1. R—Overview

R is a programming language and software environment for statistical analysis, graphics
representation and reporting. R was created by Ross Ihaka and Robert Gentleman at the
University of Auckland, New Zealand, and is currently developed by the R Development Core
Team.

The core of R is an interpreted computer language which allows branching and looping as
well as modular programming using functions. R allows integration with the procedures
written in the C, C++, .Net, Python or FORTRAN languages for efficiency.

R is freely available under the GNU General Public License, and pre-compiled binary versions
are provided for various operating systems like Linux, Windows and Mac.

R is free software distributed under a GNU-style copy left, and an official part of the GNU
project called GNU S.

Evolution of R

R was initially written by Ross Ihaka and Robert Gentleman at the Department of
Statistics of the University of Auckland in Auckland, New Zealand. R made its first
appearance in 1993.

e A large group of individuals has contributed to R by sending code and bug reports.

[ ]

e Since mid-1997 there has been a core group (the "R Core Team") who can modify
the R source code archive.

Features of R

As stated earlier, R is a programming language and software environment for statistical
analysis, graphics representation and reporting. The following are the important features of
R:

e R is a well-developed, simple and effective programming language which includes
conditionals, loops, user defined recursive functions and input and output facilities.
e R has an effective data handling and storage facility,

e R provides a suite of operators for calculations on arrays, lists, vectors and matrices.

e R provides a large, coherent and integrated collection of tools for data analysis.



e R provides graphical facilities for data analysis and display either directly at the
computer or printing at the papers.



R Programming

As a conclusion, R is world’s most widely used statistics programming language. It's the # 1
choice of data scientists and supported by a vibrant and talented community of contributors.
R is taught in universities and deployed in mission critical business applications. This tutorial
will teach you R programming along with suitable examples in simple and easy steps.



2. R—Environment Setup

Try it Option Online

You really do not need to set up your own environment to start learning R programming
language. Reason is very simple, we already have set up R Programming environment
online, so that you can compile and execute all the available examples online at the same
time when you are doing your theory work. This gives you confidence in what you are
reading and to check the result with different options. Feel free to modify any example and
execute it online.

Try the following example using Try it option at the website available at the top right corner
of the below sample code box:

k Print Hello World.
print{"Hello World")

[ Add two numbers.

print({22.9 + 11.86)

For most of the examples given in this tutorial, you will find Try it option at the website, so
just make use of it and enjoy your learning.

Local Environment Setup

If you are still willing to set up your environment for R, you can follow the steps given below.

Windows Installation

You can download the Windows installer version of R from R-3.2.2 for Windows (32/64 bit)
and save it in a local directory.

As it is a Windows installer (.exe) with a name "R-version-win.exe". You can just double
click and run the installer accepting the default settings. If your Windows is 32-bit version, it
installs the 32-bit version. But if your windows is 64-bit, then it installs both the 32-bit and
64-bit versions.

After installation you can locate the icon to run the Program in a directory structure "R\R-
3.2.2\bin\i386\Rgui.exe" under the Windows Program Files. Clicking this icon brings up the
R-GUI which is the R console to do R Programming.


https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/windows/base/

R Programming

Linux Installation

R is available as a binary for many versions of Linux at the location R Binaries.

The instruction to install Linux varies from flavor to flavor. These steps are mentioned under
each type of Linux version in the mentioned link. However, if you are in a hurry, then you
can use yum command to install R as follows:

% yum install R

Above command will install core functionality of R programming along with standard
packages, still you need additional package, then you can launch R prompt as follows:

% R

R version 3.2.8 (2815-84-16) -- “Full of Ingredients”
Copyright (C) 2815 The R Foundation for Statistical Computing

Platform: xB86_s4-redhat-linux-gnu (64-bit)

kR is free software and comes with ABSOLUTELY MO WARRANTY. You
are welcome to redistribute it under certain conditions.

Type 'license()’ or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and

‘citation{)' on how to cite R or R packages in publications.
Type ‘demo()"' for some demos, "help()' for on-=line help, or
‘help.start()"' for an HTML browser interface to help.

Type 'g()" to quit R.

¥

Now you can use install command at R prompt to install the required package. For example,
the following command will install plotrix package which is required for 3D charts.

= install("plotrix")



https://cran.r-project.org/bin/linux/

R — Basic Syntax

As a convention, we will start learning R programming by writing a "Hello, World!" program.
Depending on the needs, you can program either at R command prompt or you can use an
R script file to write your program. Let's check both one by one.

R Command Prompt

Once you have R environment setup, then it's easy to start your R command prompt by just
typing the following command at your command prompt:

£ R

This will launch R interpreter and you will get a prompt > where you can start typing your
program as follows:

> myString <- "Hello, World!"
> print { myString)
[1] "Hello, World!™

Here first statement defines a string variable myString, where we assign a string "Hello,
World!" and then next statement print() is being used to print the value stored in variable
myString.

R Script File

Usually, you will do your programming by writing your programs in script files and then you
execute those scripts at your command prompt with the help of R interpreter called Rscript.
So let's start with writing following code in a text file called test.R as under:

My first program in R Programming

myString <- "Hello, World!"

rint { myString)

Save the above code in a file test.R and execute it at Linux command prompt as given
below. Even if you are using Windows or other system, syntax will remain same.

% Rscript test.R

When we run the above program, it produces the following resulit.




R Programming

[1] "Hello, World!"

Comments

Comments are like helping text in your R program and they are ignored by the interpreter
while executing your actual program. Single comment is written using # in the beginning of
the statement as follows:

F My first program in R Programming

R does not support multi-line comments but you can perform a trick which is something as
follows:

1iF({FALSE }{
"This is a demo for multi-line comments and it should be put inside

either a single of double quote”

myString <- "Hello, World!"

print { myString)

Though above comments will be executed by R interpreter, they will not interfere with your
actual program. You should put such comments inside, either single or double quote.



4. R —Data Types

Generally, while doing programming in any programming language, you need to use various
variables to store various information. Variables are nothing but reserved memory locations
to store values. This means that, when you create a variable you reserve some space in
memory.

