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POWER SYSTEM ANALYSIS
SYLLABUS

UNIT I:

POWER SYSTEM NETWORK MATRICES: Bus Incidence Matrix, Y-bus formation by Direct
and Singular Transformation Methods, Numerical Problems.

FORMATION OF Z-BUS: Partial network, Algorithm for the Modification of Z Bus Matrix for
addition element for the following cases: Addition of element from a new bus to reference, Addition
of element from a new bus to an old bus, Addition of element between an old bus to reference and
addition of element between two old buses (Derivations and Numerical Problems) - Modification of
Z Bus for the changes in network (Numerical Problems).

UNIT II:

POWER FLOW STUDIES - I: Necessity of Power Flow Studies— Data for Power Flow Studies —
Derivation of Static load flow equations. Load Flow Solutions Using Gauss Seidel Method:
Acceleration Factor, Load flow solution with and without P-V buses, Algorithm and Flowchart.
Numerical Load flow Solution for Simple Power Systems (Max. 3-Buses): Determination of Bus
Voltages, Injected Active and Reactive Powers (Sample One Iteration only) and finding Line
Flows/Losses for the given Bus Voltages.

UNIT III:
POWER FLOW STUDIES - II: Newton Raphson Method: Load Flow Solution with or without PV

Buses- Derivation of Jacobian Elements, Algorithm and Flowchart. Decoupled and Fast Decoupled
Methods. Comparison of Different Methods — DC load Flow.

UNIT IV:

SHORT CIRCUIT ANALYSIS - I: Per-Unit system of representation, Per-unit equivalent
reactance network of a three phase power system, Numerical Problems. Symmetrical Fault Analysis:
Short Circuit Current and MVA Calculations, Fault levels. Symmetrical Component Theory:
Symmetrical Component Transformation, Positive, Negative and Zero sequence components:
Voltages, Currents and Impedances. Sequence Networks: Positive, Negative and Zero sequence
Networks, Numerical Problems

UNIT V:

SHORT CIRCUIT ANALYSIS -II: Unsymmetrical Fault Analysis: LG, LL, LLG faults with and
without fault impedance, Numerical Problems.

STABILITY ANALYSIS: Derivation of Swing Equation, Determination of Transient Stability by
Equal Area Criterion and its applications. Methods to improve transient Stability. (Qualitative
Treatment only)

TEXT BOOKS:

1. Power system Analysis Operation and control, Abhijit Chakrabarthi, Sunita Haldar, 3rd
edition, PHI,2010.

2. Modern Power system Analysis — by [.J.Nagrath & D.P.Kothari: Tata McGraw-Hill
Publishing Company, 2nd edition.

3. Electrical power systems - by C.L. Wadhwa, New Age International (P) Limited, Publishers, 1998.
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COURSE OUTCOMES:

After this course, the student will be able to
Develop the Y bus and Z bus matrices

Develop load flow programs

Understand the importance of short circuit studies
Understand stability and instability power systems
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UNIT-1 POWER SYSTEM NETWORK MATRICES
1. FORMATION OF Ysus AND Zsus

The bus admittance matrix, YBUS plays a very important role in computer aided power
system analysis. It can be formed in practice by either of the methods as under:

1. Rule of Inspection

2. Singular Transformation

3. Non-Singular Transformation

4. ZBUS Building Algorithms, etc.

The performance equations of a given power system can be considered in three different
frames of reference as discussed below:

Frames of Reference:

Bus Frame of Reference: There are b independent equations (b = no. of buses) relating the bus
vectors of currents and voltages through the bus impedance matrix and bus admittance matrix:

EBUS =ZBUS IBUS IBUS =

YBUS EBUS

Branch Frame of Reference: There are b independent equations (b = no. of branches of a
selected Tree sub-graph of the system Graph) relating the branch vectors of currents and
voltages through the branch impedance matrix and branch admittance matrix:

EBR =ZBR IBR IBR =

YBR EBR

Loop Frame of Reference: There are b independent equations (b = no. of branches of a
selected Tree sub-graph of the system Graph) relating the branch vectors of currents and
voltages through the branch impedance matrix and branch admittance matrix:

ELOOP = ZLOOP ILOOP
ILOOP = YLOOP ELOOP

Of the various network matrices refered above, the bus admittance matrix (YBUS) and the
bus impedance matrix (ZBUS) are determined for a given power system by the rule of
inspection as explained next.

Rule of Inspection

Consider the 3-node admittance network as shown in figure5. Using the basic branch
relation: [ = (Y'V), for all the elemental currents and applying Kirchhoff*s Current Law
principle at the nodal points, we get the relations as under:

Atnode 1: 11 =Y1V1 + Y3 (V1-V3) + Y6 (V1 — V2) At
node 2: 12 =Y2V2 + Y5 (V2-V3) + Y6 (V2 — V1)

Atnode 3: 0= Y3 (V3-V1) + Y4V3 + Y5 (V3 — V2) (12)
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Fig. 3 Example System for finding YBUS

These are the performance equations of the given network in admittance form and they
can be represented in matrix form as:

I| = {Y1+Y3 +Y.§,} ‘Yf, -Y'_a V|
I, = -Yeq (Yo4+Ys5+4Ye) -Ys Va
0 = -Y; -Y5 {Yj +Y4+Y5s) Vs (13)

In other words, the relation of equation (9) can be represented in the form
IBUS = YBUS EBUS (14)

Where, YBUS is the bus admittance matrix, IBUS & EBUS are the bus current and bus
voltage vectors respectively. By observing the elements of the bus admittance matrix, YBUS
of equation (13), it is observed that the matrix elements can as well be obtained by a simple
inspection of the given system diagram:

Diagonal elements: A diagonal element (Yii) of the bus admittance matrix, YBUS, is equal to
the sum total of the admittance values of all the elements incident at the bus/node 1,

Off Diagonal elements: An off-diagonal element (Yij) of the bus admittance matrix, YBUS, is
equal to the negative of the admittance value of the connecting element present between the
buses I and j, if any. This is the principle of the rule of inspection. Thus the algorithmic
equations for the rule of inspection are obtained as:

Yii =S yij j= 1,2,.......n)
Yij=-vyij (= 1,2,.......n) (15)

For i = 1,2,....n, n = no. of buses of the given system, yij is the admittance of element
connected between buses i and j and yii is the admittance of element connected between bus i
and ground (reference bus).
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Bus impedance matrix

In cases where, the bus impedance matrix is also required, it cannot be formed by direct
inspection of the given system diagram. However, the bus admittance matrix determined by
the rule of inspection following the steps explained above, can be inverted to obtain the bus
impedance matrix, since the two matrices are interinvertible.

Note: It is to be noted that the rule of inspection can be applied only to those power systems
that do not have any mutually coupled elements.

Examples on Rule of Inspection:

Example 6: Obtain the bus admittance matrix for the admittance network shown aside by the
rule of inspection

16 -8 -4 A B @ "@ - v
Ypus=j|-8 24 -8 ie C\f‘iﬁﬁf’*{}“’)
4 -8 16
o
d<__ 3 © s >
4\-&& b 71

Example 7: Obtain YBUS for the impedance network shown aside by the rule of inspection.
Also, determine YBUS for the reduced network after eliminating the eligible unwanted node.
Draw the resulting reduced system diagram.

ﬁ:m s @&
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Ygus=j| 5 -16 10 él 2 & 5“’ k-i S
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New i |
Yeus =Ya-YgYp Ye

Yaus=j

-8.66 7.86
7.86 -8.66

SINGULAR TRANSFORMATIONS

The primitive network matrices are the most basic matrices and depend purely on the
impedance or admittance of the individual elements. However, they do not contain any
information about the behaviour of the interconnected network variables. Hence, it is
necessary to transform the primitive matrices into more meaningful matrices which can relate
variables of the interconnected network.
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Bus admittance matrix, YBUS and Bus impedance matrix, ZBUS

In the bus frame of reference, the performance of the interconnected network is described by
n independent nodal equations, where n is the total number of buses (n+1nodes are present,
out of which one of them is designated as the reference node).

For example a 5-bus system will have 5 external buses and 1 ground/ ref. bus). The
performance equation relating the bus voltages to bus current injections in bus frame of
reference in admittance form is given by

IBUS = YBUS EBUS (17)
Where EBUS = vector of bus voltages measured with respect to reference bus IBUS

= Vector of currents injected into the bus

YBUS = bus admittance matrix
The performance equation of the primitive network in admittance form is given by i1 +

j=1[ylv
Pre-multiplying by At (transpose of A), we obtain

Ati+Atj=At[y]v (18)
However, as per equation (4),

Ati=0,
since it indicates a vector whose elements are the algebraic sum of element currents incident
at a bus, which by Kirchhoffs law is zero. Similarly, At j gives the algebraic sum of all
source currents incident at each bus and this is nothing but the total current injected at the bus.
Hence,

Atj=1BUS (19)
Thus from (18) we have, IBUS = At [y] v (20)
However, from (5), we have v

=A EBUS

And hence substituting in (20) we get,

IBUS = At [y] A EBUS (21)
Comparing (21) with (17) we obtain,

YBUS = At [y] A (22)
The bus incidence matrix is rectangular and hence singular. Hence, (22) gives a singular
transformation of the primitive admittance matrix [y]. The bus impedance matrix is given by ,

ZBUS = YBUS"! (23)

Note: This transformation can be derived using the concept of power invariance, however,
since the transformations are based purely on KCL and KVL, the transformation will
obviously be power invariant.


mailto:nrihitech@rediffmail.com

NRI INSTITUTE OF TECHNOLOGY
(Approved by AICTE - New Delhi, Affiliated to JNTUK, Kakinada)
POTHAVARAPPADU-521 212 VIJAYAWADA, Krishna Dist.
Ph : 0866-2469666 Website : nrigroupofcolleges.com
E-mail: nrihitech@rediffmail.com

Examples on Singular Transformation:

Example 8: For the network of Fig E8, form the primitive matrices [z] & [y] and obtain the
bus admittance matrix by singular transformation. Choose a Tree T(1,2,3). The data is given
in Table ES.

e e

£n

[ R

@ i .;":®

Fig E8 System f;r Example-8 Table
Elements | Self impedance | Mutual impedance
1 j0.6 -
2 j 0.5 j 0.1(with element 1)
3 i0.5 .
4 0.4 j 0.2 (with element 1)
5 j0.2 .
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The bus incidence matrix is formed taking node 1 as the reference bus.

—1 0 0]
0 -1 0
A=|0 1 -1
-1 0 0
10 -1}
The primitive incidence matrix is given by
j0.6 jO.1 0.0 jO.2 0.0 ]
jo.1 j0.5 00 0.0 0.0
[z]=| 0.0 0.0 jO.5 0.0 0.0
jo2 0.0 00 jo4 00
0.0 00 00 00 jo.2]
The primitive admittance matrix [y] = [z]-1 and given by,
— j2.0833 jO4167 00  jl.0417 0.0 ]
j0.4167 —j2.0833 0.0 —j0.2083 0.0
lyl=[ 0.0 0.0 — j2.0 0.0 0.0
j1.0417 - j0.2083 0.0 —j3.0208 0.0
0.0 0.0 0.0 0.0 ~ j5.0]
The bus admittance matrix by singular transformation is obtained as
— j8.0208  j0.2083  j5.0
Yaus=A'[y]A = | j0.2083 — j4.0833 2.0
j3.0 j20 = j7.0

j0.2713  j0.1264  j0.2299
j0.1264  j0.3437  jO.1885
j0.2299  j0.1885 j0.3609

-1
ZBUS — YEUS


mailto:nrihitech@rediffmail.com

Power System Analysis

SUMMARY

The formulation of the mathematical model is the first step in obtaining the solution of any
electrical network. The independent wvariables can be either currents or voltages.
Correspondingly, the elements of the coefficient matrix will be impedances or admittances.

Network equations can be formulated for solution of the network using graph theory,
independent of the nature of elements. In the graph of a network, the tree-branches and links
are distinctly identified. The complete information about the interconnection of the network,
with the directions of the currents is contained in the bus incidence matrix.

The information on the nature of the elements which form the interconnected network is
contained in the primitive impedance matrix. A primitive element can be represented in
impedance form or admittance form. In the bus frame of reference, the performance of the
interconnected system is described by (n-1) nodal equations, where 7 is the number of nodes.
The bus admittance matrix and the bus impedance matrix relate the bus voltages and currents.
These matrices can be obtained from the primitive impedance and admittance matrices.

FORMATION OF BUS IMPEDANCE MATRIX
NODE ELIMINATION BY MATRIX ALGEBRA

Nodes can be eliminated by the matrix manipulation of the standard node equations. However,
only those nodes at which current does not enter or leave the network can be considered for
such elimination. Such nodes can be eliminated either in one group or by taking the eligible
nodes one after the other for elimination, as discussed next.

CASE-A: Simultaneous Elimination of Nodes:

Consider the performance equation of the given network in bus frame of reference in
admittance form for a n-bus system, given by:

IBUS = YBUS EBUS 1)

Where IBUS and EBUS are n-vectors of injected bus current and bus voltages and YBUS is
the square, symmetric, coefficient bus admittance matrix of order n. Now, of the n buses
present in the system, let p buses be considered for node elimination so that the reduced
system after elimination of p nodes would be retained with m (= n-p) nodes only. Hence the
corresponding performance equation would be similar to (1) except that the coefficient matrix
would be of order m now, i.e.,

IBUS = YBUS™" EBUS Q)

Where YBUS"Y is the bus admittance matrix of the reduced network and the vectors
IBUS and EBUS are of order m. It is assumed in (1) that IBUS and EBUS are obtained with
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their elements arranged such that the elements associated with p nodes to be eliminated are in
the lower portion of the vectors. Then the elements of YBUS also get located accordingly so
that (1) after matrix partitioning yields,

m P

Isus-m m| Yy Y Egus-m

Igusp |~ ?P| Ye Yp Egus-p

(3)
Where the self and mutual values of YA and YD are those identified only with the nodes to be
retained and removed respectively and YC=YBt is composed of only the corresponding
mutual admittance values, that are common to the nodes m and p.
Now, for the p nodes to be eliminated, it is necessary that, each element of the vector IBUS-p
should be zero. Thus we have from (3):

IBUS-m = YA EBus-m+ YB EBUS-p
IBUS-p = YcEBus-m+ Yp EBUSp=0

(C))

Solving,

Esusp=- YD'Yc EBus-m (5)

Thus, by simplification, we obtain an expression similar to (2) as,

IBus-m= {YA- YBYD-1Yc} EBuUs-m (6)

Thus by comparing (2) and (6), we get an expression for the new bus admittance matrix in
terms of the sub-matrices of the original bus admittance matrix as:

YBusnew= {YA— YBYD-1YC} (7)

This expression enables us to construct the given network with only the necessary nodes
retained and all the unwanted nodes/buses eliminated. However, it can be observed from

(7) that the expression involves finding the inverse of the sub-matrix YD (of order p). This
would be computationally very tedious if p, the nodes to be eliminated is very large,
especially for real practical systems. In such cases, it is more advantageous to eliminate the
unwanted nodes from the given network by considering one node only at a time for
elimination, as discussed next.

CASE-B: Separate Elimination of Nodes:

Here again, the system buses are to be renumbered, if necessary, such that the node to be
removed always happens to be the last numbered one. The sub-matrix YD then would be a
single element matrix and hence it inverse would be just equal to its own reciprocal value.
Thus the generalized algorithmic equation for finding the elements of the new bus admittance
matrix can be obtained from (6) as,

Yij " = Yij ®® - Yin Ynj/ Ynn "ij=12,......n. (8)

Each element of the original matrix must therefore be modified as per (7). Further, this
procedure of eliminating the last numbered node from the given system of n nodes is to be
iteratively repeated p times, so as to eliminate all the unnecessary p nodes from the original
system.
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Examples on Node elimination:

Example-1: Obtain YBUS for the impedance network shown below by the rule of inspection.
Also, determine YBUS for the reduced network after eliminating the eligible unwanted node.
Draw the resulting reduced system diagram.

o @

o

ok v = - . T, Wi
O 9 205 &9,11; @ ko.l &1*@

S v e

The admittance equivalent network is as follows:

The bus admittance matrix is obtained by Rol as:

98 5 4
Yeus=j| 5 -16 10
4 10-14

The reduced matrix after elimination of node 3 from the given system is determined as per the
equation:
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New 7 -1
Yeus = Ya-YsYp Y

n/n ! 2
Vo= 1[-i8.66] j7.86

, | j7.86 | -j8.66

Alternatively,

Yijm*w e Yijuid = Yﬂ YJj fYM Y 1_1 =4 e

Yi=Yu-YiaYa/ Yz =-j8.66
Yo =Y- Yo/ Yiz =-j8.66
Yi2=Y21=Yi2- Y13Y3/Y33 = j7.86

Thus the reduced network can be obtained again by the rule of inspection as shown below.

OISy, NN
L e

W® s -pef P
! .

@

Example-2: Obtain YBUS for the admittance network shown below by the rule of

inspection. Also, determine YBUS for the reduced network after eliminating the eligible
unwanted node. Draw the resulting reduced system diagram.
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11-550] 0 [ j20]j10

Vaus= 2| 0 |960| 0 |J72 | = | Yx Ys

3320 o [-j72] j50 Yc Yp

4§10 | j72 | j50 | -j81

Yaus " = Ya-YgYp 'Y

new _ / -J3212 j10.32

5> | j10.32 | -j51.36
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Thus the reduced system of two nodes can be drawn by the rule of inspection as under:
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ZBUS building

FORMATION OF BUS IMPEDANCE MATRIX

The bus impedance matrix is the inverse of the bus admittance matrix. An alternative method
is possible, based on an algorithm to form the bus impedance matrix directly from system
parameters and the coded bus numbers. The bus impedance matrix is formed adding one
element at a time to a partial network of the given system. The performance equation of the
network in bus frame of reference in impedance form using the currents as independent
variables is given in matrix form by

Ei'm.'i =5 [Z bs :l]_bim { g}

When expanded so as to refer to a n bus system, (9) will be of the form

E,=Z,1,+Z,I,+.... +Zy 1.+ 2,1,

In

kn® n

E =Z 1+Z,1,+...+Z, I +..+Z1I

E =Z 1 +Z ,],+..... +Z I, +...+Z I (10)

nnoon
Now assume that the bus impedance matrix Zbus is known for a partial network of m buses

and a known reference bus. Thus, Zbus of the partial network is of dimension mxm. If now a
new element is added between buses p and ¢ we have the following two possibilities:
(1) p 1s an existing bus in the partial network and ¢ is a new bus; in this case p-q is a

branch added to the p-network as shown in Fig 1a, and
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both p and ¢ are buses existing in the partial network; in this case p-g is a link

(i)
added to the p-network as shown in Fig 1b.

