside of Google

fashion.
a.​ If LView is marked as CHECK_ALWAYS or it contains CHECK_ALWAYS children:

i.​ If LView is marked as CHECK_ALWAYS then the LView's template function
is processed so that the bindings are updated.

ii.​ If LView contains CHECK_ALWAYS children, then we recurse into child
LViews.

b.​ While LView is marked as DIRTY or it contains DIRTY children:
i.​ If LView is marked as DIRTY then pre-clear the DIRTY flag and process

the LView's template function so that the bindings are updated.
ii.​ If LView contains DIRTY, then we recurse into the child LViews.

Note: It may be helpful to ignore the fact that a LView can contain DIRTY/CHECK_ALWAYS
children since that is just an optimization to prune the number of LViews which need to be
scanned/visited while looking for DIRTY/CHECK_ALWAYS. A simpler mental model may be that a
CD simply visits all LViews in depth-first order and processes the ones which are labeled as
DIRTY/CHECK_ALWAYS.

Implications:

●​ CD always follows insertion locations (never declarations.)
●​ markDirty implies that it will be either: 1) CDed as part of this CD; OR 2) New CD is

scheduled as a result of markDirty. No further scheduling or relying on zone.js is
necessary.

●​ If, as part of the CD, an LView marks itself directly (or indirectly through intermediate
LViews) as dirty, the result will be an infinite CD. We may choose to detect this in
ngDevMode and limit the number of CDs, and throw an Error. (Although there is no easy
algorithm to determine if a program will halt.)

Basic change detection
NOTE: assume that all components have no flags (equivalent to
ChangeDetectionStratogy.OnPush.)

In the following example above, a is a root LView as it has no parents.

 a:LView

 / \

b:LView c:LVIew

If we markDirty(c), the resulting tree will be

 a:LView

 / \

b:LView c:LVIew [DIRTY]

https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Halting_problem

@angular.io document which is shared outside of Google

There will also be an implied scheduleCD(a) call, which will schedule a for CD. (Most likely as
part of requestAnimationFrame.) Once the CD begins following the mental model from above,
the steps will be:

1.​ cursor at a:
a.​ a is not DIRTY, or CHECK_ALWAYS => do not process template
b.​ b does not contain DIRTY, or CHECK_ALWAYS => ignore
c.​ c contains DIRTY or CHECK_ALWAYS => descend to c.

2.​ cursor at c:
a.​ c is DIRTY => process the template to update the bindings.
b.​ c does not contain DIRTY, or CHECK_ALWAYS => ascend to a

3.​ cursor at a:
a.​ a does not contain DIRTY, or CHECK_ALWAYS => ascend (No parent CD => done)

LContainer Is really just a collection of LViews
The previous example showed only LViews, but the same things will occur in a slightly more
complicated case that involves LContainers. But the outcome is the same, so we will not
discuss LContainers after this example as LContainers do not change the behavior in a
material way.

 a:LView

 / \

b:LContainer c:LContainer

 / \

 d:LView e:LView

If we markDirty(d) the resulting tree will be

 a:LView

 / \

b:LContainer c:LContainer

 / \

 d:LView[Dirty] e:LView

Once the CD begins following the mental model from above the steps will be:
4.​ cursor at a:

a.​ a is not DIRTY or CHECK_ALWAYS => do not process template
b.​ b does not contain DIRTY or CHECK_ALWAYS => ignore
c.​ c contains DIRTY or CHECK_ALWAYS => descend.

5.​ cursor at c:
a.​ c is LContainer => there is no template.
b.​ c is LContainer and therefore can't have DIRTY or CHECK_ALWAYS => descend

to d
6.​ cursor at d:

@angular.io document which is shared outside of Google

a.​ d is DIRTY => invokes a template to update the bindings.
b.​ d does not contain DIRTY, or CHECK_ALWAYS => ascend c

7.​ cursor at c:
a.​ e does not contain DIRTY, or CHECK_ALWAYS => ignore
b.​ ascend to a

8.​ cursor at a:
a.​ a does not contain DIRTY or CHECK_ALWAYS => ascend (No parent CD => done)

The implication of this is that LContainer will have all of the same counters as LView. The only
difference is that LContainer does not have a template and thus has no DIRTY or
CHECK_ALWAYS (or another way to think about it is that DIRTY or CHECK_ALWAYS are always set
to false.)