You may like to store information of various data types like character, wide character,
integer, floating point, double floating point, Boolean etc. Based on the data type of a
variable, the operating system allocates memory and decides what can be stored in the
reserved memory.

In contrast to other programming languages like C and java in R, the variables are not
declared as some data type. The variables are assigned with R-Objects and the data type of
the R-object becomes the data type of the variable. There are many types of R-objects. The
frequently used ones are:

Vectors
Lists
Matrices
Arrays
Factors

Data Frames

The simplest of these objects is the vector object and there are six data types of these
atomic vectors, also termed as six classes of vectors. The other R-Objects are built upon the
atomic vectors.

Data Type Example Verify

v <- TRUE

print(class(v))

Logical TRUE , FALSE
it produces the following result:

[1] "logical"




v <- 23.5
Numeric 12.3, 5, 999 print(class(v))

it produces the following result:



R Programming

[1] "numeric"

v <- 2L

print(class(v))

Integer 2L, 34L, OL
it produces the following result:
[1] "integer"
v <- 2+5i
print(class(v))
Complex 3+ 2i

it produces the following result:

[1] "complex"

v <- "TRUE"

print(class(v))

Character 'a', ""good", "TRUE", '23.4'
it produces the following result:

[1] "character"

v <- charToRaw("Hello")

print(class(v))

Raw "Hello" is stored as 48 65 6¢ 6¢ 6f
it produces the following result:

[1] "raw"

In R programming, the very basic data types are the R-objects called vectors which hold
elements of different classes as shown above. Please note in R the number of classes is not
confined to only the above six types. For example, we can use many atomic vectors and
create an array whose class will become array.



R Programming

Vectors

When you want to create vector with more than one element, you should use c() function
which means to combine the elements into a vector.

# Create a vector.
apple <- c{'red’, 'green',"yellow")

print{apple)

f# Get the class of the vector.

print{class{apple))

When we execute the above code, it produces the following result:

[1] "red"” "green” "yellow"

[1] "character”

Lists

A list is an R-object which can contain many different types of elements inside it like vectors,
functions and even another list inside it.

k Create a list.

listl <- list(c(2,5,3),21.3,sin)

# Print the list.
print{listl)

When we execute the above code, it produces the following result:

[[1]]
[1] 2 5 3

([2]]
[1] 21.3

[[3]]

function (x) .Primitive("sin")




R Programming

Matrices

A matrix is a two-dimensional rectangular data set. It can be created using a vector input to
the matrix function.

# Create a matrix.
M = matrix({ c('a’,'a",'b',"'c',"'b","a"), nrow=2,ncol=3,byrow = TRUE)

print(M}

When we execute the above code, it produces the following result:

(1] [L,2] [,3]
[1,] "a"™ "a" "b"

[2,] "e™ "b™ "a"

Arrays

While matrices are confined to two dimensions, arrays can be of any number of dimensions.
The array function takes a dim attribute which creates the required number of dimension. In
the below example we create an array with two elements which are 3x3 matrices each.

# Create an array.
a <- array(c('green’, 'yellow'),dim=c{3,3,2))

printia)

When we execute the above code, it produces the following result:

[,1] [,2] [,3]
[1,] "green" "yellow" "green"

[2,] "yellow" "green" "yellow'

[3,] "green" ‘"yellow" "green"

[,1] [,2] [,3]
[1,] "yellow" "green" "yellow'

[2,] "green" "yellow" "green"




R Programming

[3,] "yellow" “"green" "yellow"

Factors

Factors are the r-objects which are created using a vector. It stores the vector along with
the distinct values of the elements in the vector as labels. The labels are always character
irrespective of whether it is numeric or character or Boolean etc. in the input vector. They
are useful in statistical modeling.

Factors are created using the factor() function.The nlevels functions gives the count of
levels.

# Create a vector.

apple_colors <- c('green', 'green’, 'vellow", 'red’, 'red', 'red’, "green’)

# Create a factor object. factor_apple

<- factor{apple_colors)

# Print the factor.
print(factor_apple)
print{nlevels(factor_apple))

When we execute the above code, it produces the following result:

[1] green green yellow red red red yellow green
Levels: green red yellow

# applying the nlevels function we can know the number of distinct values

[1] 3

Data Frames

Data frames are tabular data objects. Unlike a matrix in data frame each column can
contain different modes of data. The first column can be numeric while the second column
can be character and third column can be logical. It is a list of vectors of equal length.

Data Frames are created using the data.frame() function.

# Create the data frame.
BMI «- data.frame(

gender = c{"Male”, "Male","Female"),




R Programming

height = ¢({152, 171.5, 185),

weight = (81,93, 78), Age =c(42,38,268)
)

print{BMI)

When we execute the above code, it produces the following result:

gender height weight
1 Male 152.0 81
2 Male 171.5 93

3 Female 165.0 78

Age
42
38
26




5. R—Variables

A variable provides us with named storage that our programs can manipulate. A variable in
R can store an atomic vector, group of atomic vectors or a combination of many R-objects. A
valid variable name consists of letters, nhumbers and the dot or underline characters. The
variable name starts with a letter or the dot not followed by a number.

Variable Name Validity Reason

var_name2. valid Has letters, numbers, dot and underscore

Has the character '%'. Only dot(.) and underscore

var_name% Invalid
allowed.
2var_name invalid Starts with a number
.var_name , . Can start with a dot(.) but the dot(.)should not be
valid
var.name followed by a number.
. . The starting dot is followed by a number making it
.2var_name invalid . )
invalid
_var_name invalid Starts with _ which is not valid

Variable Assignment

The variables can be assigned values using leftward, rightward and equal to operator. The
values of the variables can be printed using print() or cat()function. The cat() function
combines multiple items into a continuous print output.

k Assignment using equal operator.

var.l = ¢(@,1,2,3)

i Assignment using leftward operator.

var.2 <- o("learn”,"R")




R Programming

# Assignment using rightward operator.

c{TRUE,1) -» var.3

primt{var.1)
cat ("var.1 is ", wvar.1l ,"\n")
cat ("var.2 is ", wvar.2 ,"\n")

cat ("var.3 is ", var.3 ,"\n")

When we execute the above code, it produces the following result:

[1] 0123
var.1is ©1 2 3
var.2 is 1learn R

var.3 is 11

Note: The vector c(TRUE,1) has a mix of logical and numeric class. So logical class is
coerced to numeric class making TRUE as 1.