Partial
Network
]} e —
q
ZBUS |
5 || E—
D Ref.

Fig 1a. Addition of branch p-q

-
.
Partial
Network
p 1= 4
ZBUS q —
1) S
| T Rer.

Fig 1b. Addition of link p-q
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If the added element ia a branch, p-q, then the new bus impedance matrix would be of order
m+1, and the analysis is confined to finding only the elements of the new row and column
(corresponding to bus-q) introduced into the original matrix. If the added element ia a link,
p-q, then the new bus impedance matrix will remain unaltered with regard to its order.
However, all the elements of the original matrix are updated to take account of the effect of
the link added.

ADDITION OF A BRANCH

Consider now the performance equation of the network in impedance form with the added
branch p-q, given by

Et _Zn Zaz Zip Zlm Zlq“‘r[_

E, Zzt Zz: Z]p sz 2g I:

E, =20 Zsp = Zy ~ g Zylls (11)
Em Zm] Zml o Zmp T me qu Im

E‘J 1] _Zqi Z:}'E Zrﬂl qu” Z‘-’)"’i"__fq_

It is assumed that the added branch p-q 1s mutually coupled with some elements of the partial
network and since the network has bilateral passive elements only, we have

Vector ypq-rs is not equal to zero and Zij= Zji " 1,j=1,2,...m,q
(12)

To find Zqi:

The elements of last row-q and last column-q are determined by injecting a current of 1.0 pu
at the bus-i and measuring the voltage of the bus-q with respect to the reference bus-0, as
shown in Fig.2. Since all other bus currents are zero, we have from (11) that

Ek=Zkili=Zki"k=1,2,...1 p,....m, q
(13)
Hence, Eq=Zqi; Ep="Zpi.........

Also, Eq=Ep -vpq ; so that Zqi =Zpi - vpq "1=1, 2,...1....... p,....m, q
(14)

To find vpq:

In terms of the primitive admittances and voltages across the elements, the current through the
elements is given by
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Uog |_| Yrapg  Ypars | Vog
il T = =y = [15}
ry -" r&pq -" FsFs Ilf'.f
1 e
o
Partial
Network
V
-+ L |
]]' - -
q
i
ZBUS
Li=Ipu
I —

0O | I Ref.

Fig.2 Calculation for Zqi
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where i is current through element p-g
i _is vector of currents through elements of the partial network
v, I8 voltage across element p-q
Y pg.pg 18 S — admittance of the added element

Y 5018 the vector of mutual admittances between the added elements p-¢ and

elements r-s of the partial network.

v_is vector of voltage across elements of partial network.
Vs pg 18 lraNSpOSC OF y . .

Y. 18 the primitive admittance of partial network.

Since the current in the added branch p-q, is zero, i, =0. We thus have from (15),

IP‘E’ s yP‘E':P‘?vaE & yPQ‘JSv”
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Voisc?
Solving, v, =-—"——  or
yP‘lP‘T
VounlE: ~E.)
qu s PR § [17)
Y pa.pq

Using (13) and (17) in (14), we get

i=12...mi%q (18)

To find zqq:

The element Zy, can be computed by injecting a current of Ipu at bus-q. I; = 1.0 pu.
As before, we have the relations as under:

Bp=Zy li= 2 V k=1, 2l (19)
Hence, Eq=Zy; Ey=7Zy : Also, Eg=E, - vpq; 80 that Zyg = Zyg - Vi (20)

Since now the current in the added element is i, =—1,=-10, we have from (15)

ipq = YogpdVpe T ypq‘rsl_;rs =-1
y .V
Solving, v, =-1 +_y il
Y pa.r
y..\E ~E
v :_]+)P‘-’!-?’5[ ! j] (2])
4 :
J-ré’tiu‘:"}'
Using (19) and (21) in (20), we get
[+ }pq'.rs (frq _"qu]
Zyy=Lyt (22)
y?‘?-P@'

Special Cases
The following special cases of analysis concerning ZBUS building can be considered with
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respect to the addition of branch to a p-network.
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Case (a): If there is no mutual coupling then elements of y - are zero. Further. if p
is the reference node. then E=0. thus,

Zi=0 3= 2o AR
And L=,
Hence. from (18) (22) L =1 =12 050 £
And 2 =% v (23)

Case (b): If there is no mutual coupling and if p is not the ref. bus, then, from (18)

and (22). we again have,

== i 24
fo‘! Z.Dq * Zpg.pg (24)

ADDITION OF A LINK

Consider now the performance equation of the network in impedance form with the added
link p-1, (p-1 being a fictitious branch and 1 being a fictitious node) given by

EE Z[] le le ZEm Ziq__IE_
Ez Z:l Zzz Z'zp sz qu 12
EF' = Z.FI ZPE ZPP me ZP*? I.P (25)
"m Zm! Zml = mp wEE i mg m
_E; i _Zu ij Zu Zrm ZH__IF_

It is assumed that the added branch p-¢q is mutually coupled with some elements of the partial
network and since the network has bilateral passive elements only, we have

Vector ypq. is not equal to zero and Z;=7Z; vV ij=1.2...m.L (26)

To find Zli:

The elements of last row-1 and last column-1 are determined by injecting a current of 1.0 pu at
the bus-1 and measuring the voltage of the bus-q with respect to the reference bus-0, as shown
in Fig.3. Further, the current in the added element is made zero by connecting a voltage
source, el in series with element p-q, as shown. Since all other bus currents are zero, we have
from (25) that
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Be=Zu b=T4 ¥ k= 121p,ml (27)

Hence, e;=Ei=Z; . Ey=2Zp:  Ep=2Z oonon..

So that Zy = Zpi- Zgi- Vpq V i=1.2,...000.p5...Q,. .. m, # (28)
To find vpq:

In terms of the primitive admittances and voltages across the elements, the current through
the elements is given by

I’PJ, g }:D;‘pj )'?pf.rs "’p.f
= 1 v = (29)
'frs Yrspl ."r:‘;rs 1:‘5
;=
. 00
Partial
Network p
Vp]
| €]
i
ZBUS
IE:lpu
0 — T Ref.

Fig.3 Calculation for Z
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where i, is current through element p-g

i is vector of currents through elements of the partial network

v, 1s voltage across element p-q

¥ i 18 self — admittance of the added element

¥ oi.rs 18 the vector of mutual admittances between the added elements p-g and

elements r-s of the partial network.

v . is vector of voltage across elements of partial network.

Yys.p 18 transpose of y,; ..

¥, 18 the primitive admittance of partial network.

Since the current in the added branch p-1, is zero, i, = 0. We thus have from (29),

Ipf = yp."pfvpl + ypf,rsvrs =1

N yp!. rs vrs

¥ pl.pl

Solving, v, = or

= ypf,r_v (Er = ESJ

yphp.i

However,

yp!.rs = ypq..n‘

And Yoioi =Y pgoa

Using (27), (31) and (32) in (28), we get

Zy=Z,—Z;+ ypq’”}[’znl — Zﬂ-}

ol

= 120md ]

(30)

(31)
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To find Z:

The element Zy can be computed by injecting a current of 1pu at bus-1, I} = 1.0 pu. As
before, we have the relations as under:

Ei=Zuli=Zy LA ) W T - N | | (34)
Hence, e;=Ei=Zy; Ey=2Z, .

Also, e =E;-Eq-vp:

So that Zy =Zp-Lg-Vp Vi=12...0....p,..q,...m, #l (35)

Since now the current in the added element is iy, =—1, =—10, we have from (29)

!.pi’ = yp."__p!vpf 2a F_1;!1_7'51‘7:'.5' =-1
Vgl
Solving, v, =-1 Jr—}”j‘”r L
ypn’_p.i'
Yourl\E —E
vp}:_l_'_/pf_rs( 7 s) (36}
ypi,pf
However,
gp!.rs = §pq,n'
And R, S (37)
Using (34), (36) and (37) in (35), we get
1+y, \Z,~Z
ZH — ZP{ _qu i - pq.m( rl :!) (38)
y?‘?-P‘i"

Special Cases Contd....

The following special cases of analysis concerning Zgys building can be considered
with respect to the addition of link to a p-network.

Case (c): If there is no mutual coupling. then elements of y are zero. Further, if p
is the reference node. then E =0. thus,

=t =12, miel

(39)

Ly =Ly ln.5
From (39), it is thus observed that, when a link is added to a ref. bus, then the situation is
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similar to adding a branch to a fictitious bus and hence the following steps are followed:
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1. The element is added similar to addition of a branch (case-b) to obtain the new
matrix of order m+1.
2. The extra fictitious node, 1 is eliminated using the node elimination algorithm.

Case (d): If there is no mutual coupling, then elements of pq rs y , are zero. Further, if p is not
the reference node, then

Ty =Ty

Zn=Zp— Zqg — Zpapq
= Lop+ Lgq— 2 Zpg+ Zpgpq (40)

MODIFICATION OF ZBUS FOR NETWORK CHANGES

An element which is not coupled to any other element can be removed easily. The Zbus is
modified as explained in sections above, by adding in parallel with the element (to be
removed), a link whose impedance is equal to the negative of the impedance of the element to
be removed. Similarly, the impedance value of an element which is not coupled to any other
element can be changed easily. The Zbus is modified again as explained in sections above, by
adding in parallel with the element (whose impedance is to be changed), a link element of
impedance value chosen such that the parallel equivalent impedance is equal to the desired
value of impedance. When mutually coupled elements are removed, the Zbus is modified by
introducing appropriate changes in the bus currents of the original network to reflect the
changes introduced due to the removal of the elements.

Examples on ZBUS building

Example 1: For the positive sequence network data shown in table below, obtain ZBUS by
building procedure.

; Pos. seq.
S No. P9 reactance
(nodes) .
in pu
| 0-1 0.25
£ 0-3 0.20
3 1-2 0.08
4 a3 0.06

Solution:
The given network is as shown below with the data marked on it. Assume the elements to be
added as per the given sequence: 0-1, 0-3, 1-2, and 2-3.
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@ 0._(:6 @

0.20

O s @

Fig. E1: Example System

Consider building ZBUS as per the various stages of building through the consideration of
the corresponding partial networks as under:

Step-1: Add element—1 of impedance 0.25 pu from the external node-1 (q=1) to internal ref.
node-0 (p=0). (Case-a), as shown in the partial network;

0.08

[
Ll

P-networl:

Zrus =[] 0.25

©

1
Z[-:[';\IIJ= | 0.25

Step-2: Add element-2 of impedance 0.2 pu from the external node-3 (q=3) to internal ref.
node-0 (p=0). (Case-a), as shown in the partial network;




Power System Analysis

P-network @

ZBUE{U @ 0.2 @

1 3
" 025] 0
Z ; It_fl i 1
Wb 30 |02

Step-3: Add element-3 of impedance 0.08 pu from the external node-2 (q=2) to internal node- 1
(p=1). (Case-b), as shown in the partial network;

P-network 0.08
Zsusm N @
1 3 2
1 (025 O | 0.25
Zeus™'= 3| 0 |02 O
21025 0 |0.33

Step-4: Add element—4 of impedance 0.06 pu between the two internal nodes, node-2 (p=2)
to node-3 (q=3). (Case-d), as shown in the partial network;
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P-network @ 0.06

= | i

Z BUS

1 3 2 !
1]0.25 0 0.25 | 0.25
Z[n'qdj = 3 0 0.2 G -().2
2 | 0.25 0 0.33 | 0.33
¢ 10.25 | -0.2 | 0.33 | 0.59

The fictitious node / is eliminated further to arrive at the final impedance matrix as under:

3 2

1 3 2
0.1441 | 0.0847 | 0.1100
0.0847 ] 0.1322 ] 0.1120
0.1100 | 0.1120 | 0.1454

(final)
Zpus =

(] Fpd —

= |

Zpus =

- | == |-

=N 1 S RE—1 | i} F—3 [t
S| ||
Y =T
WS | ==

tn =9 LF¥] [~ =

(]
=
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@ 1.0 pu @
Zeus® | N
p- Network @

19)

Do

Ref

10}
- @ 1.0 pu @
p- Network @

©
Zpus™ —®—
p- Network @

2.0 pu @
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.
2.0 pu

2.0 pu

20pll

IO
1.0 pu

. 1.0 pu
O

2.0 pu
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Solution: The specified system is considered with the reference node denoted by node-0. By
its inspection, we can obtain the bus impedance matrix by building procedure by following the
steps through the p-networks as under:

Step1: Add branch 1 between node 1 and reference node. (q =1, p=10)

Zpus = ]
p-network o @

1
E;l:ﬂ.w':l:I = 1[J0 l]

Step2: Add branch 2, between node 2 and reference node. (q =2, p =0).

- 10

Zﬂ'ﬂﬁ e —

p-network o @
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1 2

ifjo1 0o
Z.E’wz .
2l 0 jo.15

Step3: Add branch 3, between node 1 andnode 3 (p=1,q=3)

o @
p-network

®

1 2 3
1f/01 0 jO1]
T, =2 0 jO15 O

3[jo1 0 o5

Step 4: Add element 4, which is a link between node 1 and node 2. (p=1,q=2)

3}

D>

p-network

ek
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1 2 3
1| 701 O Jo1
2 O JO.15 o
Loy = . .
31 0.1 O JO.5
iJj01 — 015 O 1

!
701
— jO.15
JO.1
j0.85

Now the extra node-/ has to be eliminated to obtain the new matrix of step-4, using the

algorithmic relation:

Yijlll-}“' — Y'Eju]d L Yi“ Yni f Yn“

1

YWij=1.,2 3

2 £

F0.08823 j0.01765 j0.08823
Zhe =| JO.01765 ;0.12353 j0.01765
FO.08823 j0.01765 j0.48823

Step 5: Add link between node 2 and node 3 (p =2, g=3)

L

-

P-networlk

o138
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Z,=Z, -2, = j0.01765- j0.08823 = — j0.07058
Z,=Z,-Z,=j012353- j001765= j0.10588

Zp=2p—2y=J001765- jO48823 = - j0.47058
Ly=Zy—Zy+tZpy

= j0.10588— (- j0.47058 |+ j0.4 = j0.97646

Thus, the new matrix is as under:

1 2 3 1

1[ j0.08823 j0.01765 j0.08823 - j0.07058]
2| jO.O1765 j0.12353 001765  j0.10588
3| jO.08823 jO.O1765 j0.48823 - j0.47058
[|-j0.07058 j0.10588 - jO.47058 jO.97646

Node [ is eliminated as shown in the previous step:

1 2 3

11 jO.08313 ;jO.02530 ;F0.05421
2y, = 2002530 ;011205 ;006868
31 jO.05421 ;0.06868 ;0.26145

Further, the bus admittance matrix can be obtained by inverting the bus impedance
matrix as under:

1 2 3
1[- j14.1667  jlé667  j25

Y, =207 =2 jl6667 - j108334 2.5
I 25 -j50

As a check, it can be observed that the bus admittance matrix, Ygus can also be
obtained by the rule of inspection to arrive at the same answer.
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UNIT-2

LOAD FLOW STUDIES

REVIEW OF NUMERICAL SOLUTION OF EQUATIONS

The numerical analysis involving the solution of algebraic simultaneous equations forms the
basis for solution of the performance equations in computer aided electrical power system
analyses, such as during linear graph analysis, load flow analysis (nonlinear equations),
transient stability studies (differential equations), etc. Hence, it is necessary to review the
general forms of the various solution methods with respect to all forms of equations, as under:

1. Solution Linear equations:
* Direct methods:

- Cramer*'s (Determinant) Method,
- Gauss Elimination Method (only for smaller systems),
- LU Factorization (more preferred method), etc.

* Jterative methods:
- Gauss Method

- Gauss-Siedel Method (for diagonally dominant systems)

3. Solution of Nonlinear
equations: Iterative methods only:
- Gauss-Siedel Method (for smaller systems)

- Newton-Raphson Method (if corrections for variables are small)

4. Solution of differential
equations: Iterative methods only:
- Euler and Modified Euler method,

- RK I'V-order method,
- Milne*s predictor-corrector method, etc.

It is to be observed that the nonlinear and differential equations can be solved only by the
iterative methods. The iterative methods are characterized by the various performance features
as under:

_ Selection of initial solution/ estimates

_ Determination of fresh/ new estimates during each iteration

_ Selection of number of iterations as per tolerance limit

_ Time per iteration and total time of solution as per the solution method selected
_ Convergence and divergence criteria of the iterative solution

_ Choice of the Acceleration factor of convergence, etc.
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A comparison of the above solution methods is as under:

In general, the direct methods yield exact or accurate solutions. However, they are suited for
only the smaller systems, since otherwise, in large systems, the possible round-off errors make
the solution process inaccurate. The iterative methods are more useful when the diagonal
elements of the coefficient matrix are large in comparison with the off diagonal elements. The
round-off errors in these methods are corrected at the successive steps of the iterative
process.The Newton-Raphson method is very much useful for solution of non —linear
equations, if all the values of the corrections for the unknowns are very small in magnitude
and the initial values of unknowns are selected to be reasonably closer to the exact solution.

LOAD FLOW STUDIES

Introduction: Load flow studies are important in planning and designing future expansion of
power systems. The study gives steady state solutions of the voltages at all the buses, for a
particular load condition. Different steady state solutions can be obtained, for different
operating conditions, to help in planning, design and operation of the power system.
Generally, load flow studies are limited to the transmission system, which involves bulk
power transmission. The load at the buses is assumed to be known. Load flow studies throw
light on some of the important aspects of the system operation, such as: violation of voltage
magnitudes at the buses, overloading of lines, overloading of generators, stability margin
reduction, indicated by power angle differences between buses linked by a line, effect of
contingencies like line voltages, emergency shutdown of generators, etc. Load flow studies
are required for deciding the economic operation of the power system. They are also required
in transient stability studies. Hence, load flow studies play a vital role in power system
studies. Thus the load flow problem consists of finding the power flows (real and reactive)
and voltages of a network for given bus conditions. At each bus, there are four quantities of
interest to be known for further analysis: the real and reactive power, the voltage magnitude
and its phase angle. Because of the nonlinearity of the algebraic equations, describing the
given power system, their solutions are obviously, based on the iterative methods only. The
constraints placed on the load flow solutions could be:

_ The Kirchhoff"s relations holding good,

_ Capability limits of reactive power sources,

_ Tap-setting range of tap-changing transformers,

_ Specified power interchange between interconnected systems,

_ Selection of initial values, acceleration factor, convergence limit, etc.