Calling markDirty while in active CD
An important question that should be addressed is what should happen if an LView is
markDirty while it is in the active CD. There are several options:

●​ disallow: Not a good choice since a component will often need to compute new data as
a result of it receiving data which it often pushes to the child component. The idea that a
parent component can change data which child component uses is well established
within Angular and we don't throw ExpressionChangedAfterItHasBeenChecked in that
case. So disallowing this does not sound like the right approach.

●​ schedule new CD: This is not a good choice as it will cause a lot of CDs to be
scheduled. The side effect of that is that users may see intermediate values as the
internal state of the application is updated, and as one update triggers another update.

●​ process it as part of the current CD: This seems like the only reasonable option
because:

○​ It will not show an intermediate state to the users. (Executes as a single
transaction.)

○​ It will be efficient as:
■​ it does not need to schedule a new CD for each markDirty. Especially

for initial rendering it is very common that the parent component would
mark the child component as dirty.

■​ CD from the first common ancestor will have a slight benefit as the
algorithm will not have to ascend and descend as much.

When calling markDirty as part of the current CD, there are two possibilities:

1.​ markDirty is called on an LView, which has not yet been passed. (it is in front of the
CD wavefront)

2.​ markDirty is called on an LView, which has already been processed. (it is behind the
CD wavefront)

Let's discuss these implications separately.

@angular.io document which is shared outside of Google

Calling markDirty in front of CD wavefront
Let's start with the following use case

 a:LView

 / \

b:LView[DIRTY] c:LView

Let's assume that we are doing CD from the root as we have already descended to b:
1.​ cursor at b:

○​ b is DIRTY or CHECK_ALWAYS => process template.
○​ side effect of calling b's template is that b marks c as dirty.

 a:LView

 / \

b:LView c:LView[DIRTY]

○​ ascend to a
2.​ cursor at a:

○​ a contains DIRTY or CHECK_ALWAYS => descend to c.
3.​ cursor at c:

○​ b is DIRTY or CHECK_ALWAYS => c process all template.

The above behavior should not be surprising and fits well within the current ViewEngine/Ivy
behavior.

Calling markDirty behind the CD wavefront
The key observation of the previous example is that marking an LView as dirty was done in front
of the CD wavefront (an LView was marked as dirty, which was on our way to visit anyway as
part of the depth-first-traversal CD). The next question we need to answer is what should
happen if we mark an already visited LView as DIRTY. Already visited implies that it is behind
the current cursor location in the depth-first-traversal.

Here are some things to keep in mind:

●​ The current state of CD is not something which developer should care about:
○​ It is not easy to know if calling markDirty is appending itself to the current CD or

if it is scheduling a new CD. If we expect to have composable components, then
one could argue that knowing/maintaining this information for the developer
would be counterproductive to composability and ease of use.

○​ Similarly, it is not easy to know when calling markDirty on LView, where the
LView is located with respect to the current component (before or after CD
wavefront).

●​ Outside of the context of the behind-CD-wavefront situation calling markDirty on any
LView will result in that LView being updated without causing visual flicker for the user.

@angular.io document which is shared outside of Google

Because of the above reasons, I (misko@) would argue that markDirty should behave
consistently no matter if you call it in an existing CD or outside an existing CD or if you call it on
after, before, or parent LView. The implication of this is that there needs to be a way to retry CD
as part of the current CD pass.

 a:LView

 / \

b:LView c:LVIew[DIRTY]

1.​ ...
2.​ cursor at c

a.​ c is DIRTY => process template.
b.​ side effect of calling c's template is that b is marked dirty

 a:LView

 / \

b:LView[DIRTY] c:LVIew

c.​ ascend to a.
3.​ cursor at a

a.​ a contains DIRTY => descend to b
4.​ cursor at b

a.​ b is DIRTY => process template.

NOTE: Very similar behavior would occur if markDirty would be called on parent LView.