Data Type of a Variable

In R, a variable itself is not declared of any data type, rather it gets the data type of the R -
object assigned to it. So R is called a dynamically typed language, which means that we can
change a variable’s data type of the same variable again and again when using it in a
program.

war_x <- "Hello"

cat("The class of var_x is ",class(var_x),"\n")

var_x <- 34.5

cat(" Now the class of var_x is ",class(var_x),"\n")

var_x <- 271

cat(” MNext the class of var_x becomes “,class(var_x),"\n")

When we execute the above code, it produces the following result:

The class of var_x is character Now
the class of var_x is numeric

Mext the class of var_x becomes integer




R Programming

Finding Variables

To know all the variables currently available in the workspace we use the Is() function. Also
the Is() function can use patterns to match the variable names.

print(1s())

When we execute the above code, it produces the following result:

[1] "my var" "my_new_var" "my_var" "var.1"
[5] "var.2" "var.3" "var.name" "var_name2."
[9] "var_x" "varname"

Note: It is a sample output depending on what variables are declared in your environment.

The Is() function can use patterns to match the variable names.

# List the variables starting with the pattern "var”.

print(ls{pattern="var"))

When we execute the above code, it produces the following result:

[1] "my var” "my_new_var" "my_var" "var.1"
[5] "var.2" "var.3" "var.name" "var_name2."
[9] "var_x" "varname"

The variables starting with dot(.) are hidden, they can be listed using "all.names=TRUE"
argument to Is() function.

print(ls{all.name=TRUE))

When we execute the above code, it produces the following result:

[1] ".cars" ".Random.seed" ".var_name" ".varname" ".varname2"
[6] "my var" "my_new_var" "my_var" "var.1" "var.2"
[11]"var.3" "var.name" "var_name2." "var_x"

Deleting Variables

Variables can be deleted by using the rm() function. Below we delete the variable var.3. On
printing the value of the variable error is thrown.



R Programming

rm{var.3)

print(var.3)

When we execute the above code, it produces the following result:

[1] "var.3"

Error in print{var.3) : object 'wvar.3' not found

All the variables can be deleted by using the rm() and Is() function together.

rm{list=1s())
print(1s())

When we execute the above code, it produces the following result:

character(d)




6. R—Operators

An operator is a symbol that tells the compiler to perform specific mathematical or logical
manipulations. R language is rich in built-in operators and provides following types of
operators.

Types of Operators

We have the following types of operators in R programming:

e Arithmetic Operators
e Relational Operators
e Logical Operators

e Assignment Operators

e Miscellaneous Operators

Arithmetic Operators

Following table shows the arithmetic operators supported by R language. The operators act
on each element of the vector.

Operator Description Example

v <- ¢( 2,5.5,6)
t <- c(8, 3, 4)

Adds two print(v+t)
vectors

it produces the following result:

[1] 10.0 8.5 10.0

Subtracts v <- ¢( 2,5.5,6)
- second vector | i _ (8, 3, 4)
from the first

print(v-t)




%%

%/%

Multiplies both
vectors

Divide the first
vector with the
second

Give the
remainder of
the first vector
with the second

The result of
division of first
vector with
second
(quotient)

it produces the following result:

R Programming

[1] -6.0 2.5 2.0

v <- ¢( 2,5.5,6)
t <- c(8, 3, 4)
print(v*t)

it produces the following result:

[1] 16.0 16.5 24.0

v <- ¢( 2,5.5,6)
t <- c(8, 3, 4)
print(v/t)

When we execute the above code, it produces the

following result:

[1] ©.250000 1.833333 1.500000

v <- ¢( 2,5.5,6)
t <- c(8, 3, 4)
print(v%%t)

it produces the following result:

[1] 2.8 2.5 2.0

v <- ¢( 2,5.5,6)
t <- c(8, 3, 4)

print(v%/%t)

it produces the following result:



R Programming

[1] 0 11

v <- ¢( 2,5.5,6)

t <- c(8, 3, 4)
The first vector

rint(vrt
raised to the P ( )

exponent of
second vector

it produces the following result:

[1] 256.000 166.375 1296.000

Relational Operators

Following table shows the relational operators supported by R language. Each element of
the first vector is compared with the corresponding element of the second vector. The result

of comparison is a Boolean value.

Operator Description

Checks if each element of the first
vector is greater than the
corresponding element of the second
vector.

Checks if each element of the first
< vector is less than the corresponding
element of the second vector.

Example

v <- ¢(2,5.5,6,9)
t <- ¢(8,2.5,14,9)
print(v>t)

it produces the following result:

[1] FALSE TRUE FALSE FALSE

v <- ¢(2,5.5,6,9)
t <- c(8,2.5,14,9)

print(v < t)

it produces the following result:

[1] TRUE FALSE TRUE FALSE




Checks if each element of the first
vector is equal to the corresponding
element of the second vector.

Checks if each element of the first
vector is less than or equal to the
corresponding element of the second
vector.

Checks if each element of the first
vector is greater than or equal to the
corresponding element of the second
vector.

Checks if each element of the first

vector is unequal to the corresponding

element of the second vector.

R Programming

v <- ¢(2,5.5,6,9)
t <- ¢(8,2.5,14,9)

print(v==t)

it produces the following result:

[1] FALSE FALSE FALSE TRUE

v <- ¢(2,5.5,6,9)
t <- c(8,2.5,14,9)

print(v<=t)

it produces the following result:

[1] TRUE FALSE TRUE TRUE

v <- ¢(2,5.5,6,9)
t <- ¢(8,2.5,14,9)

print(v>=t)

it produces the following result:

[1] FALSE TRUE FALSE TRUE

v <- ¢(2,5.5,6,9)
t <- ¢(8,2.5,14,9)

print(v!=t)

it produces the following result:

[1] TRUE TRUE TRUE FALSE




R Programming

Logical Operators

Following table shows the logical operators supported by R language. It is applicable only to
vectors of type logical, humeric or complex. All numbers greater than 1 are considered as
logical value TRUE.