Classification of buses for LFA: Different types of buses are present based on the
specified and unspecified variables at a given bus as presented in the table below:
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Table 1. Classification of buses for LFA

Sl. Specified | Unspecified
Bus Types J,p . _ . P Remarks
No. Variables variables
1 | Slack/ VI, 8 Pe. Og V|, &: are assumed if not
Swing Bus 4 T specified as 1.0 and 0°
Generator/ A generator is present at the
2 : ,
Machine/ PV Bus Pg. |V Q. 0 machine bus
About 80% buses are of P
3 | Load/ PQ Bus Ps. Qg V], & WP; IR a IE
Voltage "a’ 1S the % tap change in
4 . g . .
Controlled Bus P6.Qc. [V 0, tap-changing transformer

Importance of swing bus: The slack or swing bus is usually a PV-bus with the largest
capacity generator of the given system connected to it. The generator at the swing bus
supplies the power difference between the “specified power into the system at the other buses”
and the “total system output plus losses”. Thus swing bus is needed to supply the additional
real and reactive power to meet the losses. Both the magnitude and phase angle of voltage are
specified at the swing bus, or otherwise, they are assumed to be equal to 1.0

p.u. and 00, as per flat-start procedure of iterative

solutions. The real and reactive powers at the swing bus are found by the computer routine as
part of the load flow solution process. It is to be noted that the source at the swing bus is a
perfect one, called the swing machine, or slack machine. It is voltage regulated, i.e., the
magnitude of voltage fixed. The phase angle is the system reference phase and hence is fixed.
The generator at the swing bus has a torque angle and excitation which vary or swing as the
demand changes. This variation is such as to produce fixed voltage.

Importance of YBUS based LFA:

The majority of load flow programs employ methods using the bus admittance matrix, as this
method is found to be more economical. The bus admittance matrix plays a very important
role in load flow analysis. It is a complex, square and symmetric matrix and hence only
n(n+1)/2 elements of YBUS need to be stored for a n-bus system. Further, in the YBUS
matrix, Yij = 0, if an incident element is not present in the system connecting the buses ,,i*
and ,,j*. since in a large power system, each bus is connected only to a fewer buses through an
incident element, (about 6-8), the coefficient matrix, YBUS of such systems would be highly
sparse, i.e., it will have many zero valued elements in it. This is defined by the sparsity of the
matrix, as under:

: Total no. of zero valued elements of Ygys
Percentage sparsily of a

\ : . th
given matrix of n" order:

Total no. of entries of Ygus

S (Z./ n*) x 100 % (1)

The percentage sparsity of YBus, in practice, could be as high as 80-90%, especially
for very large, practical power systems. This sparsity feature of YBUS is extensively used in
reducing the load flow calculations and in minimizing the memory required to store the
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coefficient matrices. This is due to the fact that only the non-zero elements YBUS can be
stored during the computer based implementation of the schemes, by adopting the suitable
optimal storage schemes. While YBUS is thus highly sparse, it“s inverse, ZBUS, the bus
impedance matrix is not so. It is a FULL matrix, unless the optimal bus ordering schemes are
followed before proceeding for load flow analysis.

THE LOAD FLOW PROBLEM

Here, the analysis is restricted to a balanced three-phase power system, so that the analysis
can be carried out on a single phase basis. The per unit quantities are used for all quantities.
The first step in the analysis is the formulation of suitable equations for the power flows in the
system. The power system is a large interconnected system, where various buses are
connected by transmission lines. At any bus, complex power is injected into the bus by the
generators and complex power is drawn by the loads. Of course at any bus, either one of them
may not be present. The power is transported from one bus to other via the transmission lines.
At any bus i, the complex power Si (injected), shown in figure 1, is defined as

Si = Sgi— Spi (2)

PijQi  PeitiQe:
. L | PoidOnp:
System in o
bus Frame -
of Reference
D
Ref. Bus

Fig.1 power flows at a bus-i

where Si = net complex power injected into bus i, SGi = complex power injected by the
generator at bus i, and SDi = complex power drawn by the load at bus i. According to
conservation of complex power, at any bus 1, the complex power injected into the bus must be
equal to the sum of complex power flows out of the bus via the transmission lines. Hence,

Si= Sij"i=1,2, n

3
where Sij is the sum over all lines connected to the bus and # is the number of buses in the
system (excluding the ground). The bus current injected at the bus-i is defined as

=IGi—IDi"i=1,2, . c....... n @)
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where IGi is the current injected by the generator at the bus and IDi is the current drawn by

the load (demand) at that bus. In the bus frame of reference

IBUS = YBUS VBUS

)]
where
i
I,
Igus= | . is the vector of currents injected at the buses,
_I” i

Ygus 1s the bus admittance matrix, and

V
v,

Veus = | . is the vector of complex bus voltages.

v

n

Equation (5) can be considered as
=2 YV, ¥ i= Lesanan n
i=1

The complex power §; is given by

Si':V'l I:
= Vi [ZY:J V;‘]
=1

( n
=¥y [ZYJVF]
=1 :

Let V!.A=|V,.|£ d, =|v,|(cos &, + jsin &,)

%:a_é

(6)
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=Bl

Hence from (7). we get,

Si:i

j=1

Vj| (_cos 5!} + jsin §,.}.J (Gf; = jBr.j) (8)

v;

Separating real and imaginary parts in (8) we obtain,

Pi= Y|V
=

Vj-| (Gr.j cosd; + By sin 5”) (9)

i

n

Q= 2,

i=1

V. Vj‘ [G!.j. sind; — B, cos ci}] (10)

An alternate form of P; and Q; can be obtained by representing Yjx also in polar form

das Y'!j: 1’:}- LEU (11}
Again, we get from (7),
Si= Vil£8,Y V| £-6,v,| £-6, (12)
j=1

The real part of (12) gives P,

E=¥ Z Yl IV COS(_‘%‘ + 0, _5;')
=
= |V, i Y| |V, cos— (8, — 6, + J;) or
i=1
P=Y W|WV|[¥|cos6, - 6+5,)  vi=12...... n, (13)
=1

Similarly, Q; is imaginary part of (12) and is given by

Q, = i|‘Yej
=1

V.

|Vj‘ sin—(f?#—tinté'j) or

Vj‘ |Yy| sin [9{: ) +5j} 2o B (=T A Rt n (14)

O :_Zﬂ;

i=1

v

Equations (9)-(10) and (13)-(14) are the ,,power flow equations™ or the ,,load flow equations*
in two alternative forms, corresponding to the n-bus system, where each bus-i is characterized
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by four variables, Pi, Qi, |Vi|, and di. Thus a total of 4n variables are
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involved in these equations. The load flow equations can be solved for any 2n unknowns, if
the other 2n variables are specified. This establishes the need for classification of buses of the
system for load flow analysis into: PV bus, PQ bus, etc.

DATA FOR LOAD FLOW

Irrespective of the method used for the solution, the data required is common for any load
flow. All data is normally in pu. The bus admittance matrix is formulated from these data. The
various data required are as under:

System data: It includes: number of buses-n, number of PV buses, number of loads, number
of transmission lines, number of transformers, number of shunt elements, the slack bus
number, voltage magnitude of slack bus (angle is generally taken as 0o), tolerance limit, base
MVA, and maximum permissible number of iterations.

Generator bus data: For every PV bus i, the data required includes the bus number, active
power generation PGi, the specified voltage magnitude i sp V', , minimum reactive power
limit Qi,min, and maximum reactive power limit Qi,max.

Load data: For all loads the data required includes the the bus number, active power demand
PDi, and the reactive power demand QDi.

Transmission line data: For every transmission line connected between buses i and & the data
includes the starting bus number i, ending bus number £,.resistance of the line, reactance of
the line and the half line charging admittance.

Transformer data:

For every transformer connected between buses i and k the data to be given includes: the
starting bus number i, ending bus number £, resistance of the transformer, reactance of the
transformer, and the off nominal turns-ratio a.

Shunt element data: The data needed for the shunt element includes the bus number where
element is connected, and the shunt admittance (Gsh + j Bsh).

GAUSS - SEIDEL (GS) METHOD

The GS method is an iterative algorithm for solving non linear algebraic equations. An initial
solution vector is assumed, chosen from past experiences, statistical data or from practical
considerations. At every subsequent iteration, the solution is updated till convergence is
reached. The GS method applied to power flow problem is as discussed below.

Case (a): Systems with PQ buses only:

Initially assume all buses to be PQ type buses, except the slack bus. This means that (n—1)
complex bus voltages have to be determined. For ease of programming, the slack bus is
generally numbered as bus-1. PV buses are numbered in sequence and PQ buses are ordered
next in sequence. This makes programming easier, compared to random ordering of buses.
Consider the expression for the complex power at bus-i, given from (7), as:
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;o \
Si=V; [ Z YV ;|
| )
This can be written as
S{‘:W(Z}; v, | (15)
L=l
Since S, =P;—jQ;, we get,
P—j0 _%
i ; T — Y V
‘VE. ; I
So that,
A =t
j#i
Rearranging the terms, we get,
1 P, — jO. 2 - 2
V= “ ! ;’FQT = Z Yz.jvj i B R O (17)

Equation (17) is an implicit equation since the unknown variable, appears on both sides of the
equation. Hence, it needs to be solved by an iterative technique. Starting from an initial
estimate of all bus voltages, in the RHS of (17) the most recent values of the bus voltages is
substituted. One iteration of the method involves computation of all the bus voltages. In
Gauss—Seidel method, the value of the updated voltages are used in the computation of
subsequent voltages in the same iteration, thus speeding up convergence. Iterations are carried
out till the magnitudes of all bus voltages do not change by more than the tolerance value.
Thus the algorithm for GS method is as under:

Algorithm for GS method

1. Prepare data for the given system as required.

2. Formulate the bus admittance matrix YBUS. This is generally done by the rule of
inspection.
3. Assume initial voltages for all buses, 2,3,...n. In practical power systems, the

magnitude of the bus voltages is close to 1.0 p.u. Hence, the complex bus voltages at all (n-1)

buses (except slack bus) are taken to be 1.0l0°. This is normally refered as the flat start

solution.
4. Update the voltages. In any (k +1)st iteration, from (17) the voltages are given by
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T

(k+1 P | B— 0, < k+1) > k) . =
R L AR ¥ AT RT R R
i ;i j=1 j=i+l

Here note that when computation is carried out for bus-i, updated values are already available
for buses 2,3....(1-1) in the current (k+1)st iteration. Hence these values are used. For buses
(i+1).....n, values from previous, kth iteration are used.

AVAD| =y A v < g Vi=23...0 (19)

Where,e is the tolerance value. Generally it is customary to use a value of 0.0001 pu.
Compute slack bus power after voltages have converged using (15) [assuming bus 1 is slack
bus].

I‘{ i
S =P — jQ =V:*£ Y,
=

1

v, J (20)

7. Compute all line flows.

8. The complex power loss in the line is given by Sik + Ski. The total loss in the system
is calculated by summing the loss over all the lines.

Case (b): Systems with PV buses also present:

At PV buses, the magnitude of voltage and not the reactive power is specified. Hence it is
needed to first make an estimate of Qi to be used in (18). From (15) we have



Power System Analysis

Qi= Im{v ZY V>

.

Where Im stands for the imaginary part. Atany (k+/)" iteration, at the PV bus-i,

i-1 n
Q" =—Im {{Vf‘“}* 2B v L ey S r V}.“""]-» (21)
=1 f=i

J

The steps for i PV bus are as follows:

k+1)

[am—

. Compute Q""" using (21)

b2

Calculate V; using (18) with Q; = Q;*‘“

3. Since cified at the PV bus, the magnitude of V; obtained in step 2
has to be modified and set to the specified value |V, _|. Therefore,
(k+1) (k+1)
V |VF 50 {S‘F (22)

The voltage computation for PQ buses does not change.

Case (c): Systems with PV buses with reactive power generation limits specified:

In the previous algorithm if the Q limit at the voltage controlled bus is violated during any
iteration, i.e (k +1) i Q computed using (21) is either less than Qi, min or greater than Qi,max,
it means that the voltage cannot be maintained at the specified value due to lack of reactive
power support. This bus is then treated as a PQ bus in the (k+1)st iteration and the voltage is
calculated with the value of Qi set as follows:

If € < Qi If Qi> Qimax
Then QE Qim;n Then Qi = Qi.ma}i.
(23)

If in the subsequent iteration, if Qi falls within the limits, then the bus can be switched back to
PV status.

Acceleration of convergence

It is found that in GS method of load flow, the number of iterations increase with increase in
the size of the system. The number of iterations required can be reduced if the correction in
voltage at each bus is accelerated, by multiplying with a constant a, called the acceleration
factor. In the (k+1)st iteration we can let

V. **Y(accelerate d) =V, +c:r(V'* & VE.”"-'] (24)

where a is a real number. When a =1, the value of (k +1) is the computed value. If 1<a

<2 then the value computed is extrapolated. Generally is taken between 1.2 to 1.6, for GS
load flow procedure. At PQ buses (pure load buses) if the voltage magnitude violates
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the limit, it simply means that the specified reactive power demand cannot be supplied, with
the voltage maintained within acceptable limits.

Examples on GS load flow analysis:

Example-1: Obrain the voltage at bus 2 for the simple system shown in Fig 2, using

the Gauss—Seidel method, if V, = 1 £ 0’ PU.

s 43—.10
@ ﬁ@
Z=jo.5

SD‘I

S$p2=0.5+j1

Fig : System of Example 1
Solution:

Here the capacitor at bus 2, injects a reactive power of 1.0 pu. The complex power

injection at bus 2 is

Sy =jl.0—(0.5+j 1.0)=—0.5 pu.

Vy=12£0°
[=f2 j2
Y = | '
BUS jz —j2

VU-“-']J :Li' PZ _JiQE —Y..V
2 Yz,, I_ V“‘-}]t 21 L

Since V, is specified it is a constant through all the iterations, Let the initial voltage at

bus 2, V) =1+j0.0=12£0%pu
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e |00 ifiemnet o)
Po—j2]1£0°
= 1.0—-j0.25 = 1.030776 £— 14.036"
y2 =1 =D —(j2x120°)
P —j211.030776£14.036° YT
=0.94118 - 0.23529 = 0.970145 £—-14.036"
pd s 1 ] —(j2x 1£0°)
P —j210.970145£14.036°

=10.9375-70.249999 =0.970261 £-14.93 1”

. U2 ~(j2x1£0°)
- j2]0.970261£14.931°

=0.933612—j 0.248963 = 0.966237 £-14.931"

- 0.5
T L _(j2x120")
2 T 21 0.966237/14.931

—(.933335—j0.25 =0.966237 £—-14.995"

Since the difference in the voltage magnitudes is less than 10-6 pu, the iterations can be
stopped. To compute line flow
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;v 1£0° — 0.966237 £ —14.995"
= B jo.5

=0.517472 £-14.931°
S, =VI,=1£0"%0.517472 £ 14.931°
=05+j0.133329 pu

7 . V, -V, 0966237 £—14.995° -1.£0°
- Zis j0.5

~=0.517472 £-194.93°

B =il == 0.5+ 0.0 pu

The total loss in the line is given by S12 + S21 =3 0.133329 pu Obviously, it is observed that
there is no real power loss, since the line has no resistance.

Example-2:

For the power system shown in fig. below, with the data as given in tables below, obtain the
bus voltages at the end of first iteration, by applying GS method.

o

A

G 2 (4
£5 M £ -
& &

Power System of Example 2

Line data of example 2

SB | EB e X ; &

(pu) | (pu) )
1 2 0.10 | 0.40 -
1 4 0.15 | 0.60 -
1 5 0.05 | 0.20 -
> 3 0.05 | 0.20 -
2 4 0.10 | 0.40 -
3 5 0.05 | 0.20 -

Bus data of example 2

Qc Pp Op |V5p|
(pu) | (pu) [ (pu) | Py

Pg
(pu)

o

‘ Bus No.
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Solution: In this example, we have,
* Bus I is slack bus, Bus 2. 4, 5 are PQQ buses, and Bus 3 is PV bus
e The lines do not have half line charging admittances

Py + jQ2 = Pga + jQo2 — (Pp2 + jQp2) =— 0.6 — jO.3
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P34+ jQ: = Pgs + jQc3— (Ppz + jQp3) = 1.0+ jQas
Similarly Py + jQs = — 0.4 — jO.1,

The Yy, formed by the rule of inspection is given by:

Y=

The voltages at all PQ buses are assumed to be equal to 1+j0.0 pu. The slack bus

Ps +jQs =— 0.6 —j0.2

2.15685 | -0.58823 | 0.0+j0.0 | -0.39215 | -1.17647

-i8.62744 | +i2.35294 +j1.56862 | +j4.70588

-0.58823 | 2.35293 | -1.17647 | -0.58823 | 0.0+j0.0

+§2.35294 | -j9.41176 | +j4.70588 | +j2.35294

0.0+4j0.0 | -1.17647 | 235294 | 0.0+j0.0 | -1.17647
+§4.70588 | -j9.41176 +{4.70588

-0.39215 | -0.58823 | 0.0+j0.0 | 0.98038 | 0.0+j0.0

+1.56862 | +i2.35294 -i3.92156

“1.17647 | 0.0+j0.0 | -1.17647 | 0.0+0.0 | 2.35294

+j4.70588 +j4.70588 -{9.41176

voltage is taken to be V,° = 1.02+j0.0 in all iterations.

Yz:

~{~1.17647 + j4.70588)x 1.04.20° } - {- 0.58823 + j2.35294) x 1.0£0° }

_1[B-jo,
v

L [-06+j03 g
1.0 - j0.0

= 0.98140 £ -3.0665° = 0.97999 — j0.0525

Bus 3 is a PV bus. Hence, we must first calculate Qs. This can be done as under:

Qs= Vi| V| (G, sinéy, — By cosdy, ) + |V

v,

- Y21 V]" - YES V30 - Y24 V‘IUI _YZS V50:|

0.58823 + j2.35294) x 1.02.£0° }

(G,,sind,, — By, cosd,,)

+ ‘V3|2 (G,;sind,, — B, cosd,,) +‘V3‘ ‘VJ (G,, sind,, — B, cosd,,)

T |V’-‘ ‘VS‘ (Gﬂj sin 535 a 835 cos ‘535)

We note that &; = 0% &, = —3.0665";

. 831 = 833 = B3y = 835 = 07 (B = & — 8y);

83 =

8, =0°
832 = 3.0665°

and 85 =0"°

Qs = 1.04 [1.02 (0.0+j0.0) + 0.9814 {-1.17647 x sin(3.0665") — 4.70588

xc08(3.0665°%) 1+1.04{-9.41176 xcos(0%) }+1.0 {0.0 + j0.0}+1.0{—4.70588xco0s(0") }]

= 1.04 [-4.6735 + 9.78823 —4.70588] = 0.425204 pu.

