Auditing the Ask Astro LLM Q&A app

Today, we present the second of our open-source Al security audits: a look at security issues we
found in an open-source retrieval augmented generation (RAG) application that could lead to
chatbot output poisoning, inaccurate document ingestion, and potential denial of service. This
audit follows up on our previous work that identified 11 security vulnerabilities in YOLOV7, a
popular computer vision framework.

Specifically, we found four issues in Ask Astro, a retrieval augmented generation (RAG)
open-source chatbot application modeled after Venture Capital firm A16Z’s reference
architecture for RAG applications. RAG is one of the most effective techniques for enhancing a
large language model (LLM) with information not contained in its training data set using a
context knowledge base.

In this blog post, we review the RAG architecture as deployed in Ask Astro and then dive deeply
into our technical findings, which can be classified along two high-level streams:

e Architectural issues: Lack of manual moderation or document deletion capability allows
attackers to poison the chatbot’s output with harmful information, echoing recent

academic literature, most notably Carlini et al. (2023).

e Implementation faults: multiple implementation bugs could compromise the accuracy of
document ingestion (Split-view poisoning through GitHub Issues, GraphQL injection in
Weavite client) or threaten financial denial of service (prompt injection in question
expansion prompt).

To conclude, we provide several best practices that can help RAG deployments avoid issues
like these. If your project could use a similar checkup, please contact us.

Quick navigation links:

About Ask Astro
Document ingestion
Answer generation
The limitations of RAG in adversarial settings
Findings
[TOB-ASTRO-0001] Data poisoning through source material deletion
[TOB-ASTRO-0002] Split-view poisoning through GitHub issues
[TOB-ASTRO-0003] GraphQL injection in Weaviate client
[TOB-ASTRO-0004] Prompt injection in question expansion prompt
Best practices for RAG (or: how to turn RAGs into riches)
Getting More Help

https://blog.trailofbits.com/2023/11/15/assessing-the-security-posture-of-a-widely-used-vision-model-yolov7/
https://github.com/astronomer/ask-astro
https://a16z.com/emerging-architectures-for-llm-applications/
https://a16z.com/emerging-architectures-for-llm-applications/
https://arxiv.org/pdf/2302.10149.pdf
https://www.trailofbits.com/contact/

About Ask Astro

Ask Astro is an open-source chatbot that provides technical support for Astronomer, an
orchestration tool for Apache Airflow workflows. It is fully automated and requires no
administration or management after deployment.

There are two primary reasons why Ask Astro was a good candidate for this type of audit. First,
the project is actively maintained and has a high-quality codebase and sophisticated design that
demonstrates what developers can achieve using a modern ML development stack.
Considerable effort has also been undertaken to create clear documentation and write
automated tests.

Second, the project’s primary purpose is as a community education tool. It is structured and
documented as a RAG reference implementation and advertises its adherence to A16Z’s
reference architecture for RAG applications. Moreover, its implementation uses a representative
sample of popular tools for constructing RAG applications:

Weaviate, a vector database that stores document embeddings;
Langchain, a Python-based framework for LLM programming; and
Apache Airflow, a workflow orchestration system used in Ask Astro to manage document

retrieval and processing.

Ask Astro will likely be a starting point for many new RAG developers. Thus, many other RAG
applications will likely follow a similar design and encounter the same challenges as Ask Astro.

The application has a relatively narrow attack surface. It comprises the two main workflows
diagrammed in Figure 1: document ingestion and generating responses to user questions.

https://github.com/astronomer/ask-astro
https://a16z.com/emerging-architectures-for-llm-applications/
https://a16z.com/emerging-architectures-for-llm-applications/
https://weaviate.io/
https://www.langchain.com/
https://airflow.apache.org/

AskAstro
API

Server

Retreive Documents
(Cosine Similiarity Search)

Weaviate Vector
Database

—Reword Prompt for Document Retreival—

N—Filter Irrelevant Retrieved Documents—,

“—QObtain Final Chat Response—

Save Documents and Embeddings

Ingestion

Convert Text to Embedding

Workflows

Ingest Text and Code

OpenAl
Models

Github
and

Discussion
Sites

Documentation StackOverflow

Figure 1: Ask Astro data flow diagram

Document ingestion

Ask Astro uses a series of Apache Airflow workflows triggered through Astronomer to ingest

documents from the following sources:

e Official documentation for Apache Airflow, the Astronomer CLI, the Astronomer Cosmos,
and the Astronomer SDK
The official Astronomer blog
Python source code for contributions to the Astronomer Registry, which contains
user-submitted workflow components for Astronomer and Airflow
Documentation in two GitHub repositories from the OpenLineage project
GitHub issues for the Apache Airflow repository
StackOverflow threads with the airflow tag

After downloading the source material over HTTPS, Ask Astro pushes it into Weaviate, an
open-source vector database. During this step, Weaviate makes an API call to OpenAl to
convert the document text into an embedding, which Weaviate saves locally.