Each element of the first vector is compared with the corresponding element of the second

vector. The result of comparison is a Boolean value.

Operator Description Example
_ _ _ v <- ¢(3,1,TRUE,2+31)
It is called Element-wise Logical AND ]
operator. It combines each element of t <- c(4,1,FALSE,2+31)
& the first vector with the corresponding print(v&t)

element of the second vector and
gives a output TRUE if both the
elements are TRUE.

It is called Element-wise Logical OR
operator. It combines each element of
the first vector with the corresponding
element of the second vector and
gives a output TRUE if one the
elements is TRUE.

it produces the following result:

[1] TRUE TRUE FALSE TRUE

v <- c(3,0,TRUE,2+2i)
t <- c(4,0,FALSE,2+31i)
print(v|t)

it produces the following result:

[1] TRUE FALSE TRUE TRUE




R Programming

v <- ¢(3,0,TRUE,2+21)

It is called Logical NOT operator. print(!v)
! Takes each element of the vector and
gives the opposite logical value. it produces the following result:

[1] FALSE TRUE FALSE FALSE

The logical operator && and || considers only the first element of the vectors and give a
vector of single element as output.

Operator Description Example

v <- ¢(3,0,TRUE,2+2i)

t <- c(1,3,TRUE,2+31)
Called Logical AND operator. Takes

&& first element of both the vectors and
gives the TRUE only if both are TRUE.

print(v&&t)

it produces the following result:

[1] TRUE

v <- c(0,0,TRUE,2+21)

t <- c(0,3,TRUE,2+31)
Called Logical OR operator. Takes first

[ element of both the vectors and gives
the TRUE only if both are TRUE.

print(v||t)

it produces the following result:

[1] FALSE




R Programming

Assignment Operators

These operators are used to assign values to vectors.

Operator Description Example

vl <- c(3,1,TRUE,2+31i)
v2 <<- c(3,1,TRUE,2+31i)
v3 = c(3,1,TRUE,2+31i)

or print(vl)

print(v2)

Called Left Assignment
print(v3)

or it produces the following result:
[1] 3+0i 1+0i 1+0i 2+3i
<<- [1] 3+0i 1+0i 1+0i 2+3i
[1] 3+0i 1+0i 1+0i 2+3i

c(3,1,TRUE,2+3i) -> vi
-> c(3,1,TRUE,2+31) ->> v2
print(vl)

or Called Right Assignment print(v2)
it produces the following result:
->> [1] 3+0i 1401 1+0i 2+43i

[1] 3401 1+01i 1+0i 2+3i

Miscellaneous Operators

These operators are used to for specific purpose and not general mathematical or logical
computation.

Operator Description Example



%in%

% *%

Colon
operator. It
creates the
series of
numbers in
sequence
for a vector.

This operator
is used to
identify if an
element
belongs to a
vector.

This operator
is used to
multiply a
matrix with
its
transpose.

R Programming

VvV <-

print(v)

2:8

it produces the following result:

[112345678

vl <- 8
v2 <- 12
t <- 1:10

print(vl %in% t)
print(v2 %in% t)

it produces the following result:

[
[

1] TRUE
1] FALSE

M

t

TRUE)

print(t)

= matrix( c(2,6,5,1,10,4), nrow=2,ncol=3,byrow =

= M %*% t(M)

it produces the following result:

[1,] 65 82

[,1] [,2]

[2,] 82 117




7. R—Decision making

Decision making structures require the programmer to specify one or more conditions to be
evaluated or tested by the program, along with a statement or statements to be executed if

the condition is determined to be true, and optionally, other statements to be executed if
the condition is determined to be false.

Following is the general form of a typical decision making structure found in most of the
programming languages:

If condition
is true

If condition
is false

 J

R provides the following types of decision making statements. Click the following links to
check their detail.

Statement Description

. An if statement consists of a Boolean expression followed by one
if statement
or more statements.

. An if statement can be followed by an optional else statement,
if...else statement . S
which executes when the Boolean expression is false.


http://www.tutorialspoint.com/r/r_if_statement.htm
http://www.tutorialspoint.com/r/r_if_else_statement.htm

R Programming

A switch statement allows a variable to be tested for equality

switch statement . .
against a list of values.

R - If Statement

An if statement consists of a Boolean expression followed by one or more statements.

Syntax

The basic syntax for creating an if statement in R is:

if(booclean_expression) {

ff statement(s) will execute if the boolean expression is true.

}

If the Boolean expression evaluates to be true, then the block of code inside the if
statement will be executed. If Boolean expression evaluates to be false, then the first set of
code after the end of the if statement (after the closing curly brace) will be executed.

Flow Diagram

If condition
is frue

If condition

is false conditional code

Example

M <- 38L



http://www.tutorialspoint.com/r/r_switch_statement.htm

R Programming

if(is.integer(x))}{ print("X
is an Integer")

}

When the above code is compiled and executed, it produces the following result:

[1] "X is an Integer"

R - If...Else Statement

An if statement can be followed by an optional else statement which executes when the
boolean expression is false.

Syntax

The basic syntax for creating an if...else statement in R is:

if(boolean_expression) {

S/ statement(s) will execute if the boolean expression is true.
I else {

ff statement(s) will execute if the boolean expression is false.

}

If the Boolean expression evaluates to be true, then the if block of code will be executed,
otherwise else block of code will be executed.



R Programming

Flow Diagram

If condition
is true

condition

If condition
is false

glse code

Example

% <- cf"what","is","truth")
IF("Truth" %in% x){
print{"Truth is found")

1 else {

print{"Truth is not found™)
}

When the above code is compiled and executed, it produces the following result:

[1] "Truth is not found”

Here "Truth" and "truth" are two different strings.