1 |- jO s
_—{%—YMVJ =2 1 VEI_Y34 V4ﬂ —Y
3

w}
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I [L0- j0.425204 i

: 17647 + j4.70588)x (0.981402 —3.06657)}
Y, | 1.04- ;0.0

—{1.17647 + ja70588)% (1207)]]
= 1.05569 £3.077°= 1.0541 + j0.05666 pu.

Since it is a PV bus, the voltage magnitude is adjusted to specified value and V, is

computed as: V, =1.04 £3.077°pu

f 3
V; :L {‘L—aigd . Y4l V10 - Yzlz sz - Y4-3 V.%] _YJ«S V50:|
Yy 4
_|:_ 1 I )
= & (Sl {(-0.39215 + j1.56862)x 1.0220° }
Y| 1.0— jo.0

—{-0.58823 + j2.35294)x(0.98140.£ —3.0665) }]

0.45293 — j3.8366 _
0.98038 — j3.92156

0.955715 £-7.303° pu= 0.94796-j0.12149

1 P J;Qq o
V.ﬁl e |jﬂ70 =Y, Vi =Y, Vzl =Y, Vz-; —¥, VJJ}
Yss Vs

= L2056 JO2 1 17647 + j4.70588) % 1.02.20°}
Y. | 10— o0 °

—{~1.17647 + j4.70588)x 1.0423.077°}]

0.994618 £ —1.56" = 0.994249 —j0.027

Thus at end of 1% iteration. we have.

Vi=1.0220"pu V,=0.98140 £-3.066" pu
Vi=1.04 £3.077° pu V4=0.955715 £ -7.303" pu
and Vs=0.994618 ~ —1.56" pu

Example-3:

Obtain the load flow solution at the end of first iteration of the system with data as given
below. The solution is to be obtained for the following cases
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(1) All buses except bus 1 are PQ Buses
(i1) Bus 2 is a PV bus whose voltage magnitude is specified as 1.04 pu
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(ii1))  Bus 2 is PV bus, with voltage magnitude specified as 1.04 and 0.25_Q2 1.0 pu.

O —y

A B B
(&) O

Fig. System for Example 3

Table: Line data of example 3

SB EB R *
(pu) (pu)
I 2 0.05 315
| 3 0.10 0.30
2 3 0.15 0.45
2 4 0.10 .30
3 4 0.05 0.15

Table: Bus data of example 3
P; Qi Wi

Bus No.
(pu) (pu)
I — — 1.04 20"
2 0.5 —0.2 s
3 = 1T 0.5 :
4 —0.3 | —0.1 —
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Solution: Note that the data is directly in terms of injected powers at the buses. The

bus admittance matrix is formed by inspection as under:

30-79.0 | 2.0+j6.0 | —1.0+j3.0 0

—2.0+j6.0 | 3.666 —11.0 | - 0.666 + 2.0 | — 1.0 + 3.0

—1.0+ 3.0 | —0.666 + j2.0 | 3.666—j11.0 | 2.0 + {6.0
0 “1.0+j3.0 | —20+j6.0 | 3.0—{9.0

Ygus =

Case(i): All buses except bus 1 are PQ Buses

Assume all initial voltages to be 1.0 2 0° pu.

1 P'r_.fQ"* a
Vgl =— [T —Y, Vi -Y, VJD =Y, Vf}

22 2
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1
Y,

0.5+ j0.2

TEY {(=2.0 + j6.0)x(1.0420° )}

=

{0666 + j2.0)x (1.020° } - {=1.0 + j3.0)x(1.020° )}
= 1.02014 £ 2.605°

p_
V;: : {3 JQ3_Y3| VJG_YanEE_Y:sa V40:|

YB?.- V_f*
[-1.0- jO5 _
- 1210200 g0+ j3.0)%1.04200)
Y| 1.0- j0.0

—{0.666 + j2.0)x (1.0201422.605")} - {= 2.0 + j6.0) x (1.0.20° )}
1.03108 2 — 4.831°

]

i (&~ .
Vj: , L = s =YV Y42V2!Y43V3I:|
Yy v,
[ 0.3+ jo. |
o } 03+ /91 #0104 3.0)x(1.0201422.605 )}
Y, | 1.0— 0.0
{20+ j6.0)x(1.031082-4.831)}]
= 1.02467 £ ~0.51°
Hence

V! =1.04 20°pu V) =1.02014 £2.605" pu

V, =1.03108 £-4.831° pu V, =1.02467 £-0.51" pu
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Case(ii): Bus 2 is a PV bus whose voltage magnitude is specified as 1.04 pu
We first compute Q».

Q= Wl

+ V3| (Gyssin 8,y — By, cos 83 ) + |V (G,,sind,, — B, cos§34)]

V.| (G,,sind,, — B,, cosd,,)

v,

V,| (G, sin 8y, — By, cos 6,y ) +

= 1.04 [1.04 {-6.0} + 1.04 {11.0}+1.0{— 2.0} + 1.0 {-3.0}= 0.208 pu.

, 1 [05- 0208

’ YJ 1.04 20"

{20+ j6.0)x(1.0420°)}

—{~0.666 + j2.0)x (1.0£0° )} - {~1.0 + j3.0)x(1.020° )}
= 1.051288 + j0.033883

The voltage magnitude is adjusted to 1.04. Hence V, = 1.04 £ 1.846"

¥ (10— 705 .
V! = : —H{=1.0+ 73.0)x (1.0420.0°)
? Y, { 1.0 £20° {[ - ) . }

—{0.666 + j2.0)x (1.0421.846°) }— {~ 2.0 + j6.0) x (1.0.£0° )}
1.035587 Z—4.951" pu.

Il

—{~1.0+ 3.0)x(1.0421.846° )}

.1 [03+ 01
V, = _
Y, |1.0— ;0.0
— {(— 2.0+ j().O) %(1.035587 £ —-4.951° }}]
=0.9985 7—0.178°

Hence at end of 1% iteration we have:

V! =1.04 20 pu V) = 1.04 £ 1.846° pu
V! =1.035587 £-4.951° pu V! =0.99852-0.178° pu
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Case (iii):Bus 2 is PV bus, with voltage magnitude specified as 1.04 & 0.25=0Q»>=1 pu.
If 0.25 < Q; = 1.0 pu then the computed value of Q, = 0.208 is less than the lower
limit. Hence, Q- is set equal to 0.25 pu. Iterations are carried out with this value of Q.
The voltage magnitude at bus 2 can no longer be maintained at 1.04. Hence, there is
no necessity to adjust for the voltage magnitude. Proceeding as before we obtain at

the end of first iteration,

V! =1.04 £20°pu V) =1.05645 £ 1.849° pu

V! =1.038546 £-4.933" pu V., =1.081446 £ 4.896" pu

Limitations of GS load flow analysis

GS method is very useful for very small systems. It is easily adoptable, it can be generalized
and it is very efficient for systems having less number of buses. However, GS LFA fails to
converge in systems with one or more of the features as under:

* Systems having large number of radial lines

* Systems with short and long lines terminating on the same bus
* Systems having negative values of transfer admittances
* Systems with heavily loaded lines, etc.

GS method successfully converges in the absence of the above problems. However,
convergence also depends on various other set of factors such as: selection of slack bus, initial
solution, acceleration factor, tolerance limit, level of accuracy of results needed, type and
quality of computer/ software used, etc.
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NEWTON -RAPHSON METHOD

Newton-Raphson (NR) method is used to solve a system of non-linear algebraic

equations of the form f(x) =0. Consider a set of n non-linear algebraic equations given

by
Flrneu2.0=0 p=L2. .0 (25)
Letx,”.x," ox,’. be the initial guess of unknown variables and
Ax,’ Ax,’.....Ax,” be the respective corrections. Therefore,
i+ A 2, + A e, C A ") = 0 t=10,m (26)

The above equation can be expanded using Taylor’s series to give

. 0 ’ .
FAEE A A i Axlﬂ+ i Atzo Aesonuek i Ar”{)
3 dx, dx, dv,

+ Higher order terms = 0 Y =120kt (27)
- 0 ] i}
Where, ?f" . J, o TR A are the partial derivatives of f; with respect
ox, ax, ox,
t0 X,.X,.......x, respectively, evaluated at (x,", x,"..........x,"). If the higher order terms

are neglected, then (27) can be written in matrix form as

[ay o) 7
[ 2] ox, ox, ox, | [Ax?]
J1 : : . 1
2l () (3) %) | Ax
dx, dx, ox,
B o ' =) (28)
0 5 . . 0
_fn i afn afn aL _Mﬂ _
| Lox, ax, ox,
In vector form (28) can be written as
FO+J°AX" =0
Or F°=—_j°AX"°
Or AR Y= J T Y (29)

And X'=X"4AX" (30)
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Here, the matrix [J] is called the Jacobian matrix. The vector of unknown variables is
updated using (30). The process is continued till the difference between two successive
iterations is less than the tolerance value.

NR method for load flow solution in polar coordinates

In application of the NR method, we have to first bring the equations to be solved. to

the form f,(x,.x,...x,) =0, where x,.x,...x, are the unknown variables to be

n

determined. Let us assume that the power system has n, PV buses and n, PQ buses.
In polar coordinates the unknown variables to be determined are:

(i) 0., the angle of the complex bus voltage at bus i, at all the PV and PQ buses. This
gives us n, +n, unknown variables to be determined.

{ii]|Vr.| . the voltage magnitude of bus i, at all the PQ buses. This gives us 1, unknown
variables to be determined.

Therefore, the total number of unknown variables to be computed is: n, +2n,, for

which we need n, +2n, consistent equations to be solved. The equations are given

by.

AR =R, ~F =0 (31)
AQ; =0, —~Cica =0 (32)
Where P, = Specified active power at bus i

Q, ., = Specified reactive power at bus i

P. ., = Calculated value of active power using voltage estimates.

Q. .., = Calculated value of reactive power using voltage estimates

AP = Active power residue

AQ = Reactive power residue
The real power is specified at all the PV and PQ buses. Hence (31) is to be solved at
all PV and PQ buses leading to n, +n, equations. Similarly the reactive power is

specified at all the PQ buses. Hence, (32) is to be solved at all PQ buses leading to n,

equations.
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We thus have n, +2n, equations to be solved for n, +2n, unknowns. (31) and (32)

are of the form F(x) = 0. Thus NR method can be applied to solve them. Equations

(31) and (32) can be written in the form of (30) as:
AP| 4, J,] A8
= . (33)
AQ| |7, J, Ay
Where J,.J,.J,.J, are the negated partial derivatives of AP and AQ with respect

to corresponding é'and‘v‘. The negated partial derivative of AP . is same as the partial

derivative of Pea, since Py is a constant. The various computations involved are

discussed in detail next.

Computation of Py and Q.

The real and reactive powers can be computed from the load flow equations as:

n

Pey=F= Z Vi Vk‘(Gfk cosd,; + By sin g, )
=1
=G.|V|" + i|V,.HVL_ (G, cos &, + By sind, ) (34)
i
Qica = = Zn: Vi V;.—|(G;'k sin 8, — B, cos )
poms)
=—B.V.]" + ipf; |V (G, sin S, — B, cos&,) (35)
k=1
k=i

The powers are computed at any (r +1)” iteration by using the voltages available from

previous iteration. The elements of the Jacobian are found using the above equations

ds!

Elements of ]

'_:}P" => [V.[V.{G; (~sin 5, )+ B, cos 5, }
96, =
k=i
=—0, —B;|V, F
op

T V.|V |Gy (—sin 8, )(=1) + B, (cos 5, )(—1))
A
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Elements of J3

3&

v/

I

. +B, sind, )=P -G,

i

% = _‘Vr'HVk ‘[Ga\- €08 Jy + By sin g, )
95,

Elements of J»
_dPi V.| =
v,

Z

i S 6:1-): P+

V.

I

ik

op,
v,

L sind; )

ik ik

Elements of J4

;i‘vf‘ =-2V, lBﬁ "‘i‘vl HV;;- (G sin &y — By cos &y )= 0, _‘V;"E
i i

20,

a‘v =Vi|[V,[(G, sin S, — By, cos 6, )

Thus, the linearized form of the equation could be considered agai
)
{AP} {H N} AA‘{,‘
AQ M L M

The elements are summarized below:

P,
do,

(i) H; =—==-0, - B,

(i) H; = %: a, f,—b.e; =V |V, |G, sin S, — B, cosd,)

(iv) N, = %\vk\ =aye; +b, f; = V.|V, G, cos b, + By sind, )
k

(v) M. = aQ =P —~G;

u dts‘
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DECOUPLED LOAD FLOW

In the NR method. the inverse of the Jacobian has to be computed at every iteration.
When solving large interconnected power systems, alternative solution methods are
possible, taking into account certain observations made of practical systems. These

are,

* Change in vollage magnitude |V.| al a bus primarily affects the flow of reactive

the
power Q in the lines and leaves the real power P unchanged. This observation

implies that " is much larger than —— . Hence. in the Jacobian. the elements

v IVI

of the sub-matrix [N], which contains terms that are partial derivatives of real

power with respect to voltage magnitudes can be made zero.

¢  Change in voltage phase angle at a bus, primarily affects the real power flow P

over the lines and the flow of Q is relatively unchanged. This observation implies

Ql

that j—; is much larger than—- 35,

. Hence. in the Jacobian the elements of the sub-

matrix [M]. which contains terms that are partial derivatives of reactive power

with respect to voltage phase angles can be made zero.

These observations reduce the NRLF linearised form of equation to

AS
AF_[H O am 37)
AQ 0 L |V|

From (37) it is obvious that the voltage angle corrections Ad are obtained using real

power residues APand the voltage magnitude corrections [AV| are obtained from

reactive power residuesAQ. This equation can be solved through two alternaie

strategies as under:
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Strategy-1
(i) Calculate AP ,AQ" and J"!

As" {r)
(i)  Compute T‘LL::" Z[Jtr;}—u{igir]}

(iii) Update & and |V|.

(iv) Go to step (i) and iterate till convergence is reached.

Strategy-2

(i) Compute AP") and Sub-matrix H''. From (37) find Ad"' = [H [:”]'I,APM
(ii) Up date & using 6" = " + A",

(iii) Use 6" to calculate AQ" and L

i A‘V{H [ (r) ! Ir}
(iv) Compute ‘V""‘ =il ] AQ

(v)Update, ‘V""”

:‘Vfr]

+‘AV"”

(vi) Go to step (i) and iterate till convergence is reached.

In the first strategy, the variables are solved simultaneously. In the second strategy the

iteration is conducted by first solving for Ad and using updated values of & to

calculate AM. Hence, the second strategy results in faster convergence, compared to

the first strategy.
FAST DECOUPLED LOAD FLOW

If the coefficient matrices are constant, the need to update the Jacobian at every
iteration is eliminated. This has resulted in development of fast decoupled load Flow
(FDLEF). Here, certain assumptions are made based on the observations of practical

power systems as under:
* By >>Gj (Since the % ratio of transmission lines is high in well designed

systems)
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e The voltage angle difference (5, —5}.] between two buses in the system is very

small. This means cos(é} =7 )5 land sin (é} = }: 0.0

¢ 0, <<B:’1'V:'2

With these assumptions the elements of the Jacobian become

Hy =L, =-V,|v,|B (i = k)
H;,=L,=-B,V, ’
The matrix (37) reduces to
[aP]=[v,|v |, [as]
AlV
[aol={v.|v,|5; I%} (38)

7

Where B and B, are negative of the susceptances of respective elements of the

bus admittance matrix. In (38) if we divide LHS and RHS by |V,‘ and assume ‘V}.‘ =1,

we get,

e
sl

Equations (39) constitute the Fast Decoupled load flow equations. Further

simplification is possible by:
* Omitting effect of phase shifting transformers
e Setting off-nominal turns ratio of transformers to 1.0
e In forming B;, omitting the effect of shunt reactors and capacitors which
mainly affect reactive power

e [gnoring series resistance of lines in forming the Ypus.
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With these assumptions we obtain a loss-less network. In the FDLF method. the
matrices [B’] and [B”] are constants and need to be inverted only once at the

beginning of the iterations.
REPRESENTATION OF TAP CHANGING TRANSFORMERS

Consider a tap changing transformer represented by its admittance connected in series

with an ideal autotransformer as shown (a= turns ratio of transformer)

Ypq
SO N

Fig. 2. Equivalent circuit of a tap setting transformer

Ip—™ A I“ Iq
B g ‘@

Fig. 3. m-Equivalent circuit of Fig.2 above.

By equating the bus currents in both the mutually equivalent circuits as above, it can
be shown that the m-equivalent circuit parameters are given by the expressions as
under:

(i) Fixed tap setting transformers (on no load)

A=Ypg/a

B=1/a(l/a-1) Ypq

C=(1-1/a) Ypq
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(i) Tap changing under load (TCUL) transformers (on load)
A =Ypq

B=(l/a-1)(l/a+1—-Eag/Ep) Ypq

C=(1-1/a) (Ep/Eq) Ypgq

Thus, here, in the case of TCUL transformers, the shunt admittance values are

observed to be a function of the bus voltages.

COMPARISON OF LOAD FLOW METHODS

The comparison of the methods should take into account the computing time required
for preparation of data in proper format and data processing., programming ease.
storage requirements, computation time per iteration, number of iterations, ease and
time required for modifying network data when operating conditions change, etc.
Since all the methods presented are in the bus frame of reference in admittance form,
the data preparation is same for all the methods and the bus admittance matrix can be
formed using a simple algorithm. by the rule of inspection. Due to simplicity of the
equations, Gauss-Seidel method is relatively easy to program. Programming of NR
method is more involved and becomes more complicated if the buses are randomly
numbered. It is easier to program, if the PV buses are ordered in sequence and PQ

buses are also ordered in sequence.

The storage requirements are more for the NR method, since the Jacobian elements
have to be stored. The memory is further increased for NR method using rectangular
coordinates. The storage requirement can be drastically reduced by using sparse
matrix techniques, since both the admittance matrix and the Jacobian are sparse
matrices. The time taken for a single iteration depends on the number of arithmetic
and logical operations required to be performed in a full iteration. The Gauss —Seidel
method requires the fewest number of operations to complete iteration. In the NR
method, the computation of the Jacobian is necessary in every iteration. Further, the
inverse of the Jacobian also has to be computed. Hence, the time per iteration is larger
than in the GS method and is roughly about 7 times that of the GS method, in large

systems, as depicted graphically in figure below. Computation time can be reduced if
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the Jacobian is updated once in two or three iterations. In FDLF method, the Jacobian
is constant and needs to be computed only once. In both NR and FDLF methods. the

time per iteration increases directly as the number of buses.