The implementation detail of the above-described behavior is that:

●​ Instead of descending to children in a depth-first-traversal => The traversal logic needs
to have a while-loop which will retry descending to children LView if they get re-marked
as DIRTY.

AngularJS and TTL

At first glance, this looks very similar to AngularJS running $digest multiple times until TTL is
reached. Because AngularJS would re-run $digest it was not possible to throw
ExpressionChangedAfterItHasBeenCheckedError instead the error AngularJS would throw
is Infinite $digest Loop. It may seem that the two errors are the same, but they are not:

●​ AngularJS has no way of detecting when data flows backward. It only knows that the
$scope was not able to stabilize.

●​ Angular, on the other hand, can detect backwards data flow and throw
ExpressionChangedAfterItHasBeenCheckedError. This ability will remain even after
implementing ideas in this document. Even with a while-loop on dirty, it is still possible

https://code.angularjs.org/1.7.9/docs/error/$rootScope/infdig

@angular.io document which is shared outside of Google

to get ExpressionChangedAfterItHasBeenCheckedError.
●​ The key difference between AngularJS and Angular is that in AngularJS, the

back-propagation of data was implicit/normal/expected, whereas, with this proposal,
back-propagation can only happen if the developer explicitly asks for it through
markDirty. The difference may seem pedantic, but it is important. In one case, it is
implicit and hence back-propagation can happen accidentally, whereas in this proposal,
it is explicit and can only happen if the developer opts into it.

○​ Additionally, we could allow enforcement of back-propagation by supporting API
such as this: markDirty({allowBackPropagation: false})

Should markDirty schedule CD?
As currently proposed, markDirty would schedule CD at some later point through
requestAnimationFrame IF not already scheduled. In essence, markDirty calls are
coalesced. The coalescing is an important feature as it should not be the responsibility of the
developer to keep track if an LView should be dirty and if CD has been scheduled. The
argument here is that coalescing is a desirable property, and scheduling should not be the
responsibility of the developer.

Having said that, it might be useful to have APIs such as:

●​ markDirty({parents: true}). Set all ancestors as well.
○​ Useful for migration from ChangeDetectionRef.markForCheck() to markDirty

to have an equivalent API.
●​ markDirty({scheduleCD: false}). Allows control of scheduling/coalescing.

○​ Useful to mark a component as dirty but setting a low priority which should
eventually be performed (rather than now). For example, low priority updates.

●​ markDirty({afterCD: () => console.log('afterCD')}) to get notified when CD
runs.

○​ This is useful when code would like to read DOM, such as the width of the
component but this can only be done after the DOM is updated. So having a
callback would be useful.

Implementation Details
This section talks about possible implementation details, but it should not change the mental
model presented above.

Contains DIRTY/CHECK_ALWAYS counts
As a mental model it is useful to think about the CD as visiting all LViews in depth-first-order, but
only process template functions for LViews which are marked as DIRTY or CHECK_ALWAYS.
While this is a useful mental model to reason about the algorithm, we can get better runtime
performance by pruning the depth-first-order tree to only visit branches that contain DIRTY

@angular.io document which is shared outside of Google

or CHECK_ALWAYS. This pruning can be achieved by each LView storing DIRTY/CHECK_ALWAYS
child counts in addition to whether the LView itself is DIRTY/CHECK_ALWAYS.

The algorithm talks about DIRTY and LView only, but the same rules will apply to CHECK_ALWAYS
and LContainer as well. Additionally, both DIRTY and CHECK_ALWAYS counts can be stored in a
single word by dedicating half of the bits to DIRTY and half to the CHECK_ALWAYS further
improving efficiency:

1.​ LView count should reflect how many child LViews contain the flag.
a.​ Marking LView as dirty should NOT increment its own count.
b.​ If LView count transitions from 0->1 OR the LView is marked => the parent

LView should be incremented.
c.​ If LView count transitions from 1->0 AND LView is NOT marked => the parent

LView should be decremented.
2.​ During CD

a.​ If LView count is >0 this implies that there is at least one child view that has the
flag.

i.​ Iterate over all of the child LViews to determine if any of them have the
flag set if they do process the template function.

ii.​ If a child LView has the count set for any flag, then recurse into the
LView.