The if...else if...else Statement

An if statement can be followed by an optional else if...else statement, which is very useful
to test various conditions using single if...else if statement.

When using if, else if, else statements there are few points to keep in mind.

e An if can have zero or one else and it must come after any else if's.

e An if can have zero to many else if's and they must come before the else.



R Programming

e Once an else if succeeds, none of the remaining else if's or else's will be tested.

Syntax

The basic syntax for creating an if...else if...else statement in R is:

if(boolean_expression 1) {
i/ Executes when the boolean
telse if({ boolean_expression
¥ { Executes when the boolean
telse if( boolean_expression
i/ Executes when the boolean
lelse {

/! executes when none of the

}

expression 1 is

2) {

expression 2 is

3) A

expression 3 is

above condition

true,

true.

true.

iz true.

Example

% <- c"what","is","truth")

iF("Truth” Bink x){

I else if ("truth" %in¥ =) {

1 else {

print({"No truth found™)

}

print{"Truth is found the first time")

print{"truth is found the second time")

When the above code is compiled and executed, it produces the following result:

[1] "truth is found the second time"

R - Switch Statement

A switch statement allows a variable to be tested for equality against a list of values. Each
value is called a case, and the variable being switched on is checked for each case.

Syntax

The basic syntax for creating a switch statement in R is :




R Programming

switch{expression, casel, case?, cased )

The following rules apply to a switch statement:

e If the value of expression is not a character string it is coerced to integer.

e You can have any number of case statements within a switch. Each case is followed
by the value to be compared to and a colon.

e If the value of the integer is between 1 and nargs()-1 (The max number of
arguments)then the corresponding element of case condition is evaluated and the
result returned.

e If expression evaluates to a character string then that string is matched (exactly) to
the names of the elements.

e If there is more than one match, the first matching element is returned.
e No Default argument is available.

e In the case of no match, if there is a unnamed element of ... its value is returned. (If
there is more than one such argument an error is returned.)

Flow Diagram

expression

case 1

code block 1

case 2 code block 2

case 3 code block 3

Iy
\\ ~

L L code block N



R Programming

Example



R Programming

¥ <- switch(
3,
“First",
“second”,
“third",
"fourth”

)
primt(x)

When the above code is compiled and executed, it produces the following result:

[1] "third"




There may be a situation when you need to execute a block of code several number of
times. In general, statements are executed sequentially. The first statement in a function is
executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated
execution paths.

A loop statement allows us to execute a statement or group of statements multiple times
and the following is the general form of a loop statement in most of the programming
languages:

If condition
is true

If condition
is false

R programming language provides the following kinds of loop to handle looping
requirements. Click the following links to check their detail.

Loop Type Description
Executes a sequence of statements multiple times and abbreviates
repeat loop

the code that manages the loop variable.

Repeats a statement or group of statements while a given condition is

while loop true. It tests the condition before executing the loop body.


http://www.tutorialspoint.com/r/r_repeat_loop.htm
http://www.tutorialspoint.com/r/r_while_loop.htm




R Programming

for 106 Like a while statement, except that it tests the condition at the end of
rorfoop the loop body.

R - Repeat Loop

The Repeat loop executes the same code again and again until a stop condition is met.

Syntax

The basic syntax for creating a repeat loop in R is:

repeat {

commands if{condition){

brealk

}

Flow Diagram

conditional
code

If condition
is true

condition

If condition
is false

Example

v <- ¢("Hello","loop")



http://www.tutorialspoint.com/r/r_for_loop.htm

R Programming

cnt <- 2
repeat{
primt{v) cnt «<-
cnt+l if{cnt
* 53
break

I
}

When the above code is compiled and executed, it produces the following result:

[1] "Hello" "loop"
[1] "Hello" "loop"
[1] "Hello" "loop"
[1] "Hello" "loop"

R - While Loop

The While loop executes the same code again and again until a stop condition is met.

Syntax

The basic syntax for creating a while loop in R is :

while (test_expression) {

statement

}

Flow Diagram



R Programming

while' condition

{

conditional code

}

If condition
is true

code block

.

Here key point of the while loop is that the loop might not ever run. When the condition is
tested and the result is false, the loop body will be skipped and the first statement after the
while loop will be executed.

If condition
is false

Example

v o<- c{"Helle","while loop")
cnt ¢- 2
while {ecnt <« 7)4
print{v)
cnt = cnt + 1

}

When the above code is compiled and executed, it produces the following result :

[1] "Hello" "while loop"
[1] "Hello" "while loop"
[1] "Hello" "while loop"
[1] "Hello" "while loop"




R Programming



R Programming

[1] "Hello™ "while loop"

R —For Loop

A for loop is a repetition control structure that allows you to efficiently write a loop that
needs to execute a specific number of times.

Syntax

The basic syntax for creating a for loop statement in R is:

for (value in wvector) {

statements

Flow Diagram

Geteach element
of the vector

Process the
statements

Last

element

reached?

R’s for loops are particularly flexible in that they are not limited to integers, or even numbers
in the input. We can pass character vectors, logical vectors, lists or expressions.

Example

W <- LETTERS[1:4]
for ( 1 in v) {

print(i)




R Programming
When the above code is compiled and executed, it produces the following result:

[1] "A
(1] "B"
[1] "C
[1] "D

Loop Control Statements

Loop control statements change execution from its normal sequence. When execution leaves
a scope, all automatic objects that were created in that scope are destroyed.

R supports the following control statements. Click the following links to check their detail.

Control Statement Description

Terminates the loop statement and transfers execution to the

break statement statement immediately following the loop.

Next statement The next statement simulates the behavior of R switch.

R — Break Statement

The break statement in R programming language has the following two usages:

e When the break statement is encountered inside a loop, the loop is immediately
terminated and program control resumes at the next statement following the loop.

e It can be used to terminate a case in the switch statement (covered in the next chapter).