Time units

Gl
-
4] NR
2
| . ! o
0 40 8]0 120 No. of buses

Figure 4. Time per Iteration in GS and NR methods

The number of iterations is determined by the convergence characteristic of the
method. The GS method exhibits a linear convergence characteristic as compared to
the NR method which has a quadratic convergence. Hence. the GS method requires
more number of iterations to get a converged solution as compared to the NR method.
In the GS method, the number of iterations increases directly as the size of the system
increases. In contrast, the number of iterations is relatively constant in NR and FDLF
methods. They require about 5-8 iterations for convergence in large systems. A
significant increase in rate of convergence can be obtained in the GS method if an
acceleration factor is used. All these variations are shown graphically in figure below.
The number of iterations also depends on the required accuracy of the solution.
Generally, a voltage tolerance of 0.0001 pu is used to obtain acceptable accuracy and
the real power mismatch and reactive power mismatch can be taken as 0.001 pu. Due
to these reasons, the NR method is faster and more reliable for large systems. The
convergence of FDLF method is geometric and its speed is nearly 4-5 times that of

NR method.
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Time units

A
60
40| GS
20
-
"/_,,-r-"
| | |
0 40 80 120 No. ul’huses

Figure 5. Total time of Iteration in

GS and NR methods
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No. of iterations

d i -
f—_’"ﬂﬁ
4 | | | >
0 LE L3 1.4 1.6 Acc. Factor

Figure 6. Influence of acceleration factor

on load flow methods

FINAL WORD

In this chapter, the load flow problem, also called as the power flow problem, has been
considered in detail. The load flow solution gives the complex voltages at all the buses and the
complex power flows in the lines. Though, algorithms are available using the impedance form
of the equations, the sparsity of the bus admittance matrix and the ease of building the bus
admittance matrix, have made algorithms using the admittance form of equations more
popular. The most popular methods are the Gauss-Seidel method, the Newton-Raphson
method and the Fast Decoupled Load Flow method. These methods have been discussed in
detail with illustrative examples. In smaller systems, the ease of programming and the
memory requirements, make GS method attractive. However, the computation time increases
with increase in the size of the system. Hence, in large systems NR and FDLF methods are
more popular. There is a trade off between various requirements like speed, storage,
reliability, computation time, convergence characteristics etc. No single method has all the
desirable features. However, NR method is most popular because of its versatility, reliability
and accuracy.
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UNIT-3

ECONOMIC OPEARATION OF POWER SYSTEM

INTRODUCTION

One of the earliest applications of on-line centralized control was to provide a central facility,
to operate economically, several generating plants supplying the loads of the system. Modern
integrated systems have different types of generating plants, such as coal fired thermal plants,
hydel plants, nuclear plants, oil and natural gas units etc. The capital investment, operation
and maintenance costs are different for different types of plants. The operation economics can
again be subdivided into two parts.

1) Problem of economic dispatch, which deals with determining the power output of each
plant to meet the specified load, such that the overall fuel cost is minimized.
i1) Problem of optimal power flow, which deals with minimum — loss delivery, where in

the power flow, is optimized to minimize losses in the system. In this chapter we consider the
problem of economic dispatch.

During operation of the plant, a generator may be in one of the following states:

1) Base supply without regulation: the output is a constant.

i1) Base supply with regulation: output power is regulated based on system load.

1) Automatic non-economic regulation: output level changes around a base setting as
area control error changes.

1v) Automatic economic regulation: output level is adjusted, with the area load and

area control error, while tracking an economic setting.

Regardless of the units operating state, it has a contribution to the economic operation, even
though its output is changed for different reasons. The factors influencing the cost of
generation are the generator efficiency, fuel cost and transmission losses. The most efficient
generator may not give minimum cost, since it may be located in a place where fuel cost is
high. Further, if the plant is located far from the load centers, transmission losses may be high
and running the plant may become uneconomical. The economic dispatch problem basically
determines the generation of different plants to minimize total operating cost.

Modern generating plants like nuclear plants, geo-thermal plants etc, may require capital
investment of millions of rupees. The economic dispatch is however determined in terms of
fuel cost per unit power generated and does not include capital investment, maintenance,
depreciation, start-up and shut down costs etc.
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PERFORMANCE CURVES

INPUT-OUTPUT CURVE

This is the fundamental curve for a thermal plant and is a plot of the input in British thermal
units (Btu) per hour versus the power output of the plant in MW as shown in Figl.

=
o
=
=
=
aa]
L
— (output) MW
Fig 1: Input — output curve
HEAT RATE CURVE

The heat rate is the ratio of fuel input in Btu to energy output in KWh. It is the slope of the
input — output curve at any point. The reciprocal of heat — rate is called fuel —efficiency. The
heat rate curve is a plot of heat rate versus output in MW. A typical plot is shown in Fig .2

A

(Heat rate) Btu/ kw-hr

(output) MW

Fig .2 Heat rate curve.
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INCREMENTAL FUEL RATE CURVE

The incremental fuel rate is equal to a small change in input divided by the corresponding
change in output.

Alnput
AOQutput

The unit is again Btu / KWh. A plot of incremental fuel rate versus the output is shown in Fig
3

Incremental fuel rate =

A

Incremental fuel rate

(output) MW

Fig 3: Incremental fuel rate curve
Incremental cost curve

The incremental cost is the product of incremental fuel rate and fuel cost (Rs / Btu or $ / Btu).
The curve in shown in Fig. 4. The unit of the incremental fuel cost is Rs / MWh or
$ /MWh.
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A

T approximate linear cost
= actual cost

=

=

@

o

>

(output) MW —»

Fig 4: Incremental cost curve

In general, the fuel cost Fi for a plant, is approximated as a quadratic function of the
generated output PGi.

F'[ = d;+ b,‘ P{]i +iG PG'lE Rs/h

The incremental fuel cost is given by

i =b;+ 2¢; Pg; Rs/MWh
dP,.
The incremental fuel cost is a measure of how costly it will be produce an increment of power.
The incremental production cost, is made up of incremental fuel cost plus the incremental cost
of labour, water, maintenance etc. which can be taken to be some percentage of the
incremental fuel cost, instead of resorting to a rigorous mathematical model. The cost curve
can be approximated by a linear curve. While there is negligible operating cost for a hydel
plant, there is a limitation on the power output possible. In any plant, all units normally
operate between PGmin, the minimum loading limit, below which it is technically infeasible
to operate a unit and PGmax, which is the maximum output limit.

ECONOMIC GENERATION SCHEDULING NEGLECTING LOSSES AND
GENERATOR LIMITS

The simplest case of economic dispatch is the case when transmission losses are neglected.
The model does not consider the system configuration or line impedances. Since losses are
neglected, the total generation is equal to the total demand PD. Consider a system with ng
number of generating plants supplying the total demand PD. If Fi is the
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cost of plant 7 in Rs/h, the mathematical formulation of the problem of economic scheduling
can be stated as follows:

Minimize Br= ) F,
=1
”.9.
Such that ik el
=1
where Fr = total cost.

Pgi = generation of plant i,

Pp = total demand.
This is a constrained optimization problem, which can be solved by Lagrange™s method.

LAGRANGE METHOD FOR SOLUTION OF ECONOMIC SCHEDULE
The problem is restated below:

g
Minimize FT - E ,F;'
i—1
-'IR_
Such that PD ZZPG:' =0
i=1

The augmented cost function is given by

£=F, +A P,-> P,
i=1

The minimum is obtained when

_3£ =0 and of =
aF,.. c

dE dF,. -
l[_:}]::"Gi - aPG!' e
O£

Tl e P )
ai F il ; (i

The second equation is simply the original constraint of the problem. The cost of a plant
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Fi depends only on its own output PGi, hence

IFy; . dFg,
Using the above,
F dF.
T st dE S s g
oPsy dPy
We can write
b + 2¢; Pgi= A i= Licsans Ny

The above equation is called the co-ordination equation. Simply stated, for economic
generation scheduling to meet a particular load demand, when transmission losses are
neglected and generation limits are not imposed, all plants must operate at equal incremental
production costs, subject to the constraint that the total generation be equal to the demand.
From we have

JNTU World Page 90
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A—b,
Fo = -
We know in a loss less system
g
P = Py
i=1
Substituting (8.16) we get
n
s N
A-b _,
2¢,
=1 <«

An analytical solution of A is obtained from (8.17) as

=2 B
P i
Low 2 &,
HR l
;1 2¢;

It can be seen that | is dependent on the demand and the coefficients of the cost function.
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Example 1.

The fuel costs of two units are given by
Fi=1.5+20Pg +0.1Pg” Rsh

F>=1.9430 Pg2+ 0.1 P> Rs/h
Pgi. Pgz are in MW, Find the optimal schedule neglecting losses, when the demand is

200 MW.

Solution:
dF,
—L=20+02F;, Rs/MWh
Tl
dr, )
= =30+40.2P,, Rs/MWh
G2

PP B 200 MW
For economic schedule

dF, _dF, _
dP, ~ dP.,

204 0.2 Pg=3040.2(200 - Pg))
Solving we get, Pgi =125 MW
PGQ =75 MW

L=20+02(125)=45Rs/MWh
Example 2
The fuel cost in $/ h for two 800 MW plants is given by
Fi =400 + 6.0 Pg; + 0,004 Pg,”
F, = 500 + by Pga + ¢ Poy”
where Pg), Pgp are in MW
(a) The incremental cost of power, A is $8 / MWh when total demand is 550MW.
Determine optimal generation schedule neglecting losses,
(b) The incremental cost of power is $10/MWh when total demand is 1300 MW.
Determine optimal schedule neglecting losses.

(¢) From (a) and (b) find the coefficients b, and c».

Solution:
_A-b _80-60 .\
2¢, 2x0.004

a) fd0

Py = Py — Py =550-250=300 MW
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| A—b, 10—-6
—a — = ﬁ
? fo 2C,  2x0.004 00 MW

FP., = P, — P;, =1300-500 =800 MW

A—b,
C) Pl ==
e 2¢,
B.0—5b,
From (a) I =—=
2y
10.0—1
From (b) 800 = o illeis |
2
Solving we get b, =6.8
Ca= 0.002
ECONOMIC SCHEDULE _INCLUDING _LIMITS ON _GENERATOR

(NEGLECTING LOSSES)

The power output of any generator has a maximum value dependent on the rating of the
generator. It also has a minimum limit set by stable boiler operation. The economic dispatch
problem now is to schedule generation to minimize cost, subject to the equality constraint.

ZPGfZPD
i=1

and the inequality constraint

Pai (min) = Pgi= Pg; {max) - =T TR~ Ng
The procedure followed is same as before i.e. the plants are operated with equal incremental
fuel costs, till their limits are not violated. As soon as a plant reaches the limit (maximum or
minimum) its output is fixed at that point and is maintained a constant. The other plants are
operated at equal incremental costs.



R17AD215

POWER SYSTEMS ANALYSIS

Example 3

Incremental fuel costs in $ / MWh for two units are given below:

e

“ 1 —0.01P., +2.0 $/MWh
dP;;

Wy 0012P, 4165/ MWh

dPs; .

The limits on the plants are Py, = 20 MW, P, = 125 MW. Obtain the optimal schedule
if the load varies from 50 — 250 MW,

Solution:
The incremental fuel costs of the two plants are evaluated at their lower limits and upper

limits of generation.
At Pg gimy = 20 MW.

iF,
z ;le 0.01x 2042.0 = 2.2$ / MWh

Limin)
tfg

_— :ﬂ: 0012x20+1.6=1.84 $/MWh
dPy;,

Al PG {Max) =125 Mw
AMmaxy =001 x 125+ 2.0=3.25$/ MWh

Apimaxy = 0.012x 125 + 1.6 =3.1 $/ MWh
Now at light loads unit 1 has a higher incremental cost and hence will operate at its lower
limit of 20 MW. Initially, additional load is taken up by unit 2, till such time its incremental
fuel cost becomes equal to 2.28 / MWh at PG2 = 50 MW. Beyond this, the two units are
operated with equal incremental fuel costs. The contribution of each unit to meet the demand
is obtained by assuming different values of I; When 1 = 3.1 § / MWh, unit 2 operates at its
upper limit. Further loads are taken up by unit 1. The computations are show in Table
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Table Plant output and output of the two units

dF, dF, Plant A P Pg2 Plant Output
dP, dP,, | , -
smwh  |smwn | PMWho MW =
2,2 1.96 1.96 20" 30 50
2.2 2.2 2.2 20" 30 70
24 24 2.4 40 66.7 106.7
2.6 2.6 2.0 60 83.3 143.3
2.8 2.8 2.8 80 100 180
3.0 3.0 3.0 100 116.7 216.7
3.1 3.1 3.1 110 125® 235

For a particular value of I, PG1 and PG2 are calculated using (8.16). Fig 8.5 Shows plot of

each unit output versus the total plant output.
Fig 8.5 : Example 8.4

140 i : .
."'—/_
120 - , e
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- o %
= ,,// 4
= P 7
ju ~ # -
E a0 / P
E = o
ol
T
60 | P/ -/’}.‘ =
= =
o &
v e
i e
4o e =
J/./ /__,.-‘ L = ¥ |
14 e + e P2
20, =t 5 | | I
50 100 150 200 250
output MW

For any particular load, the schedule for each unit for economic dispatch can be obtained.

Example 4.




R17AD215

POWER SYSTEMS ANALYSIS i

In example 3, what is the saving in fuel cost for the economic schedule compared to the case
where the load is shared equally. The load is 180 MW.
Solution:

From Table it is seen that for a load of 180 MW, the economic schedule is PG1 = 80 MW and
PG2 = 100 MW. When load is shared equally PG1 = PG2 = 90 MW. Hence, the generation of
unit 1 increases from 80 MW to 90 MW and that of unit 2 decreases from 100 MW to 90 MW,
when the load is shared equally. There is an increase in cost of unit 1 since PG1 increases and
decrease in cost of unit 2 since PG2 decreases.

00,/
dF; dP,
2o\ AFer

Increase in cost of unit 1

Il

40
= [(0.01P,, +2.0)dP;, =28.5$/h

50

900 g F, )
| e Ji:ff::,;2

Decrease in cost of unit 2 =
100

a0
= [(0.012P,, +1.6)dP;, =—27.4$ /h

100
Total increase in cost if load is shared equally =28.5-274=1.1%/h

Hence the saving in fuel costis 1.1 $/ h if coordinated economic schedule is used.

ECONOMIC DISPATCH INCLUDING TRANSMISSION LOSSES

When transmission distances are large, the transmission losses are a significant part of the
generation and have to be considered in the generation schedule for economic operation. The
mathematical formulation is now stated as
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A
Minimize Fp=%
=1
iy
Such That Y B =Pyt

i=1
where Py is the total loss.

The Lagrange function is now written as

£ = FT—/L{ZPGI.—PD—PL]:{}

i=1

The minimum point is obtained when

Jf  dF, _1[1_ oP,

E}PGi N aPGi aPGi
af 1 S
7 = ; P,—P,+P =0 (Same as the constraint)
JoF. IF.
Since & :(—" (8.27) can be written as
aP. dP
dr. oP,
Lt d—=41
_dF, | 1
dP.. 1—-dP,
. aPGi
The term ;is called the penalty factor of plant i, L; The coordination
Ji= L
dPg
equations including losses are given by
| [— Ny

dP;
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The minimum operation cost is obtained when the product of the incremental fuel cost and the
penalty factor of all units is the same, when losses are considered. A rigorous general
expression for the loss PL is given by

PL - Zm Zn PGm an pGn + En pGn Bno + BDO

where Bmn, Bno , Boo called loss — coefficients , depend on the load composition. The
assumption here is that the load varies linearly between maximum and minimum values. A
simpler expression is

PL: Em En me an pGn

The expression assumes that all load currents vary together as a constant complex fraction of
the total load current. Experiences with large systems has shown that the loss of accuracy is
not significant if this approximation is used. An average set of loss coefficients may be used
over the complete daily cycle in the coordination of incremental production costs and
incremental transmission losses. In general, Bmn = Bnm and can be expanded for a two plant
system as

Pp. =B, PG + 2 B2 Py P2 + B pGEE
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Example S

A generator is supplying a load. An incremental change in load of 4 MW requires generation

to be increased by 6 MW. The incremental cost at the plant bus is Rs 30 /MWh. What is the
incremental cost at the receiving end?

Solution:
dF
L =30

dP,

dF, _

dP.,

AP = 2MW
: ‘ - — Load
]
APg = 6MW APp = 4MW

Fig : One line diagram of example 5

APy, = APg - APp =2MW

A atreceiving end is given by

A= dk, xAPG :;10><9:45 Rs/MWh
dP;,, AP, 4
ori:dF‘x 1 =30x I =45 Rs / MWh
dP.; AP,

1— 1-

= | b

AP,
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Example 6
In a system with two plants, the incremental fuel costs are given by
dF,
- =0.01P,, +20 Rs/ MWh
dP,
drl,
—=0.015P,, +22.5 Rs/ MWh
7§ 3o

The system is running under optimal schedule with Pg; = Pgx = 100 MW,

dP, aP,
If —=0.2, find the plant penalty factors and—--.

oP_, oP,,
Solution:

For economic schedule,

b ff 28
L1, =4 B, =
':'i'PGi I_C}P]_
dP,

L 5
For plant 2, Pg>= 100 MNW

] =1
1—0.2

Solving, A = 30Rs / MWh
1

= (0015100 4+ 22.5)

g = T see TR
Le=1"062%
) L, =A— (0.01x100+20) L; = 30
AdF,

I =1428

T_.-] -
o o) =4
I
1 Y
1.428 = - : Solvin L —0.3
I = aPGI
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Example 7

A two bus system is shown in Fig. 8.8 If 100 MW is transmitted from plant 1 to the load,
a loss of 10 MW is incurred. System incremental cost is Rs 30 / MWh. Find Pg,. Pg; and
power received by load if

dF

—L =0.02P,, +16.0 Rs/ MWh
dPy,
dF,
= =0.04P,, +20.0 Rs/ MWh
G2

e

— PG1

Load
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Fig One line diagram of example 7

Solution:

Since the load is connected at bus 2 , no loss is incurred when plant two supplies the

load.
Therefore in (8.36) B;, = 0 and By = 0
5 dP dP,
B =B Py L 2R P L =00
712 dP,,

From data we have P =10 MW. if Pg1 = 100 MW
10 = By, (100)?
B;;=0.001 MW

Coordination equation with loss is

& a3 g
] R
For plant 1 il + ﬂgi =4
dP,, JP,,

(0.02 Pg; +16.0) +30 (2 x 0.001 x Pg)) = 30

0.08 Pg; = 30 - 16.0. From which, Pg; = 175 MW

For Plant 2 il 4 /Iai — 4
dP,, BPGE

0.04 Pga + 20.0 = 30 or Pgy = 250 MW
Loss = By Pg” = 0.001 X (175)% = 30.625 MW

pD = {Pg| + Pc,g) = P]_Z 394, 375 MW
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DERIVATION OF TRANSMISSION LOSS FORMULA

An accurate method of obtaining general loss coefficients has been presented by Kron. The
method is elaborate and a simpler approach is possible by making the following assumptions:
(1) All load currents have same phase angle with respect to a common reference

(i1) The ratio X / R is the same for all the network branches.