NOTE: The count only keeps track of how many immediate children have the flag, not the total
number of flags in the branch. This is done intentionally so that adding LViews would not have
to update LView counts all the way to the root on each addition/removal. In essence, each
LView level performs coalescing to minimize the number of count updates.

 a:LView[CHILD_DIRTY_COUNT:1]

 / \

 b:LView c:LVIew[CHILD_DIRTY_COUNT:2]

 / \

 d:LView[DIRTY] e:LView[DIRTY]

The above example is for DIRTY but the same rules will apply for CHECK_ALWAYS:
●​ d and e are marked as DIRTY.
●​ c is not marked as DIRTY but CHILD_DIRTY_COUNT is set to 2 as there are 2 children d

and e marked as DIRTY.
●​ a is not marked as DIRTY but CHILD_DIRTY_COUNT is set to 1 as there is 1 child c

marked as DIRTY.

Pre-clearing flags before the template
As of the current implementation of CD, the DIRTY flag is cleared after the template function is
processed. This will have to change to clear before template processing. The reason for this is

@angular.io document which is shared outside of Google

the processing of the template can mark the LView as DIRTY. Doing post-clear would not
correctly handle this use case.

Retry CD strategy
NOTE: This section deals with when should LView be executed within the current CD, not
whether the LView should be executed as part of this or some future CD. The latter was
discussed in Calling markDirty while in active CD.

When an LView is marked as DIRTY behind the CD wavefront the question is when should the
CD re-process the DIRTY flag in LView? There are two possibilities:

1.​ The retry CD logic should be performed at the root of the LView tree.
a.​ PRO: Better coalescing.
b.​ CON: It does not work when CD is started from place other than root LView.

2.​ The retry CD logic should be performed immediately before each ascends. [preferred
option]

a.​ PRO: Consistent behavior regardless if the CD was invoked from root or from an
arbitrary location in LView tree.

b.​ PRO: Compatible with Fractal LViews goal.
c.​ CON: In pathological cases, we don't coalesce, and so we may end up

descending to LViews more often than in the optimal case.

Fractal LViews
NOTE: This section deserves its own design doc. It is included here only to point out that
the above design takes this into account.

Fractal is a mathematical concept that can be summarized as having the same shape-ness at
any zoom level. In this context, fractal means that LViews behave the same in isolation as they
do in LView-forrest or as part of ApplicationRef.

Currently, LViews do not have fractal property because CD is tied to ApplicationRef which
makes that root LView special. In Ivy this is reflected as the root LView having RootContext.

Problems with RootContext

●​ RootContext contains key pieces without which processing LView CD becomes
problematic:

○​ scheduler: Is needed to schedule CDs.
○​ playerHandler: Needed to process animations correctly.
○​ clean promise: Needed by protractor to know when to assert UI.

●​ Once LView gets disconnected from the special root LView, it loses its pointer to the
RootContext which means it can't participate in proper CD, animation, or Protractor.
The implication is that LViews can only be created in the RootContext and once
disconnected, can't start acting on their own.

@angular.io document which is shared outside of Google

The main point of this section is that going forward, our goal should be to have fractal LViews.
Therefore the RootContext should not be the place where the DIRTY flag gets retried, as
disclosed above.

Benefits
So far, the document discussed how the CD should be working. This section answers what
benefits we would gain if the CD worked as described above.

Transplanted views
A transplanted view problem has been discussed here. With the above CD mental model, the
transplanted view mental model becomes straightforward as well.

Algorithm:

●​ When processing the template function on an LView (either because it is dirty or
check-always)

○​ If LView contains <ng-template> instances that are transplanted, mark all of the
transplanted LViews as Dirty.

The above algorithm will have the property that:

●​ CD is always run at the insertion point only.
●​ If the parent LView of the transplanted view insertion is disconnected, it will not be part

of CD.

In the above algorithm, transplanted views are not handled in a special way, rather they just
naturally fall out of the proposed CD mental model. This simplifies Angular for our developers,
which is a very desirable outcome.