Syntax

The basic syntax for creating a break statement in R is:

brealk

Flow Diagram



http://www.tutorialspoint.com/r/r_break_statement.htm
http://www.tutorialspoint.com/r/r_next_statement.htm

R Programming

conditional

code

If condition
is true

condition

If condition
is false

Example

v <- c{"Helle","loop"™)
cnt <- 2
repeat{
printi{v) cnt «<-
cnt+l if{cnt
> 5){
break
}
}

When the above code is compiled and executed, it produces the following result:

[1] "Hello" "loop"
[1] "Hello" "loop"
[1] "Hello" "loop"
[1] "Hello" "loop"




R Programming

R — Next Statement

The next statement in R programming language is useful when we want to skip
the current iteration of a loop without terminating it. On encountering next, the
R parser skips further evaluation and starts next iteration of the loop.

Syntax

The basic syntax for creating a next statement in R is:

next

Flow Diagram

Geteach element
of the vector

Code block

Next
statement?

Skip processing this

element

Last
element
reached?

Example

v <- LETTERS[1:6]
for { 1 in v){

if (i == "D")}{
next

}

print(i)

}




R Programming
When the above code is compiled and executed, it produces the following result:

(1] "a”

1] "B"




R Programming




9. R - Function

A function is a set of statements organized together to perform a specific task. R has a large
number of in-built functions and the user can create their own functions.

In R, a function is an object so the R interpreter is able to pass control to the function, along
with arguments that may be necessary for the function to accomplish the actions.

The function in turn performs its task and returns control to the interpreter as well as any
result which may be stored in other objects.

Function Definition

An R function is created by using the keyword function. The basic syntax of an R function
definition is as follows:

function_name <- function{arg_ 1, arg 2, ...) {

Function body

}
Function Components

The different parts of a function are:

e Function Name: This is the actual name of the function. It is stored in R
environment as an object with this name.

e Arguments: An argument is a placeholder. When a function is invoked, you pass a
value to the argument. Arguments are optional; that is, a function may contain no
arguments. Also arguments can have default values.

¢ Function Body: The function body contains a collection of statements that defines
what the function does.

e Return Value: The return value of a function is the last expression in the function
body to be evaluated.

R has many in-built functions which can be directly called in the program without defining
them first. We can also create and use our own functions referred as user defined
functions.



R Programming

Built-in Function

Simple examples of in-built functions are seq(), mean(), max(), sum(x)and paste(...) etc.
They are directly called by user written programs. You can refer most widely used R
functions.

# Create a sequence of numbers from 32 to 44.

print{seq{32,44})

# Find mean of numbers from 25 to 82.

print{mean(25:82))

# Find sum of numbers frm 41 to &8.

print{sum{41:68))

When we execute the above code, it produces the following result:

[1] 32 33 34 35 36 37 38 39 40 41 42 43 44
[1] 53.5
[1] 1526

User-defined Function

We can create user-defined functions in R. They are specific to what a user wants and once
created they can be used like the built-in functions. Below is an example of how a function
is created and used.

# Create a function to print sguares of numbers in sequence.
new. function «<- function(a) {

for(i in 1:a) {

b <- i*2 print(b)

¥

Calling a Function

F Create a function to print sguares of numbers in sequence.



https://cran.r-project.org/doc/contrib/Short-refcard.pdf
https://cran.r-project.org/doc/contrib/Short-refcard.pdf

R Programming

new.function <- function(a) {
for({i in 1:a) {

b «- i*2 print(b)

}

# Call the function new.function supplying & as an argument.

new. function(g)

When we execute the above code, it produces the following result:

[1] 1
[1] 4
[1] o
[1] 16
[1] 25
[1] 36

Calling a Function without an Argument

# Create a function without an argument.
new.function <- function() {

for(i in 1:5) { print(i~2)

}

# Call the function without supplying an argument.

new. function()

When we execute the above code, it produces the following result:

[1] 1
[1] 4
[1] °




R Programming



R Programming

[1] 16

[1] 25

Calling a Function with Argument Values (by position and by name)

The arguments to a function call can be supplied in the same sequence as defined in the
function or they can be supplied in a different sequence but assigned to the names of the

arguments.

# Create a function with arguments.
new. function <- function(a,b,c) {
result <- a*b+c

print{result)

# Call the function by position of arguments.

new. function({5,3,11)

# Call the function by names of the arguments.

new.function({a=11,b=5,c=3)
When we execute the above code, it produces the following result:

[1] 26

[1] 58

Calling a Function with Default Argument

We can define the value of the arguments in the function definition and call the function
without supplying any argument to get the default result. But we can also call such
functions by supplying new values of the argument and get non default result.

# Create a function with arguments.
new.function <- function{a = 3,b =6) {

result <- a*b print(result)




R Programming

# Call the function without giving any argument.

new.function()

# Call the function with giving new wvalues of the argument.

new. function(9,5)

When we execute the above code, it produces the following result:

[1] 18

[1] 45

Lazy Evaluation of Function

Arguments to functions are evaluated lazily, which means so they are evaluated only when
needed by the function body.

# Create a function with arguments.
new.function <- function({a, b) {
print{a"2) print{a)

print{b)

# Evaluate the function without supplying one of the arguments.

new.functionie)

When we execute the above code, it produces the following result:

[1] 36
[1] 6

Error in print(b) : argument "b" is missing, with no default




10. R — Strings

Any value written within a pair of single quote or double quotes in R is treated as a string.
Internally R stores every string within double quotes, even when you create them with
single quote.

Rules Applied in String Construction

e The quotes at the beginning and end of a string should be both double quotes or
both single quote. They can not be mixed.

e Double quotes can be inserted into a string starting and ending with single quote.
e Single quote can be inserted into a string starting and ending with double quotes.
e Double quotes can not be inserted into a string starting and ending with double quotes.

e Single quote can not be inserted into a string starting and ending with single quote.

Examples of Valid Strings

Following examples clarify the rules about creating a string in R.