Answer generation

When a user submits a question through the API, Ask Astro undertakes a multi-step process to
retrieve relevant documents and generate an answer. This process begins by asking the LLM to
generate two reworded versions of the original question to aid in retrieving relevant documents
from the vector database. These questions are forwarded to Weaviate, which uses a cosine
similarity search to retrieve the most relevant documents. Ask Astro then invokes the Cohere
Reranker API, a well-known LLM provider, to rerank these documents according to their
relevance to the user’s original question. An LLM filter then removes documents the model
evaluates as irrelevant to the user’s question. Finally, the LLM generates a user-facing answer,
with the final list of documents packaged into the question’s context window.

The limitations of RAG in adversarial settings

RAG is a powerful way to make LLMs more knowledgeable and more responsive to the needs
of a business and its customers. RAG systems also suffer the same well-known flaws as LLMs,
such as prompt injection and hallucinations. Additionally, RAG systems depend on the reliability
of inputs placed into the vector database. In most non-trivial applications, such as Ask Astro, the
documents used to augment the LLM’s knowledge base include untrusted documents. The
ability to include untrusted documents is not an aberration but a desired feature: people want to
do RAG over websites, comments, and user-supplied documents.

Due to fundamental undecidability results, it is impossible for an automated algorithm to
flawlessly determine whether a forum post or GitHub comment contains misleading information
or is otherwise malicious. Any sufficiently useful RAG system will inevitably index misleading or
malicious content.

Academic research on poisoning attacks against hundreds of millions of image-text pairs shows
this issue is significant. Many RAG applications use far smaller data sets as input to their vector
databases, making poisoning attacks against vector databases economically viable.

https://python.langchain.com/docs/integrations/retrievers/cohere-reranker
https://docs.cohere.com/docs/reranking
https://docs.cohere.com/docs/reranking
https://arxiv.org/pdf/2302.10149.pdf

Our audit of Ask Astro illustrates how these risks can manifest in practice. We show that
attackers can manipulate the application’s knowledge base in ways that parallel the two types of
poisoning attacks described in Poisoning Web-Scale Training Datasets is Practical by Carlini et
al., namely front-running and split-view poisoning:
e Split-view poisoning attacks exploit the mutability of data hosted on the Web by altering
a resource in place after the curator or system designer has chosen to introduce it into
the system’s knowledge base.
e In contrast, front-running poisoning occurs when an attacker with knowledge of the data
ingestion schedule posts malicious content just before an ingestion run, only to delete it
immediately after ingestion completes.

Findings

[TOB-ASTRO-0001] Data poisoning through source material
deletion

Severity: High

Impact: Vector database poisoning leads to inaccurate or malicious answers that are difficult to
detect absent manual database review

Scenario: An attacker uses a set of sock puppet accounts to post a complete discussion thread
on a community forum just before the system starts an ingestion run. After the ingestion run is
complete, the attacker deletes the thread, hiding it from forum moderators. Without any
consistent process for propagating source material deletion to the vector database, an attacker
who knows the interval at which new documents are ingested can trivially inject arbitrary text
into the knowledge base.

Discussion: The absence of any resource deletion check creates a ready-made opportunity for
front-running. As implemented, Ask Astro has no safeguards to address inaccurate information
in ingested resources and lacks facilities for deleting inaccurate or sensitive documents. The
only exception is that Stack Overflow answers with a score of zero or lower are skipped.
Community discussions, GitHub issue comments, and source code in the Astronomer Registry
are treated as sources of truth no less authoritative than official documentation.

This finding is attributable mainly to Ask Astro’s nature as a reference implementation.
Understandably, a project of this type would not implement the data moderation processes most
organizations need in a production setting.

[TOB-ASTRO-0002] Split-view poisoning through GitHub issues

Severity: Low
Impact: Vector database poisoning via publicly visible source material leads to inaccurate or
malicious answers

https://arxiv.org/pdf/2302.10149.pdf
https://arxiv.org/pdf/2302.10149.pdf

Scenario: An attacker creates new GitHub issues in the AskAstro repository before document
ingestion. When rendered as Markdown, these issues form a forged issues thread with
authoritative authorship. The attacker can then insert inaccurate or malicious knowledge into the
vector database and make it appear to originate from official sources.