Forms need to back-propagate from state

Forms often run into the issue that a validator can only run after the whole form has been CDed.
Validators can produce errors that are often placed above the form. The result is that there is a
backward data flow of information. (Validation error needs to be displayed above the form.)

The above problem can be solved by a validator simply marking the destination LView as dirty.
(There is an open question as to how does the validator know what is the destination LView but
that is outside the scope of this document)

https://docs.google.com/document/d/1P-1MpiGPOvxidVEtiAk_S7TetotSVxWoGKGtbZgDToQ/edit

@angular.io document which is shared outside of Google

Angular Elements
Angular Elements are Angular applications that need to be bootstrapped with a common
PlatformRef (or RootContext). Having LViews be fractal would mean that the Angular
Elements could be bootstrapped independently and composed into an LView tree if appropriate
or broken apart into independent LViews and have each Angular Element have its own CD. This
is a desirable and often requested feature from the community.

Zoneless
NOTE: This section deserves its own design doc. It is included here only to point out that
the above design takes this into account.

One of the things which we have been discussing is that zone.js will have to be retired in the
near future as it is not compatible with ES2018 async/await statements. A replacement for
zone.js will most likely require some sort of explicit state management. As these states get
updated, they will need to be able to signal which LViews need to be updated—using
markDirty fits nicely with this ability. It is possible that state management may result in
backpropagation of information, as is an example with forms.

Partial DOM rehydration (SSR)
NOTE: This section deserves its own design doc. It is included here only to point out that
the above design takes this into account.

When performing SSR, one goal would be that the components can be rehydrated in any order.
The implication of partial out-of-order hydration is that one can not rely on having RootContext,
which further justifies the fractal view approach. If RootContext needs to be present for CD,
then it is not possible to rehydrate a specific component without also rehydrating all of the
parent components all the way to the RootContext which is not a desirable property.

Performance
The cost of tracking the counts should be about the same as the cost of tracking flags
themselves. So from that point of view, we don't expect any change in performance.

However, because this proposal allows CDing just specific LViews (rather than all LViews
between the mark dirty and root location) we do expect that to have significant performance
benefits if markDirty API is used compared to ChangeDetectorRef.markForCheck(). Since
this is a new API, it will not benefit existing applications.

https://docs.google.com/document/d/17xplDgZuDU9bi3YbApQPILMNN6sPV5y3FNM3dzMGy4A

@angular.io document which is shared outside of Google

Work Breakdown
The work can be broken down into these categories:

1.​ Change detection: Make changes to Change Detection to match the above proposal.
This has already been prototyped in #35428.

a.​ Add contains-child-dirty counters to `LView` and `LContainer`.
b.​ Update the current rules about marking all declared views as dirty(including

transplanted views)
2.​ Create `scheduleCD` API:

a.​ Create a way to schedule CD. A trivial implementation is already in the
repository.

b.​ Requires some design so that the scheduling work can work in a fractal manner.
3.​ New public API `markDirty`:

a.​ Expose existing API as public
b.​ Add additional options to `markDirty` such as `{parents, etc...}`.

4.​ Documentation: Public documentation

For now, only #1 is needed to fix the transplanted views issue.

TODO:

●​ Google3 experiment: Run with {parents:false} to see what things break.

https://github.com/angular/angular/pull/35428

	Change-Detection mental model in Ivy
	Overview
	What problem is this solving
	Developer documentation
	Mental model
	Transplanted embedded views
	API
	Glossary

	Basic change detection
	LContainer Is really just a collection of LViews
	Calling markDirty while in active CD
	Calling markDirty in front of CD wavefront
	Calling markDirty behind the CD wavefront
	AngularJS and TTL

	Should markDirty schedule CD?

	Implementation Details
	Contains DIRTY/CHECK_ALWAYS counts
	Pre-clearing flags before the template
	Retry CD strategy
	Fractal LViews

	Benefits
	Transplanted views
	Forms need to back-propagate from state
	Angular Elements
	Zoneless
	Partial DOM rehydration (SSR)
	Performance

	Work Breakdown