£- "Start and end with single guote’

print{a)

«- “"start and end with double quotes™

print{b)

«- "single guote ' in between double guotes"

print{c)

* <= "Nouble guontes ® 90 between single guote’

print{d)
When the above code is run we get the following output:

[1] "Start and end with single quote"
[1] "Sstart and end with double guotes”




R Programming

[1] "single quote in between double quote”

[1] "Double guote \" in between single guote”

Examples of Invalid Strings

<- 'Mixed guotes”

print{e)

<- 'Single quote inside single guote’

print{f)

<- "Double guotes inside double guotes®

print{g)
When we run the script it fails giving below results.

! unexpected INCOMPLETE_STRING

. unexpected symbol

1: f <- 'Single quote ' inside

unexpected symbol

1: g <- "Double gquotes " inside

String Manipulation

Concatenating Strings - paste() function

Many strings in R are combined using the paste() function. It can take any number of
arguments to be combined together.

Syntax

The basic syntax for paste function is :

paste(..., sep = " ", collapse = NULL)

Following is the description of the parameters used:



R Programming

e ... represents any number of arguments to be combined.

sep represents any separator between the arguments. It is optional.

collapse is used to eliminate the space in between two strings. But not the space
within two words of one string.

Example
¢- "Hello"
£- "How'

<- "are you? "

print{paste(a,b,c))

print{paste(a,b,c, sep

"))

print(paste(a,b,c, sep = "", collapse = ""))

When we execute the above code, it produces the following result:

[1] "Hello How are you? "
[1] "Hello-How-are you?

[1] "HelloHoware you? "

Formatting numbers & strings - format() function

Numbers and strings can be formatted to a specific style using format()function.

Syntax

The basic syntax for format function is :

Format{x, digits, nsmall,scientific,width,justify = c("left", "right", “"centre",
"none" )}

Following is the description of the parameters used:



R Programming
e X is the vector input.



R Programming

e digits is the total number of digits displayed.
e nsmall is the minimum number of digits to the right of the decimal point.
e scientific is set to TRUE to display scientific notation.

e width indicates the minimum width to be displayed by padding blanks in the
beginning.

e justify is the display of the string to left, right or center.

Example

# Total number of digits displayed. Last digit rounded off.
result <- format(23.123456789, digits = 9)

print{result)

# Display numbers in scientific notation.
result <- format{c(6, 13.14521), scientific = TRUE)

print{result)

# The minimum number of digits to the right of the decimal point.
result <- format{23.47, nsmall = 5)

print{result)

¢ Format treats everything as a string.
result <- format{e)

print(result)

(# Mumbers are padded with blank in the beginning for width.
result <- format{13.7, width = &)

print{result)

# Left justify strings.




R Programming

result <- format("Hello",width = 8, justify = "1")
print{result)

# Justfy string with center.

result <- format("Hello",width = 8, justify = "c")

print{result)

When we execute the above code, it produces the following result:

[1] "23.1234568"

[1] "6.000080e+88" "1.314521c+01"
[1] "23.47@00"

[1] "&"

[1] " 13.7"

[1] "Helle "

[1] " Hello "

Counting number of characters in a string - ncahr() function

This function counts the number of characters including spaces in a string.

Syntax

The basic syntax for nchar() function is :

nchar(x)

Following is the description of the parameters used:

e X is the vector input.

Example

result <- nchar("Count the number of characters")

print{result)

When we execute the above code, it produces the following result:

[1] 3e




R Programming
Changing the case - toupper() & tolower() functions
These functions change the case of characters of a string.

Syntax

The basic syntax for toupper() & tolower() function is :

toupper({x)

tolower({x)

Following is the description of the parameters used:

e X is the vector input.

Example

# Changing to Upper case.
result <- toupper("Changing To Upper")

print{result)

[# Changing to lower case.
result <- tolower("Changing To Lower™)

print{result)

When we execute the above code, it produces the following result:

[1] "CHANGING TO UPPER"

[1] "changing to lower"

Extracting parts of a string - substring() function

This function extracts parts of a String.

Syntax

The basic syntax for substring() function is :

substring{x,first,last)

Following is the description of the parameters used:

e X is the character vector input.

o first is the position of the first character to be extracted.



R Programming

e last is the position of the last character to be extracted.

Example

# Extract characters from 5th te 7th positien.
result <- substring("Extract™, 5, 7)

print{result)

When we execute the above code, it produces the following result:

[1] "act"




11. R—Vectors

Vectors are the most basic R data objects and there are six types of atomic vectors. They
are logical, integer, double, complex, character and raw.

Vector Creation

Single Element Vector

Even when you write just one value in R, it becomes a vector of length 1 and belongs to one
of the above vector types.

k Atomic vector of type character.

print{"abc™);

# Atomic wvector of type double.
print{12.5)

ff Atomic vector of type integer.

print({s3L)

# Atomic vector of type logical.
print{TRUE)

# Atomic vector of type complex.
print({2+31i)

# Atomic vector of type raw.

print{charToRaw( helloa"})

When we execute the above code, it produces the following result:

(1] “abc"
[1] 12.5
[1] 63




R Programming

[1] TRUE

[1] 2+3i

[1] 68 65 6c 6c 6F

Multiple Elements Vector

Using colon operator with numeric data

# Creating a sequence from 5 to 13.
v o<- 5:13

printiv)

# Creating a sequence from 6.6 to 12.6.
v o <- 6.6:12.6
print{v)

f# If the final element specified does not belong to the seguence then it is
discarded.

v <- 3.8:11.4
print{v)
When we execute the above code, it produces the following result:

[1] 56 7 8916 11 12 13
[1] 6.6 7.6 8.6 9.6 10.6 11.6 12.6
[1] 3.8 4.8 5.8 6.8 7.8 8.8 9.8 10.8

Using sequence (Seq.) operator

# Create vector with elements from 5 toe 9 incrementing by 8.4,

print(seq(5, 9, by=0.4))

When we execute the above code, it produces the following result:

[1] 5.8 5.4 5.8 6.2 6.6 7.8 7.4 7.8 8.2 B.6 9.8

Using the c¢() function
The non-character values are coerced to character type if one of the elements is a character.