Discussion: The document ingestion routines have two bugs in their processing of GitHub
issues. These bugs enable two methods for conducting split-view poisoning attacks against the
vector database. When the GitHub issue ingestion routine runs, issues and their comments are
downloaded via the GitHub APl and concatenated using a rudimentary Markdown template:

issue_markdown_template = dedent(
ISSUE TITLE: {title}
DATE: {date}

BY: {user}
STATE: {state}
{body}
{comments}"""
)
//...
downloaded_docs.append(
{

"docLink": issue.html_url,

"sha": "",

"content": issue_markdown_template.format(
title=issue.title,
date=issue.created_at.strftime("%m-%d-%Y"),
user=issue.user.login,
state=issue.state,
body=issue.body,
comments="\n".join(comments),

))

"docSource": f"{repo_base}/issues",

}

)

Figure 2: Concatenating issues via a Markdown template

The resulting documents are then stripped of boilerplate text using a series of regular
expressions. Several of these regular expressions contain greedy . * sequences used with the
re.DOTALL flag, which makes the dot character class match newlines:

issues_drop_text = [

dedent(

" <A\\!--\r
.*Licensed to the Apache Software Foundation \\(ASF\\) under one.*under the

License\\.\r

__>"""
))
"<!-- Please keep an empty line above the dashes. -->",
"<!I--\r\nThank you.*http://chris.beams.io/posts/git-commit/\r\n-->",
r"*** Add meaningful description above.*newsfragments\)\.",

//...
df = pd.DataFrame(downloaded_docs)

for _text in issues_drop_text:
df["content"] = df["content"].apply(lambda x: re.sub(_text, "", x, flags=re.DOTALL))

Figure 3: Greedy regular expressions match more than they bargained for.

For example, the last regex in the issues_drop_text list will strip any text between the first
occurrence of the substring **~ Add meaningful description above and the /ast
occurrence of the substring newsfragments). Any time a comment thread contains this
boilerplate text, each subsequent commenter can hide the entirety of the preceding thread by
adding a new instance of the ending newsfragments) . delimiter.

Post-processing of issue comments creates a second injection vulnerability that lets attackers
fake entire issue threads. After being rendered using the Markdown template, each issue thread
is saved in the vector database as a single string. The relevant documents are passed into the
LLM’s context during question answering via a LangChain “stuff” chain, which concatenates
relevant documents. Since context is composed of unstructured text, there is no robust way to
separate documents. Thus, attackers can mimic new issue threads by posting issue comments
that mimic Ask Astro’s issue Markdown template.

Note the power of this technique to bypass some of the mitigations developers might use to
distinguish trustworthy data from untrustworthy data. When the document database includes
conversations between different users, a straightforward heuristic for identifying the most
authoritative statements is to look for an email address or username associated with the vendor
that sells the software (Astronomer in the case of Ask Astro). This approach falls apart in the
face of this comment forgery vector. If the attacker can forge entire threads of comments, they
can forge the author information for each comment as well, defeating the often-recommended
mitigation.

This issue has been reported to Astronomer in PR #325 to the ask-astro repository.

[TOB-ASTRO-0003] GraphQL injection in Weaviate client

Severity: Medium

Impact: Retrieval of non-public documents, but only if the Ask Astro vector database shares
infrastructure with a non-public database

Scenario: Weaviate’s GraphQL schema allows attackers to retrieve documents from two
collections in one query. Consider an organization that hosts a public chatbot that draws on
public documents, such as API reference material, and an internal chatbot that uses sensitive,
private information. An attacker knows this and constructs a specially crafted query against the
public-facing chatbot to leak sensitive documents only available internally.

https://js.langchain.com/docs/modules/chains/document/stuff
https://github.com/astronomer/ask-astro/pull/325
https://github.com/astronomer/ask-astro/

Discussion: The Ask Astro API server uses version 3 of the Weaviate Python client library. All
v3 releases of weaviate-client have a bug in the sanitize str function used to escape
parameters to GraphQL queries. Unescaped quotation marks are prefaced with a backslash,
and quotation marks that appear to be already escaped are left alone. The following regular
expression implements this functionality:

value = re.sub(r'(2<I\\)"', "\\"', value)

The regex treats any quotation mark preceded by a backslash as adequately escaped. This
logic mishandles cases where multiple consecutive backslashes precede a quotation mark.
Input containing the substring \\" is not transformed because the look-behind assertion fails. In
reality, the substring \\" is not an escaped quotation mark, but rather an escaped backslash
followed by an unescaped quotation mark. Interpolating this value directly into a quoted string in
a GraphQL query will terminate the string, causing the server to interpret what follows not as
part of a string literal, but as query syntax.

Since many applications, including Ask Astro, pass untrusted user input into Weaviate filters,
this bug creates a viable injection attack, albeit one with somewhat limited utility. Weaviate’s
GraphQL schema does not define any mutations—that is, a client can only read data, not write
it—so an exploit could not alter the vector database. GraphQL allows clients to combine multiple
operations in one request by concatenating them, much like stacked SQL queries, but this
technique is not usable against the Weaviate client. The first GraphQL operation generated by
the client is anonymous, meaning it does not specify a query name. The GraphQL server cannot
combine an anonymous operation with other operations and will reject any GraphQL request
containing an anonymous query and any second operation. However, Weaviate’s GraphQL
schema allows attackers to retrieve documents from two collections in one query, creating a
potential data leakage vulnerability.