Consider the simple case of two generating plants connected to an arbitrary number of loads
through a transmission network as shown in Fig a

Is,
:]
Ic>
o

IGi = lU
=
[KI ID
\\— R ——
Igz = O

(b)

: ]K-g ]-i_)

(C)

Fig Two plants connected to a number of loads through a transmission network
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Let’'s assume that the total load is supplied by only generator 1 as shown in Fig 8.9b. Let

the current through a branch K in the network be Ix;. We define

¥
Ny = e
jlD
It is to be noted that Ig; = Ip in this case. Similarly with only plant 2 supplying the load
current Ip, as shown in Fig 8.9c, we define

1

_'k2
Nxz—

D
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Nk1 and Ng» are called current distribution factors and their values depend on the
impedances of the lines and the network connection. They are independent of Ip. When
both generators are supplying the load, then by principle of superposition

Ix = Nki g1 + Nka Iz

where Ig, lg; are the currents supplied by plants 1 and 2 respectively, to meet the
demand Ip. Because of the assumptions made, Ix; and Ip have same phase angle, as do

Ix2 and Ip. Therefore, the current distribution factors are real rather than complex. Let
=|lylLo, and I, =|I;|20,.
where o, and o, are phase angles of Ig; and Ig» with respect to a common reference. We

can write

a4

1 = (V[T cos o, + Ny [T |cosa, | + (N |1ssin e, + N, |1, |sin e, ]

2 2 2 | 2 2 2 )
N |6 [cos1 0',+sm’JE]+Nm Los| [cos’o'z+sm°dz]

B +2[NK]‘IGI‘COS O\N ko[l gy | €050, + N |1 )| sin & N, [ g, 8

:NKIE‘IGI‘Q +NK22 102‘2 +2N Ny

I, |55 cosle, — )

P, P
N . - Gl _ G2
o Mo w@‘vl‘cosgﬁ s V3

where Pgy, Pg, are three phase real power outpurs of plantl and plant 2; V,, V, are the

line to line bus voltages of the plants and @,, ¢, are the power factor angles.
The total transmission loss in the system is given by
P.= X3 R;
-
where the summation is taken over all branches of the network and R is the branch

resistance. Substituting we get

Pc,2 . 5 —PGIPG,CORJ —
T A -
‘Vl‘z(cosé*; )2§ H T ‘V HV\com cos @, ; &V
B ,
e — s R
V2 2({:05(02 ]2 = K2 'K

PE_ = PGlzB]I o EPGEPngiE +PGZ2BEZ

1
Vi *(cosa, ) T

i,
where Bi= Ny Ry
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cos(o, — o,
ViV, |cos g, co*;w

1 2
B = SN R

ZNR]NKZRK

2=

2}2 K

The loss — coefficients are called the B — coefficients and have unit MW ™"

For a general system with n plants the transmission loss is expressed as

)

s PG ] + PG.’I_ 2
V

n

ZNKP

*(cosg, ) T

Pcchq c.os

22y

_— ‘V HV |cos$ Losdl

Prq

In a compact form
PL = ZZPGPBPQPGQ
p=1 g=I
Los{o' -0, )
|V HV ‘casé coso,

Z NN ¢, Ry

B — Coefficients can be treated as constants over the load cycle by computing them at

average operating conditions, without significant loss of accuracy.

Example 8
Calculate the loss coefficients in pu and MW™ on a base of SOMVA for the network of

Fig below. Corresponding data is given below.

I,=1.2—j04pu Z,=0.02+j0.08 pu
I,=0.4-j0.2pu Zy=0.08 +]0.32 pu
I.=08-j0.1 pu Z.=0.02+0.08 pu
[4j=0.8-j0.2pu Z4=003+j0.12 pu

k=12-]03pu Z.=0.034+j0.12 pu
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Fig : Example 8

Solution:
Total load current

Li=li+L=20—]05=2061 -14.03°A
I =13=0.8-j0.2=0.8246 ~-14.03° A

I I 2

L =0.4; 2 =1.0-04=006

IL L

If generator 1, supplies the load then I; = I .. The current distribution is shown in Fig a.
—> e -—
I 4{ L=l
— -+
IL Ig =0
d i 0.4 1 e l 0.6 1

TLoacl 1 TLoad 2

Fig a: Generator 1 supplying the total load

I I
N,=-%=10; N, =-£=06: N, =0; N, =04; N, =0.6.

BT F el
JlrL

Similarly the current distribution when only generator 2 supplies the load is shown in Fig
b.
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TLoad 1 TLoad 2

Fig b: Generator 2 supplying the total load

Na2 =0; Npp =-0.4: Np = 1.0; Ny = 0.4: Ny = 0.6
From Fig 8.10. V, =V s +Z.1,
=120%+(1.2—j0.4) (0.02 + j0.08)
=1.06.£4.78" = 1.056 + j 0.088 pu.
Vo= Ver— I Zp + 1. Ze

=1.0 £0°=(0.4—j0.2) (0.08 +j0.32) + (0.8 = 0.1) (0.02 + j 0.08)
=0.928 —j0.05=093 £-3.10° pu.

Current Phase angles

o, =angle of Ii(=l,) = tan” [_

o, =angle of I, (=1 )= lan'][_—'l}:—'i'.mn

cos(o, — o, )= 0.98
Power factor angles
¢, =4.78° +18.43=23.21% cos¢, = 0.92

¢, =7.13" —3.10" =4.03";cos ¢, = 0.998

2V Re 1.0% % 0.02+0.6% x0.08 +0.4% x 0.03 + 0.6 x0.03
= K g giakaday : = & AN E . AvR
v, (cosg, )’ (1.06)2(0.920)?

I

= 0.0677 pu
=0.0677 x qlﬂ =0.1354x 10> MW
Coslo,—a,)
V,|(cos @, Ncos @,

IR =

|V )ZNKINKERK
1 K
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0.98

~1.06)(0.93)(0.998)0.92)
= -(.00389 Pu

=-0.0078x 10> MW"

|- 0.4%0.6x0.08 +0.4x 0.4 0.03 + 0.6 X 0.6 0.03]

> N Ry
B,, = K;g =
v, {cosgﬁz l

(—0.4)70.08 +1.0> x0.02 + 0.4 % 0.03 + 0.6% X 0.03
(0.93)7(0.998)*

= 0.056pu = 0.112x 10 MW"



UNIT 4

FAULT ANALYSIS

1.01 INTRODUCTION

A fault is any abnormal condition in a power system. The steady state operating mode of a
power system is balanced 3-phase a.c. .However, due to sudden external or internal changes in

the system, this condition is disrupted.

When the insulation of the system fails at one or more points or a conducting object comes into

contact with a live point, a short circuit or a fault occurs.

CAUSES OF POWER SYSTEM FAULTS

The causes of faults are numerous, e.g.

° Lightning

° Heavy winds

° Trees falling across lines

° Vehicles colliding with towers or poles
) Birds shorting lines

° Aircraft colliding with lines

° Vandalism

° Small animals entering switchgear

° Line breaks due to excessive loading

COMMON POWER SYSTEM FAULTS

Power system faults may be categorised as one of four types; in order of frequency of
occurrence, they are:

e Single line to ground fault

e Line to line fault

e Double line to ground fault

e Balanced three phase fault



The first three types constitutes severe unbalanced operating conditions which involves only one
or two phases hence referred to as unsymmetrical faults. In the fourth type, a fault involving all

the three phases occurs therefore referred to as symmetrical (balanced) fault.

1.04 EFFECTS OF POWER SYSTEM FAULTS

Faults may lead to fire breakout that consequently results into loss of property, loss of life and
destruction of a power system network. Faults also leads to cut of supply in areas beyond the
fault point in a transmission and distribution network leading to power blackouts; this interferes
with industrial and commercial activities that supports economic growth, stalls learning activities

in institutions, work in offices, domestic applications and creates insecurity at night.
All the above results into retarded development due to low gross domestic product realised.

It is important therefore to determine the values of system voltages and currents during faulted
conditions, so that protective devices may be set to detect and minimize the harmful effects of

such contingencies

THEVENIN’S EQUIVALENT CIRCUIT

Thevenin’s theorem states that any linear network containing any number of voltage sources and

impedances can be replaced by a single emf and an impedance.

The emf is the open circuit voltage as seen from the terminals under consideration and the

impedance is the network impedance as seen from these terminals.
This circuit consisting of a single emf and impedance is known as Thevenin’s equivalent circuit.

The calculation of fault current can then be very easily done by applying this theorem after

obtaining the open circuit emf and network impedance as seen from the fault point.



SYMMETRICAL COMPONENTS

The majority of faults in power systems are asymmetrical. To analyse an asymmetrical fault, an
unbalanced 3- phase circuit has to be solved. Since the direct solution of such a circuit is very
difficult, the solution can be more easily obtained by using symmetrical components since this

yields three (fictitious) single phase networks, only one of which contains a driving emf.

Since the system reactances are balanced the thee fictitious networks have no mutual coupling

between them, a fact that is making this method of analysis quite simple.

1.21 General principles

Any set of unbalanced 3-phase voltages (or current) can be transformed into 3 balanced sets.

These are:

1. A positive sequence set of three symmetrical voltages (i.e. all numerically equal and
all displaced from each other by 120” having the same phase sequence abc as the original

set and denoted by Va1,Vo1,Vei as shown in the fig(1a)

Ver al

Vbi

Fig. (a)



A negative sequence set of three symmetrical voltages having the phase sequence

opposite to that of the original set and denoted by Va2, V2, V2 as shown in fig(1b)

Faz f

Ve2

Fig. 1 (b)



3. A zero sequence set of three voltages, all equal in magnitude and in phase with each

other and denoted by Va0, Vo, Vo as shown in fig (1c) below:

Vao

Fai

Fig. 1(c)

The positive, negative and zero sequence sets above are known as symmetrical
components. Thus we have,

Va= Va1 +Va2+Vao

Vb= Vbl +Vb2+Vbo

Ve=Vc1+ V2 +Veo

The symmetrical components application to power system analysis is of fundamental importance
since it can be used to transform arbitrarily unbalanced condition into symmetrical components,
compute the system response by straightforward circuit analysis on simple circuit models and

transform the results back to the original phase variables.

Generally the subscripts 1, 2 and 0 are used to indicate positive sequence, negative sequence and

zero sequence respectively.

The symmetrical components do not have separate existence; they are just mathematical

components of unbalanced currents (or voltages) which actually flow in the system.



1.2.2 The “a” operator

The operator “a” as used in symmetrical components is one in which when multiplied to a
vector, rotates the vector through 120° in a positive (anticlockwise) direction without changing

the magnitude.

The operator “a” is defined as 1 ¥20°

THREE-SEQUENCE IMPEDANCES AND SEQUENCE NETWORKS

Positive sequence currents give rise to only positive sequence voltages, the negative sequence
currents give rise to only negative sequence voltages and zero sequence currents give rise to
only zero sequence voltages, hence each network can be regarded as flowing within in its own

network through impedances of its own sequence only.

In any part of the circuit, the voltage drop caused by current of a certain sequence depends on

the impedance of that part of the circuit to current of that sequence.

The impedance of any section of a balanced network to current of one sequence may be different

from impedance to current of another sequence.
The impedance of a circuit when positive sequence currents are flowing is called impedance,

When only negative sequence currents are flowing the impedance is termed as negative

sequence impedance.
With only zero sequence currents flowing the impedance is termed as zero sequence impedance.

The analysis of unsymmetrical faults in power systems is carried out by finding the symmetrical
components of the unbalanced currents. Since each sequence current causes a voltage drop of
that sequence only, each sequence current can be considered to flow in an independent network

composed of impedances to current of that sequence only.

The single phase equivalent circuit composed of the impedances to current of any one sequence

only is called the sequence network of that particular sequence.



The sequence networks contain the generated emfs and impedances of like sequence.

Therefore for every power system we can form three- sequence network s. These sequence
networks, carrying current lai, [a2 and a0 are then inter-connected to represent the different fault

conditions.

PHYSICAL SIGNIFICANCE OF SEQUENCE COMPONENTS

This is achieved by considering the fields which results when these sequence voltages are

applied to the stator of a 3-phase machine e.g. an induction motor.

If a positive sequence set of voltages is applied to the terminals a, b, ¢ of the machine, a
magnetic field revolving in a certain direction will be set up. If now the voltages to the terminals
band c are changed by interchanging the leads to terminals b and c, it is known from induction

motor theory that the direction of magnetic field would be reversed.

It is noted that for this condition, the relative phase positions of the voltages applied to the motor

are the same as for the negative sequence set.

Hence, a negative sequence set of voltages produces a rotating field rotating in an opposite

direction to that of positive sequence.

For both positive and negative sequence components, the standard convention of counter

clockwise rotation is followed.

The application of zero sequence voltages does not produce any field because these voltages are
in phase and the three -phase windings are displaced by 120°.The positive and the negative
sequence set are the balanced one. Thus, if only positive and negative sequence currents are
flowing, the phasor sum of each will be zero and there will be no residual current. However, the
zero sequence components of currents in the three phases are in phase and the residual current
will be three times the zero sequence current of one phase. In the case of a fault involving
ground, the positive and negative sequence currents are in equilibrium while the zero sequence

currents flow through the ground and overhead ground wires.



CHAPTER TWO

SEQUENCE NETWORKS OF SYNCHRONOUS MACHINES
An unloaded synchronous machine having its neutral earthed through impedance, z», is shown in
fig. 2(a) below.

A fault at its terminals causes currents /s, /s and /- to flow in the lines. If fault involves earth, a
current /» flows into the neutral from the earth. This current flows through the neutral impedance

Zn.

Thus depending on the type of fault, one or more of the line currents may be zero.

lai

i

o

Il

Fig.2 (a)



Positive sequence network

The generated voltages of a synchronous machine are of positive sequence only since the

windings of a synchronous machine are symmetrical.

The positive sequence network consists of an emf equal to no load terminal voltages and is in
series with the positive sequence impedance Z; of the machine. Fig.2 (b) and fig.2(c) shows the
paths for positive sequence currents and positive sequence network respectively on a single
phase basis in the synchronous machine. The neutral impedance Z» does not appear in the circuit
because the phasor sum of /a1, Is1 and Ic1 is zero and no positive sequence current can flow

through Z. Since its a balanced circuit, the positive sequence N
The reference bus for the positive sequence network is the neutral of the generator.

The positive sequence impedance Z: consists of winding resistance and direct axis reactance. The
reactance is the sub-transient reactance X”s or transient reactance X’« or synchronous reactance

Xadepending on whether sub-transient, transient or steady state conditions are being studied.

From fig.2 (b) , the positive sequence voltage of terminal a with respect to the reference bus is

given by:

Vai= Ea- Z1la1 lal

i

£

L

Fig.2 (b)



Reference bus

[ ]

i

lal

Fig.2(c)

2.02 Negative sequence network

A synchronous machine does not generate any negative sequence voltage. The flow of
negative sequence currents in the stator windings creates an mmf which rotates at synchronous
speed in a direction opposite to the direction of rotor, i.e., at twice the synchronous speed with

respect to rotor.

Thus the negative sequence mmf alternates past the direct and quadrature axis and sets up a
varying armature reaction effect. Thus, the negative sequence reactance is taken as the average

of direct axis and quadrature axis sub-transient reactance, i.e.,
X2=0.5(X"a+X").

It not necessary to consider any time variation of X2 during transient conditions because there is
no normal constant armature reaction to be effected. For more accurate calculations, the negative
sequence resistance should be considered to account for power dissipated in the rotor poles or

damper winding by double supply frequency induced currents.

The fig.2 (d) and fig.2 (e) shows the negative sequence currents paths and the negative sequence

network respectively on a single phase basis of a synchronous machine.

The reference bus for the negative sequence network is the neutral of the machine. Thus, the

negative sequence voltage of terminal a with respect to the reference bus is given by:

Var=-Z2la2



Ia2

Ie2

Fig.2 (d)

Reference bus

.

Ia2

Fig.2 (e)



2.0.3 Zero sequence network

No zero sequence voltage is induced in a synchronous machine. The flow of zero sequence
currents in the stator windings produces three mmf which are in time phase. If each phase
winding produced a sinusoidal space mmf, then with the rotor removed, the flux at a point on the

axis of the stator due to zero sequence current would be zero at every instant.

When the flux in the air gap or the leakage flux around slots or end connections is considered,

no point in these regions is equidistant from all the three —phase windings of the stator.

The mmf produced by a phase winding departs from a sine wave, by amounts which depend

upon the arrangement of the winding.

The zero sequence currents flow through the neutral impedance Z» and the current flowing

through this impedance is 3/a0.

Fig.2(f) and fig.2(g) shows the zero sequence current paths and zero sequence network
respectively, and as can be seen, the zero sequence voltage drop from point a to ground is -

3la0Zn—la0Zgo where Zgois the zero sequence impedance per phase of the generator.

Since the current in the zero sequence network is /a0 this network must have an impedance of 3Z»

+Zg0. Thus,

20=37Zn+Zg0

The zero sequence voltage of terminal a with respect to the reference bus is thus:

Vao= -1a0Z0



lao

o

o

S E.

Lo foir. rei

Ieo
Fig.2 (f)
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Fig.2 (g)



SEQUENCE IMPEDANCES OF TRANSMISSION LINE

The positive and negative sequence impedances of linear symmetrical static circuits do not
depend on the phase sequence and are, therefore equal. When only zero sequence currents flow
in the lines, the currents in all the phases are identical. These currents return partly through the

ground and partly through overhead ground wires.

The magnetic field due to the flow of zero sequence currents through line, ground and round
wires is very different from the magnetic field due to positive sequence currents. The zero

sequence reactance of lines is about 2 to 4 times the positive sequence reactance.

SEQUENCE IMPEDANCES OF TRANSFORMERS

A power system network has a number of transformers for stepping up and stepping down the

voltage levels.

A transformer for a 3-phase circuit may consist of three single phase transformers with windings

suitably connected in star or delta or it may be a 3-phase unit.