R Programming

# The logical and numeric walues are converted to characters.
5 «- c('apple’, 'red’',5,TRUE)

print{s)

When we execute the above code, it produces the following result:

[1] "apple" "red" "5" "TRUE"™

Accessing Vector Elements

Elements of a Vector are accessed using indexing. The [ ] brackets are used for indexing.
Indexing starts with position 1. Giving a negative value in the index drops that element from
result. TRUE, FALSE or 0 and 1 can also be used for indexing.

# Accessing vector elements using position.

it <= c{"sun","Mon",""Tue", "Wed", "Thurs","Fri", "sat")
w <= t[c(2,3,6)]

print{u)

# Accessing wvector elements using logical indexing.
v <- t[c(TRUE,FALSE,FALSE,FALSE,FALSE, TRUE,FALSE)]

primt{v)

# Accessing vector elements using negative indexing.
¥ <- t[e(-2,-5)]

primt{x)

# Accessing wvector elements using 8/1 indexing.
y <- t[c(®,8,0,0,0,0,1)]

print{y)

When we execute the above code, it produces the following result:

[1] nMonll ||-|-uen "Fr‘i"

[1] nSunll "Fr‘i"
[1] nSunll llTuen "Wed" IIFrill llSatll
[1] nSunll




R Programming

Vector Manipulation

Vector Arithmetic

Two vectors of same length can be added, subtracted, multiplied or divided giving the result
as a vector output.

# Create two vectors.
vl ¢<- ¢(3,8,4,5,8,11)

w2 <- c(4,11,8,8,1,2)

# Vector addition.
add.result <- wl+v2

print{add.result)

[# Vector substraction.
sub.result «<- wl-w2

print({sub.result)

f# Vector multiplication.
multi.result <- wvl*y2

print{multi.result)

# Vector division.
divi.result <- wvl/v2

print{divi.result)

When we execute the above code, it produces the following result:

[1] 7 19 4 13 1 13
[1] -1 -3 4 -3 -1 9
[1] 12 88 © 40 © 22

[1] e.7500808 B.7272727 Inf 8.6250002 0.82008208 5.5208080




R Programming

Vector Element Recycling

If we apply arithmetic operations to two vectors of unequal length, then the elements of the
shorter vector are recycled to complete the operations.

wl «<- ¢(3,8,4,5,8,11)
w2 <- c(4,11)

# V2 becomes c(4,11,4,11,4,11)

add. result <- vls+w2

print{add.result)

sub.result <- wvl-w2

print({sub.result)

When we execute the above code, it produces the following result:

[1] 7 19 8 16 4 22

[1] -1 -3 @ -6 -4 @

Vector Element Sorting

Elements in a vector can be sorted using the sort() function.

v <- ¢(3,8,4,5,0,11, -9, 304)

# sort the elements of the vector.
sort.result <- sort(v)

print{sort.result)

# Sort the elements in the reverse order.
revsort.result <- sort(v, decreasing = TRUE)

print{revsort.result)




R Programming

# Sorting character vectors.

v <- c{"Red","Blue","yellow","violet")

sort.result <- sort(v)

print{sort.result)

[# Sorting character vectors in reverse order.
revsort.result <- sort(v, decreasing = TRUE)}

print{revsort.result)

When we execute the above code, it produces the following result:

[1] -9@ 3 5 8 11 304
4

4 3 a8 -9

[1] iad 11 8

1] "Blye" “Red" "wiolet" "yellow"

[1] "yellow" "wviolet" “Red” “Blue"




R Programming



	1.​R – Overview 
	 Evolution of R​ 
	Features of R 

	2.​R – Environment Setup 
	 Try it Option Online​ 
	 Local Environment Setup​ 
	Windows Installation 
	Linux Installation 

	 R Command Prompt​ 
	 R Script File​ 
	 Comments​ 

	4.​R – Data Types 
	 Vectors​ 
	Lists 
	Matrices 
	 Arrays​ 
	 Factors​ 
	Data Frames 

	5.​R – Variables 
	Variable Assignment 
	 Data Type of a Variable​ 
	Finding Variables 
	Deleting Variables 

	6.​R – Operators 
	 Types of Operators​ 
	 Arithmetic Operators​ 
	Relational Operators 
	Logical Operators 
	 
	 
	 
	 
	Assignment Operators 
	Miscellaneous Operators 

	7.​R – Decision making 
	 R - If Statement​ 
	Syntax 
	Flow Diagram 

	R – If...Else Statement 
	Syntax 
	Flow Diagram 

	 The if...else if...else Statement​ 
	Syntax 
	Example 

	R – Switch Statement 
	Syntax 
	Flow Diagram 

	R - Repeat Loop 
	Syntax 
	Flow Diagram 

	R - While Loop 
	Syntax 
	Flow Diagram 
	Example 

	 R – For Loop​ 
	Syntax 
	Flow Diagram 
	Example 

	Loop Control Statements 
	 R – Break Statement​ 
	Syntax 
	Flow Diagram 

	R – Next Statement 
	Syntax 
	Flow Diagram 

	 Function Definition​ 
	Function Components 
	 Built-in Function​ 
	User-defined Function 
	Calling a Function 
	Calling a Function without an Argument 
	Calling a Function with Argument Values (by position and by name) 
	Calling a Function with Default Argument 

	Lazy Evaluation of Function 
	 Rules Applied in String Construction​ 
	Examples of Valid Strings 
	Examples of Invalid Strings 

	String Manipulation 
	Concatenating Strings - paste() function 
	Syntax 
	Example 

	Formatting numbers & strings - format() function 
	Syntax 
	Example 

	Counting number of characters in a string - ncahr() function 
	Syntax 
	Example 

	Changing the case - toupper() & tolower() functions 
	Syntax 
	Example 

	Extracting parts of a string - substring() function 
	Syntax 
	Example 


	 Vector Creation​ 
	Single Element Vector 
	Multiple Elements Vector 
	Using sequence (Seq.) operator 
	Using the c() function 

	Accessing Vector Elements 
	Vector Manipulation 
	Vector Arithmetic 
	Vector Element Recycling 
	Vector Element Sorting 