This finding has been reported as issue #954 in the weaviate-python-client repository on
GitHub.

[TOB-ASTRO-0004] Prompt injection in question expansion
prompt

Severity: Low

Impact: Excessive resource consumption or financial denial-of-service

Scenario: The first step in answering a question is for GPT-3.5 Turbo to provide two alternate
phrasings of the same question. Using prompt injection techniques, the attacker can submit a
question that causes the model to generate more than two questions or even reply with an
arbitrary string. Attacker-influenced queries could cause the model to produce an inordinately
large amount of output in the rewording step, contributing to a denial of service.

Discussion: Finally, we arrive at prompt injection, the most frequently discussed class of LLM
bugs. Blocking undesirable classes of LLM output is undecidable and, therefore, unsolvable in

https://github.com/weaviate/weaviate-python-client/issues/954
https://github.com/weaviate/weaviate-python-client/issues/954
https://github.com/weaviate/weaviate-python-client/issues/954
https://github.com/weaviate/weaviate-python-client

the general case (Glukhov et al. (2023)). Thus, defenses against prompt injection are
fundamentally imperfect and prompt injections are bound to happen.

The impact is minimal in this case because the resulting reworded questions aid in retrieving
documents from the vector database, not in the final request that answers the user’s question.
Unlike the previous bugs, this attack cannot be used to solicit false answers from the chatbot.
Ask Astro uses the less-expensive GPT-3.5 Turbo for question rewording, reducing this issue's
financial impact. However, if a single OpenAl API key grants permissions for both models, that
key could still trip a global resource limit, thereby shutting down the entire account. Further,
Astronomer.io informed us they use various rate limiting and anti-DDoS measures in production;
We recommend similar measures for production deployments.

Going from RAGs to riches

The core challenge of any successful RAG deployment is ensuring the integrity of information
introduced into the vector database. Ask Astro ingests data from multiple sources that an
attacker could poison with false information. The lack of ongoing integrity verification processes
makes it likely that poisoned data would remain in the database even if the original forum post
or GitHub issue were deleted.

To address this challenge, we recommend the following best practices:

e Any RAG application will need tools and processes to audit and maintain the
vector database. Proper audit and moderation tools will help mitigate the data
poisoning risk and aid debugging and evaluation. \Whenever a content moderator
deletes an untrusted web source, an automated process should promptly delete it from
the database. All updates to content sources, whether trusted or untrusted, should also
propagate to the vector database.

e Simply synchronizing the vector database with the underlying live web resources is
insufficient. A developer should not offload the responsibility for the vector database’s
accuracy onto forum moderators and other third parties, since those actors may not have
the same goals and motivations as the RAG developers. Therefore, humans must
conduct an ongoing review of the vector database for inaccurate or irrelevant
content. The data review system should track actions taken by human moderators in the
data set’s provenance and lineage records.

e Ask Astro’s GitHub issue processing bug demonstrates that a RAG system’s data
ingestion process is another potential source of bugs that could affect the quality of the
system’s output. Each text parsing or data processing step should be carefully
tested with inputs that include a mix of real-world data, edge cases, and simulated
attack payloads.

e Finally, the GraphQL injection bug in the Weaviate library illustrates one of the essential
principles in application security: every interface between two system components

https://arxiv.org/abs/2307.10719

carries a set of potential attack vectors that must be understood and mitigated.
Moreover, the analysis of these attack vectors must be context-specific. For example,
recall that the impact of the GraphQL injection bug depends on what data is stored in the
same Weaviate deployment as Ask Astro’s vector database. Thus, thorough threat
modeling is an indispensable step for a machine learning application with as
many moving parts as a RAG chatbot.

Getting help

If your organization is designing or building a machine learning system that uses RAG or any
other specialized methodology, our security engineers can help with threat modeling, design and
infrastructure review, code review, fuzzing, and more. We specialize in the unique intersection of
application security and machine learning to provide a holistic security evaluation of your
applications. Contact us to see if we’re a good fit for you.

https://www.trailofbits.com/contact/

	Auditing the Ask Astro LLM Q&A app
	About Ask Astro
	Document ingestion
	Answer generation

	The limitations of RAG in adversarial settings
	Findings
	[TOB-ASTRO-0001] Data poisoning through source material deletion
	[TOB-ASTRO-0002] Split-view poisoning through GitHub issues
	[TOB-ASTRO-0003] GraphQL injection in Weaviate client
	[TOB-ASTRO-0004] Prompt injection in question expansion prompt

	Going from RAGs to riches
	Getting help