Modern transformers are invariably three-phase units because of their lower cost, lesser space
requirements and higher efficiency. The positive sequence impedance of a transformer equals its
leakage impedance. The resistance of the windings is usually small as compared to leakage

reactance.

For transformers above 1 MVA rating, the reactance and impedance are almost equal. Since the
transformer is a static device, the negative sequence impedance is equal to the positive sequence

impedance.

The zero sequence impedance of 3-phase units is slightly different from positive sequence
impedance. However the difference is very slight and the zero sequence impedance is also

assumed to be the same as the positive sequence impedance.

The flow of zero sequence currents through a transformer and hence in the system depends

greatly on the winding connections. The zero sequence currents can flow through the winding



connected in star only if the star point is grounded. If the star point isolated zero sequence

currents cannot flow in the winding.

The zero sequence currents cannot flow in the lines connected to a delta connected winding
because no return path is available for these zero sequence currents. However, the zero sequence
currents caused by the presence of zero sequence voltages can circulate through the delta

connected windings.

FORMATION OF SEQUENCE NETWORKS

A power system network consists of synchronous machines, transmission lines and transformers.

The positive sequence network is the same as the single line reactance diagram used for the
calculation of symmetrical fault current. The reference bus for positive sequence network is the

system neutral.

The negative sequence network is similar to the positive sequence network except that the
negative sequence network does not contain any voltage source. The negative sequence
impedances for transmission line and transformers are the same as the positive sequence
impedances. But the negative sequence impedance of a synchronous machine may be different

from its positive sequence impedance.

Any impedance connected between a neutral and ground is not included in the positive and
negative sequence networks because the positive and the negative sequence currents cannot flow

through such impedance.

The zero sequence network also does not contain any voltage source. Any impedance included

between neutral and ground becomes three times its value in a zero sequence network.
The following are the summary of the rules for the formation of sequence networks:-

e The positive sequence network is the same as single line impedance or reactance
diagram used in symmetrical fault analysis. The reference bus for this network is the

system neutral.



e The generators in power system produce balanced voltages. Therefore only positive
sequence network has voltage source. There are no voltage sources in negative and zero
sequence networks.

e The positive sequence current can cause only positive sequence voltage drop. Similarly
negative sequence current can cause only negative sequence voltage drop and zero
sequence current can cause only zero sequence voltage drop.

e The reference for negative sequence network is the system neutral. However, the
reference for zero sequence network is the ground. Zero sequence current can flow only
if the neutral is grounded.

e The neutral grounding impedance Z» appears as 3Z» in the zero sequence network.

e The three sequence networks are independent and are interconnected suitably depending

on the type of fault.

UNSYMMETRICAL FAULTS

The basic approach to the analysis of unsymmetrical faults is to consider the general situation
shown in the fig.3.0 which shows the three lines of the three- phase power system at the point of

fault.

The general terminals brought out are for purposes of external connections which simulate the
fault. Appropriate connections of the three stubs represent the different faults, e.g., connecting
stub "a’ to ground produces a single line to ground fault, through zero impedance, on phase

‘a’. The currents in stubs b and c are then zero and /a is the fault current.

Similarly, the connection of stubs b and ¢ produces a line to line fault, through zero impedance,
between phases b and c, the current in stub a is then zero and /» is equal to /c.The positive

assignment of phase quantities is important. It is seen that the currents flow out of the system.

The three general sequence circuits are shown in fig.3.1 (a). The ports indicated correspond to
the general 3- phase entry port of fig.3.1. A suitable inter- connection of the three- sequence

networks depending on the type fault yields the solution to the problem.



The sequence networks of fig.3.1 (a) can be replaced by equivalent sequence networks of fig.3.1

(b) . Zo, Z1 and Z: indicate the sequence impedances of the network looking into the fault

Iy

I

Fig.3.0 General 3- phase access port



Equivalent sequence networks
General sequence networks

Zo [aO

?-CTU Va0 .
sCquence o
network Vao

0

Z1 lal
lal +

Positive i
sequence Vai *
nerwork - -

___.:__l

la2 72 la2
; - +

Negative o *
sequence Vs
network

S i

Fig.3.1 (b)
Fig.3.1 (a)

SINGLE LINE TO GROUND FAULT

The termination of the three- phase access port as shown in fig. 3.2 brings about a condition

of single line to ground fault through a fault impedance Zr.



Typically Zr  is set to zero in all fault studies. I include Zrin the analysis for the sake

of generality. The terminal conditions at the fault point give the following equations:

=0
I.=0
VazlaZf

a
b
c
.I':.l¢ T l .|rl'.
t
Vo +* A

Fig. 3.2

Connections of sequence networks for a single line to ground fault and its simplified

equivalent circuit are shown in the fig. 3.3(a) and fig. 3.3 (b) below:
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Fig.3.3 (b)




LINE TO LINE FAULT

The termination of the three- phase access port as in the fig.3.4 below simulates a line to line
fault through a fault impedance Z;.

Fig. 3.4

The terminal conditions at the fault point give the following equations,

]a:()
Ib:-lc
Vo=Ve+ Zslp

Ir="-Ic=la+ a21a1 + ala2

Connection of sequence networks for a line to line fault and its simplified equivalent circuit
are shown in the fig.3.5 (a) and fig.(b) below.



General sequence networks
1ao
Zero ——
Seguence
network
—
lal
Positive — a
Sequence 4
netwaork 7
Megative
Seguence N
Metwork
Fig. 3.5 (a)

DOUBLE LINE TO GROUND FAULT

Far

Z

Fig.3.5 (b)

The termination of the three- phase access port as shown in fig.3.6 simulates a double line to
ground fault through fault impedance Zr.

The terminal conditions at the fault point give the following equations,




1.=0

Vo= Ve=(I+1Ic) Zr

Fig. 3.6

The sequence networks and the equivalent circuit are shown by the Fig.3.7 (a) and Fig. 3.7 (b)
below
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BALANCED THREE PHASE FAULT

This type of fault occurs infrequently, as for example, when a line, which has been made safe for
maintenance by clamping all the three phases to earth, is accidentally made alive or when, due to
slow fault clearance, an earth fault spreads across to the other two phases or when a mechanical
excavator cuts quickly through a whole cable.

It is an important type of fault in that it results in an easy calculation and generally, a pessimistic
answer.

The circuit breaker rated MVA breaking capacity is based on 3- phase fault MVA. Since circuit
breakers are manufactured in preferred standard sizes e.g. 250, 500, 750 MVA high precision is
not necessary when calculating the 3- phase fault level at a point in a power system.

The system impedances are also never known accurately in three phase faults.



CHAPTER THREE

THE BUS IMPEDANCE MATRIX

INTRODUCTION

Since the actual power systems are very large, network reduction method can only be used to
solve very small systerms.Therefore a systematic procedure suitable for digital computer

calculations is necessary.

System studies can be carried out using Yaus or Zeus. YBus is used for load flow computations,

but for fault calculations ( short circuit studies) , the use of Zuus is preferable.

THE ALGORITHM FOR FORMULATING THE COMPLEX Zvus IMPEDANCE
MATRIX

This is described in terms of modifying an existing bus impedance matrix designated as

[Zbus]ota.. The new modified matrix is designated as [Zbus]new.

The network consists of a reference bus and a number of other buses. When a new element
having self impedance zsis added, a new bus may be created if the new element is a tree

branch or a new bus may not be created if the new element is a link.

Each of these two cases can be subdivided into two cases so that zsmay be added in the

following ways:

1. Adding zs from a new bus to reference.

2. Adding zs from a new bus to an old bus.
3. Adding z; from an old bus to reference.
4. Adding zs between two old buses.

The case of addition of zs to create two new buses simultaneously has been carefully avoided

by properly selecting the order in which the elements are added.

Therefore, for my case, bus zero was taken as the reference bus and then the following

procedure was adhered to:



1. A branch was added from a new bus to a reference bus zero.
2. A branch was then added from a new bus to an existing bus.

3. A link was finally added between two old buses to generate the complex bus

impedance matrix by method of building algorithms.

A THREE BUS POWER SYSTEM NETWORK

A 3-bus system characterised by the following parameter values was used for the analysis:

Input data (Impedances in per- unit

BUS CODE 70 71
0 1 0.0 0.40 0.0 0.25
0o 2 0.0 0.10 0.0 0.25
1 2 0.0 0.30 0.0 0.125
1 3 0.0 0.35 0.0 0.15
2 3 0.0 0.7125 0.0 025



CHAPTERT FOUR

ANALYSIS

Fault analysis was done by technical computer method using the theory of symmetrical

components.The fault impedance Zf was taken as zero.

The following describes how the program codes that were developed for each type of fault

were executed using a Matlab environment to generate results for the analysis:

LINE-GROUND FAULT

The program prompts the user to enter the faulted bus number and the fault impedance Zf.
The prefault bus voltages are defined by the reserved Vector V. The array V may be defined
or it is returned from the power flow programs Ifgauss, Ifnewton, decouple or perturb. If V
does not exist the prefault bus voltages are automatically set to 1.0 per unit. The program

obtains the total fault current, bus voltages and line currents during the fault.

LINE-LINE FAULT

The program prompts the user to enter the faulted bus number and the fault impedance Zf.
The prefault bus voltages are defined by the reserved Vector V. The array V may be defined
or it is returned from the power flow programs Ifgauss, Ifnewton, decouple or perturb. If V
does not exist the prefault bus voltages are automatically set to 1.0 per unit. The program

obtains the total fault current, bus voltages and line currents during the fault.

DOUBLE-LINE-GROUND FAULT



The program prompts the user to enter the faulted bus number and the fault impedance Zf.
The prefault bus voltages are defined by the reserved Vector V. The array V may be defined
or it is returned from the power flow programs Ifgauss, Ifnewton, decouple or perturb. If V
does not exist the prefault bus voltages are automatically set to 1.0 per unit. The program

obtains the total fault current, bus voltages and line currents during the fault.

SYMMETRICAL FAULT (BALANCED THREE - PHASE FAULT)

The program prompts the user to enter the faulted bus number and the fault impedance Zf.
The prefault bus voltages are defined by the reserved Vector V. The array V may be defined
or it is returned from the power flow programs Ifgauss, Ifnewton, decouple or perturb. If V
does not exist the prefault bus voltages are automatically set to 1.0 per unit. The program

obtains the total fault current, the postfault bus voltages and line currents.

Z BUILD CODE

The zero sequence impedances and the positive sequence impedances for the network were
computed using the zbuild code where the positive and the negative sequence impedances
were treated to be the same as indicated by the programs specifications.The network data for
the various sequence impences i.e the sequence network of its thevenin’s equivalent was

obtained as below:

The above sequence network was the run using the zbuild code to form the complex bus

impedance matrix by the method of building algorithm.

RESULTS

The following results were obtained after simulation of the codes using a matlab environment:



The complex bus impedance matrix

Zbusl =

0+ 0.14501

0+ 0.10501

0+ 0.13001

Zbus0 =

0+ 0.18201

0+ 0.05451

0+ 0.14001

Line-to-ground fault analysis

Single line to-ground fault at bus No. 1

Total fault current =

0+ 0.10501

0+ 0.14501

0+0.12001

0+ 0.05451

0+ 0.08641

0+ 0.06501

6.3559 per unit

0+ 0.13001

0+ 0.1200i

0+ 0.22001

0+ 0.14001

0+ 0.0650i

0+ 0.35001

Bus Voltages during the fault in per unit



No. Phasea Phaseb Phasec
1 0.0000 1.0414 1.0414
2 04396 09510 09510

3 0.1525 1.0108 1.0108

Line currents for fault at bus No. 1

From To  ----- Line Current Magnitude----

Bus Bus Phasea Phase Phase ¢
b

1 F 6.3559 0.0000 0.0000
2 1 22564 0.2225  0.2225
2 3 0.6780 0.0424  0.0424
3 1 0.6780 0.0424  0.0424
Single line to-ground fault at bus No. 2

Total fault current = 7.9708 per unit

Bus Voltages during the fault in per unit

No. Phasea Phaseb Phasec
1 0.2972  0.9401 0.9401
2 0.0000 09319 09319

3 0.1896 09355 0.9355



Line currents for fault at bus No. 2

From To  --—--- Line Current Magnitude----

Bus Bus Phasea Phase Phase ¢
b

1 2 19827 05679  0.5679
1 3 06111 0.1860  0.1860
2 F 79708 0.0000 0.0000
3 2 06111 0.1860  0.1860
Single line to-ground fault at bus No. 3

Total fault current= 3.7975 per unit

Bus Voltages during the fault in per unit

No. Phasea Phaseb Phasec

1 04937 1.0064 1.0064

2 0.6139 09671 0.9671

3 0.0000 1.0916 1.0916

Line currents for fault at bus No. 3



Bus Bus Phasea Phase Phase ¢
b

1 3 22785 0.0000 0.0000
2 1 05190 0.2152 0.2152
2 3 1.5190  0.0000  0.0000

3 F 3.7975  0.0000  0.0000

Line-to-line fault analysis

Line-to-line fault at bus No. 1

Total fault current= 5.9726 per unit

Bus Voltages during the fault in per unit

No. Phasea Phaseb Phasec
1 1.0000  0.5000 0.5000
2 1.0000 0.5541 0.5541

3 1.0000 0.5080 0.5080



From To W --—--- Line Current Magnitude----

Bus Bus Phasea Phase Phase ¢
b

1 F 0.0000 59726 5.9726

2 1 0.0000 19112 109112

2 3 0.0000 05973  0.5973

3 1 0.0000 05973  0.5973
Line-to-line fault at bus No. 2

Total fault current = 5.9726 per unit

Bus Voltages during the fault in per unit

No. Phasea Phaseb Phasec
1 1.0000  0.5541 0.5541
2 1.0000  0.5000  0.5000

3 1.0000 0.5218 0.5218

Line currents for fault at bus No. 2

From To  --—--- Line Current Magnitude----
Bus Bus Phasea Phaseb Phasec
1 2 0.0000 1.9112 1.9112

1 3 0.0000 05973  0.5973



2 F 0.0000 5.9726 5.9726
3 2 0.0000 0.5973 0.5973
Line-to-line fault at bus No. 3

Total fault current = 3.9365 per unit

Bus Voltages during the fault in per unit

No. Phasea Phaseb Phasec
1 1.0000 0.6128 0.6128
2 1.0000 0.6364 0.6364

3 1.0000 0.5000 0.5000

Line currents for fault at bus No. 3

From To  --—--- Line Current Magnitude----

Bus Bus Phasea Phase Phase ¢
b

1 3 0.0000 23619 23619
2 1 0.0000 0.3149 0.3149
2 3 0.0000 1.5746 1.5746

3 F 0.0000 3.9365 3.9365



Double line-to-ground fault analysis

Double line-to-ground fault at bus No.

1 Total fault current = 5.8939 per unit

Bus Voltages during the fault in per unit

No. Phasea Phaseb Phasec
1 1.0727  0.0000  0.0000
2 09008 03756 0.3756

3 10196 0.1322  0.1322

Line currents for fault at bus No. 1

From To W --—--- Line Current Magnitude----

Bus Bus Phasea Phase Phase ¢
b

1 F  0.0000 6.6601 6.6601
2 1 02063 22302 2.2302
2 3 0.0393  0.6843  0.6843

3 1 0.0393 0.6843  0.6843



Total fault current = 9.4414 per unit

Bus Voltages during the fault in per unit

No. Phasea Phaseb Phasec
1 0.8411 0.2894  0.2894
2 0.8155 0.0000 0.0000

3 0.8269 0.1835 0.1835

Line currents for fault at bus No. 2

From To W --—--- Line Current Magnitude----

Bus Bus Phasea Phase Phase ¢
b

1 2 0.6727 2.0868  2.0868
1 3 02203 0.6482  0.6482
2 F 0.0000 7.6129  7.6129
3 2 02203 0.6482  0.6482
Double line-to-ground fault at bus No.

3 Total fault current = 3.2609 per unit
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No. Phasea Phaseb Phasec
1 1.0109  0.4498  0.4498
2 0.9402 0.5362  0.5362

3 1.1413  0.0000  0.0000

Line currents for fault at bus No. 3

From To  ---—-- Line Current Magnitude----

Bus Bus Phasea Phase Phase ¢
b

1 3 0.0000 2.5565  2.5565
2 1 0.1848  0.4456  0.4456
2 3 0.0000 1.7043  1.7043

3 F 0.0000 4.2608 4.2608

Balanced three-phase fault analysis
Balanced three-phase fault at bus No. 1

Total fault current = 6.8966 per unit

Bus Voltages during fault in per unit

Bus Voltage Angle
No. Magnitude
degrees

1 0.0000 0.0000



2 0.2759  0.0000

3 0.1034  0.0000

Line currents for fault at bus No. 1

From To Current Angle
Bus Bus Magnitude
degrees

G 1 4.0000 -90.0000

1 F  6.8966 -90.0000

G 2 2.8966 -90.0000

2 1 22069 -90.0000

2 3 0.6897 -90.0000

3 1 0.6897 -90.0000
Balanced three-phase fault at bus No. 2

Total fault current = 6.8966 per unit

Bus Voltages during fault in per unit

Bus  Voltage Angle
No. Magnitude degrees
1 0.2759 0.0000
2 0.0000 0.0000

3 01724 0.0000



Line currents for fault at bus No, 2

From To Current Angle
Bus Bus Magnitude
degrees

G 1 2.8966 -90.0000

1 2 22069 -90.0000

1 3 0.6897 -90.0000

G 2 4.0000 -90.0000

2 F  6.8966 -90.0000

3 2 0.6897 -90.0000

Balanced three-phase fault at bus No. 3

Total fault current = 4.5455 per unit

Bus Voltages during fault in per unit

Bus  Voltage Angle
No. Magnitude degrees
1 0.4091 0.0000
2 04545 0.0000

3 0.0000 0.0000

Line currents for fault at bus No. 3



From To Current Angle

Bus Bus Magnitude degrees
G 1 23636 -90.0000
1 3 27273 -90.0000
G 2 21818 -90.0000
2 1 03636 -90.0000

2 3 1.8182 -90.0000

3 F 45455 -90.0000

DISCUSSION

Computation of fault currents in power system is best done by computer. Computer
formulation of the impedance matrix was accomplished by programming the four
modifications presented in chapter three. Care was taken to avoid the new- bus to new-bus
modification, which requires infinite entries into [Z]. This situation was avoided in two ways;
the buses were numbered to avoid the problem; a fictitious large impedance was inserted from
one of the new buss to reference that was taken as bus zero, to change its status to an old bus

in the next step. Complete modification was done using the old-bus- to new- bus method.

The procedure was followed in duplicate for the sequences since same values were used

for positive- and negative- sequence impedances.

In most fault calculation techniques, prefault, or load, component of current is neglected
usually on the assumption that currents throughout the system are zero prior to the fault, this is
almost never strictly true; however the error produced is small, since the fault currents are
generally much larger than the load currents. The load currents and the fault currents are
almost 90° displaced in phase from each other, making their sum more closely equal to the
large component than would have been the case if the currents were in phase. Besides,
selecting precise values for all prefault currents is somewhat speculative, since there is no way

of predicting what the loaded state of the system is when a fault occurs.



CONCLUSION

The fault analysis codes were able to generate accurate results based on the input data defined
by the theory of symmetrical components. It was noted that only symmetrical fault analysis
can reveal the post fault bus voltages while the unbalanced faults analysis can only generate
results for total fault current, bus voltages and line currents during the fault. Therefore the

project can be regarded as successfully done.

RECOMMENDATIONS

The local power generating companies e.g. KenGen and power transmission and distribution
companies e.g. KPLC should establish a fully - fledged faults analysis department in their
institutions to entrench and implement modern computerised methods of electrical power
systems fault analysis that would provide more accurate data that can be used to size and set

protective devices adequately.
For purposes of future work, the following should be given due attention:
1. Incorporate computer monitoring software for fault detection

2. More work to be done on the analysis so that it can reflect the post fault

security of a system.

3. Computerised technique on interfacing of fault detection application and
protection systems e.g. circuit breakers needs to be studied to improve the switching

speed of our protective devices.

4. There is need to focus on the relevance of the fibre optics technology to fault
studies so as to to have our fault analysis softwares embedded in the

communication link for efficient customer notification services by KPLC on fault

occurrences.
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APPENDIX A
MATLAB CODES

Zhus IMPEDANCE MATRIX

% This program forms the complex bus impedance matrix by the method
% of building algorithm. Bus zero is taken as reference.

function [Zbus] = zbuild(linedata)
nl = linedata(:,1); nr = linedata(:,2); R = linedata(:,3);
X = linedata(:,4);
nbr=length(linedata(:,1)); nbus = max(max(nl), max(nr));
for k=1:nbr
if R(k) == inf | X(k) ==inf
R(k) =99999999; X (k) = 99999999;
else,
end end

ZB =R +j*X;
Zbus = zeros(nbus, nbus);
tree=0; %% %%new
% Adding a branch from a new bus to reference bus 0
for I = 1:nbr
ntree(I) = 1;
if nl(I) == 0 | nr(I) ==
if nl(I) == 0 n = nr(]);
elseif nrl) == 0 n =
nl(I); end
if abs(Zbus(n, n)) == 0 Zbus(n,n) = ZB(I);tree=tree+1; %%new
else Zbus(n,n) = Zbus(n,n)*ZB(I1)/(Zbus(n,n) + ZB(I));
end
ntree(l) = 2;
else,end
end

% Adding a branch from new bus to an existing bus
while tree < nbus %%% new

for n = 1:nbus
nadd = 1;
if abs(Zbus(n,n)) ==
for I = 1:nbr
ifnadd == 1;
if nl(I) =n | nr(I) ==n



if nl(I) == n k = nr(D);
elseif nr(I) == n k =
nl(I); end
if abs(Zbus(k,k)) ~=
0 for m = 1:nbus
ifm~=n
Zbus(m,n) = Zbus(m,k);
Zbus(n,m) = Zbus(m.,k);
else, end
end
Zbus(n,n) = Zbus(k,k) + ZB(I); tree=tree+1; %%new
nadd = 2; ntree(I) = 2;
else,
end else,
end
else,
end end
else, end
end

end %%%%%%new

% Adding a link between two old buses
for n = l:nbus
for I = 1:nbr
if ntree(I) ==
if nl(I) ==n | nr(I) ==n
ifnll)==n k=nr(l);
elseif nr(I) ==nk =
nl(I); end
DM = Zbus(n,n) + Zbus(k,k) + ZB(I) - 2*Zbus(n,k);
for jj = 1:nbus
AP = Zbus(jj,n) - Zbus(jj,k);
for kk = 1:nbus
AT = Zbus(n,kk) - Zbus(k, kk);
DELZ(jj,kk) = AP*AT/DM,;
end
end
Zbus = Zbus - DELZ;
ntree(l) = 2;
else,en
d else,end
end
end

Double- Line- Ground fault

% The program dlgfault is designed for the double line-to-ground
% fault analysis of a power system network. The program requires



% the positive-, negative- or zero-sequence bus impedance matrices,
% Zbusl Zbus2,and Zbus0. The bus impedances matrices may be defined
% by the user, obtained by the inversion of Ybus or it may be

% determined either from the function Zbus =zbuild(zdata)

% or the function Zbus = zbuildpi(linedata, gendata, yload).

% The program prompts the user to enter the faulted bus number

% and the fault impedance Zf. The prefault bus voltages are

% defined by the reserved Vector V. The array V may be defined or
% it is returned from the power flow programs lfgauss, lfnewton,

% decouple or perturb. If V does not exist the prefault bus voltages
% are automatically set to 1.0 per unit. The program obtains the

% total fault current, bus voltages and line currents during the fault.

function dlgfault(zdata0, Zbus0, zdatal, Zbus1, zdata2, Zbus2, V)
if exist('zdata2') ~= 1

zdata2=zdatal;

else, end

if exist('Zbus2') ~= 1

Zbus2=7busl1;

else, end

nl = zdatal(:,1); nr = zdatal(:,2);

nl0 = zdata0(:,1); nr0 = zdata0(:,2);
nbr=length(zdatal(:,1)); nbus = max(max(nl), max(nr));
nbrO=length(zdata0(:,1));

RO = zdata0(:,3); X0 =zdata0(:,4);

R1 = zdatal(:,3); X1 =zdatal(:,4);

R2 = zdata2(:,3); X2 =zdata2(:,4);

for k = 1:nbr0
if RO(k) == inf | X0(k) == inf
RO(k) =99999999; X0(k) = 999999999;
else,

end end

ZB1=R1+j*X1; ZB0=R0 +j*XO0;

ZB2 =R2 +j*X2;

if exist('V") == 1

if length(V) == nbus

V0=YV,

else, end
else, VO = ones(nbus, 1) + j*zeros(nbus, 1);
end

fprintf("\nDouble line-to-ground fault analysis \n")
ff=999;



while ff> 0
nf = input('Enter Faulted Bus No. ->");
while nf <= 0 | nf > nbus
fprintf('Faulted bus No. must be between 1 & %g \n', nbus)
nf = input('Enter Faulted Bus No. ->");
end
fprintf("\nEnter Fault Impedance Zf=R + j*X in ")
Zf = input(‘complex form (for bolted fault enter 0). Zf=");
fprintf(’ \n")
fprintf('Double line-to-ground fault at bus No. %g\n’, nf)
a =cos(2*pi/3)+j*sin(2*pi/3);
sctm=[111;1a"2a;1aa"2];

Z11 = Zbus2(nf, nf)*(Zbus0(nf, nf)+ 3*Zf)/(Zbus2(nf, nf)+ZbusO(nf, nf)+3*Zf);
Ial = VO(nf)/(Zbus1(nf,nf)+Z11);

[a2 =-(VO(nf) - Zbus1(nf, nf)*1al)/Zbus2(nf,nf);

[a0 =-(VO(nf) - Zbus1(nf, nf)*1al)/(ZbusO(nf,nf)+3*Zf);

1012=[1a0; Ial; Ia2];

Ifabc = sctm*1012; Ifabcm=abs(Ifabc);

Ift = Ifabc(2)+Ifabc(3);

Iftm = abs(Ift);

fprintf('Total fault current = %9.4f per unit\n\n', Iftm)
fprintf('Bus Voltages during the fault in per unit \n\n')
fprintf(' Bus ------- Voltage Magnitude \n")
fprintf(' No. Phase a Phase b Phase ¢ \n')

for n = 1:nbus
V{0(n)= 0 - ZbusO(n, nf)*Ia0;
Vfl(n)= VO(n) - Zbusl(n, nf)*Ial;
V1£2(n)= 0 - Zbus2(n, nf)*Ia2;
Vabce = sctm*[V{0(n); Vfl(n); VI2(n)];
Va(n)=Vabc(1); Vb(n)=Vabc(2); Ve(n)=Vabe(3);
fprintf(' %5¢',n)
fprintf("' %11.41, abs(Va(n))),fprintf(" %11.4f, abs(Vb(n)))
fprintf(' %11.4f\n', abs(Vc(n)))
end
fprintf(’ \n")
fprintf('Line currents for fault at bus No. %g\n\n', nf)
fprintf'  From To  ----- Line Current Magnitude \n'")
fprintf' Bus  Bus Phasea Phaseb Phasec
\n") for n= 1:nbus
for I = l:nbr
if nl(l) =n | nr(I) ==n
if nl(I) ==n k = nr(l);
elseif nr(I) == n k = nl(I);
end
ifk~=0
Ink1(n, k) = (Vfl(n) - Vfl(k))/ZB1(1);
Ink2(n, k) = (V2(n) - VI2(k))/ZB2(]);



else,
end else,
end
end
for I = 1:nbr0
if nl0(I) ==n | nrO(I) ==n
if nl0(I) ==n k = nr0();
elseif nrO(I) == n k = nl0(]);
end
ifk~=0
InkO(n, k) = (VI0(n) - VIO(k))/ZB0(I);
else,
end else,
end
end
for I = l:nbr
if nl(l) ==n | nr(I) ==n
if nlI) ==n k = nr(l);
elseif nr(I) ==n k = nl(I);
end
ifk~=0
Inkabc = sctm*[InkO(n, k); Inkl(n, k); Ink2(n,
k)]; Inkabcm = abs(Inkabc); th=angle(Inkabc);
if real(Inkabc(2)) <0
fprintf("%7¢', n), fprintf('%10g', k),
fprintf(" %11.4f, abs(Inkabc(1))),fprintf(' %11.4f, abs(Inkabc(2)))
fprintf(" %11.4f\n’', abs(Inkabc(3)))
elseif real(Inkabe(2)) ==0 & imag(Inkabc(2)) > 0
fprintf("%7¢', n), fprintf("%10g', k),
fprintf(’ %11.4f, abs(Inkabc(1))),fprintf(" %11.4f, abs(Inkabc(2)))
fprintf(" %11.4f\n’', abs(Inkabc(3)))
else,
end else,
end
else, end
end
if n==nf
fprintf("%7¢',n), fprintf(’ F),
fprintf(" %11.4f, Ifabcm(1)),fprintf(' %11.4f, Ifabcm(2))
fprintf(’ %11.4f\n', Ifabcm(3))
else,
end end
resp=0;
while stremp(resp, 'n')~=1 & stremp(resp, 'N')~=1 & stremp(resp, 'y')~=1 & stremp(resp,
"Y')~=1
resp = input('Another fault location? Enter "y" or "n" within single quote ->");
if stremp(resp, 'n')~=1 & stremp(resp, N')~=1 & stremp(resp, 'y )~=1 & stremp(resp,
"Y')~=1
fprintf("\n Incorrect reply, try again \n\n'), end
end
ifresp=="y' | resp=="Y"
nf = 999;
else ff=0; end



end % end for while

Line- Ground fault

% The program Igfault is designed for the single line-to-ground

% fault analysis of a power system network. The program requires

% the positive-, negative- and zero-sequence bus impedance matrices,
% Zbusl Zbus2,and Zbus0.The bus impedances matrices may be defined
% by the user, obtained by the inversion of Ybus or it may be

% determined either from the function Zbus =zbuild(zdata)

% or the function Zbus = zbuildpi(linedata, gendata, yload).

% The program prompts the user to enter the faulted bus number

% and the fault impedance Zf. The prefault bus voltages are

% defined by the reserved Vector V. The array V may be defined or
% it is returned from the power flow programs lfgauss, Ifnewton,

% decouple or perturb. If V does not exist the prefault bus voltages

% are automatically set to 1.0 per unit. The program obtains the

% total fault current, bus voltages and line currents during the fault.

function Igfault(zdata(, Zbus0, zdatal, Zbusl1, zdata2, Zbus2, V)
if exist('zdata2") ~= 1

zdata2=zdatal;

else, end

if exist('Zbus2') ~= 1

Zbus2=Z7busl1;

else, end

nl = zdatal(:,1); nr = zdatal(:,2);

nl0 = zdata0(:,1); nr0 = zdata0(:,2);
nbr=length(zdatal(:,1)); nbus = max(max(nl), max(nr));
nbrO=length(zdata0(:,1));

RO = zdata0(:,3); X0 =zdata0(:,4);

R1 = zdatal(:,3); X1 =zdatal(:,4);



B2 = zdatal(:.3); X2 = zdatal(..4).

for k=1:nbr0
if RO(k)==inf | X0(k) ==inf
RO(k) =99999999; X0(k) = 99999999;
else,
end end
ZB1=R1 +j*X1; ZB0 = RO + j*XO0;
ZB2 =R2 +j*X2;

if exist('V') == 1
if length(V) == nbus
V=YV,
else, end
else, VO = ones(nbus, 1) + j*zeros(nbus, 1);
end
fprintf("\nLine-to-ground fault analysis \n')
ff=999;
while ff> 0
nf = input('Enter Faulted Bus No. ->");
while nf <= 0 | nf > nbus
fprintf('Faulted bus No. must be between 1 & %g \n', nbus)
nf = input('Enter Faulted Bus No. ->");
end
fprintf("\nEnter Fault Impedance Zf =R + j*X in ")
Zf = input('complex form (for bolted fault enter 0). Zf=");
fprintf(’ \n")
fprintf('Single line to-ground fault at bus No. %g\n', nf)
a =cos(2*pi/3)+j*sin(2*pi/3);
sctm=[111;1a"2a;1aa"2];
Ia0 = VO(nf)/(Zbus1(nf,nf)+Zbus2(nf, nf)+ Zbus0(nf, nf)+3*Zf); la1=Ia0; la2=Ia0;
1012=[1a0; Ial; Ia2];
Ifabc = sctm*1012;
Ifabem = abs(Ifabc);
fprintf('Total fault current = %9.4f per unit\n\n', [fabcm(1))
fprintf('Bus Voltages during the fault in per unit \n\n')
fprintf("  Bus = ----—-- Voltage Magnitude \n")
fprintf(' No. Phasea Phaseb Phasec\n')

for n = l:nbus

V{0(n)= 0 - ZbusO(n, nf)*1a0;

Vfl(n)= VO(n) - Zbusl(n, nf)*Ial;

V12(n)= 0 - Zbus2(n, nf)*Ia2;

Vabce = sctm*[V{0(n); Vfl(n); VI2(n)];
Va(n)=Vabc(1); Vb(n)=Vabc(2); Vc(n)=Vabe(3);
fprintf(' %5¢',n)

fprintf(’ %11.4f, abs(Va(n))),fprintf(' %11.4f, abs(Vb(n)))
fprintf(’' %11.4f\n', abs(Vc(n)))

end

fprintf(' \n")



fprintf{’Line currents for fault at bus No. %g'n'n', nf)

fporintf"  From To  ----- Line Current Magnitude \n")
fprintf("  Bus Bus Phasea Phaseb Phasec\n')
for n= l:nbus
for 1 =
1:nbr
if nl(I) =n | nr(I) ==n
if nl(I) ==n k = nr(l);
elseif nr(I) == n k = nl(I);
end
ifk~=0
Ink1(n, k) = (Vfl(n) - Vf1(k))/ZB1(D);
Ink2(n, k) = (V2(n) - VI2(k))/ZB2(1);
else,
end else,
end
end
for I = 1:nbr0
if nl0(I) ==n | nrO(I) ==n
if nl0(I) ==n k = nr0(I);
elseif nrO(I) == n k = nl0(1);
end
ifk~=0
InkO(n, k) = (VIO(n) - V10(k))/ZB0(1);
else,
end else,
end
end
for I = L:nbr
if nl(l) =n | nr(I) ==n
if nlI) ==n k = nr(I);
elseif nr(I) == n k = nl(I);
end
ifk~=0
Inkabc = sctm*[InkO(n, k); Inkl(n, k); Ink2(n,
k)]; Inkabecm = abs(Inkabc); th=angle(Inkabc);
if real(Inkabec(1)) > 0
fprintf("%7¢’, n), fprintf('%10g', k),
fprintf(’ %11.4f, abs(Inkabc(1))),fprintf(" %11.4f, abs(Inkabc(2)))
fprintf("' %11.4f\n’', abs(Inkabc(3)))
elseif real(Inkabe(1)) ==0 & imag(Inkabc(1)) <0
fprintf("%7¢', n), fprintf('%10g', k),
fprintf(’ %11.4f, abs(Inkabc(1))),fprintf(" %11.4f, abs(Inkabc(2)))
fprintf(" %11.4f\n’, abs(Inkabc(3)))
else,
end else,
end
else, end
end
if n==nf
fprintf("%7¢',n), fprintf(’ F),
fprintf(" %11.4f, Ifabcm(1)),fprintf(' %11.4f, Ifabcm(2))
fprintf(’ %11.4f\n', Ifabcm(3))
else, end



end
resp=0;
while stremp(resp, 'n')~=1 & strcmp(resp, 'N')~=1 & stremp(resp, 'y')~=1 & stremp(resp,
Y')~=1
resp = input('Another fault location? Enter "y" or "n" within single quote ->");
if stremp(resp, 'n')~=1 & stremp(resp, N')~=1 & stremp(resp, 'y')~=1 & stremp(resp,
Y')~=1
fprintf("\n Incorrect reply, try again \n\n'), end
end
ifresp=="y' | resp=="Y"
nf =999;
else ff=0; end
end % end for while
%Ink0
%Ink1
%Ink?2

Line- line fault

% The program llfault is designed for the line-to-line

% fault analysis of a power system network. The program requires
% the positive- and negative-sequence bus impedance matrices,

% Zbus function Zbus = zbuildpi(linedata, gendata, yload).

% The program prompts the user to enter the faulted bus number

% and the fault impedance Zf. The prefault bus voltages are

% defined by the reserved Vector V. The array V may be defined or
% it is returned from the power flow programs lfgauss, lfnewton,
% decouple or perturb. If V does not exist the prefault bus voltages
% are automatically set to 1.0 per unit. The program obtains the

% total fault current, bus voltages and line currents during the fault.

function llfault(zdatal, Zbusl, zdata2, Zbus2, V)
if exist('zdata2") ~= 1

zdata2=zdatal;

else, end

if exist('Zbus2") ~= 1

Zbus2=7Zbusl1;

else, end

nl = zdatal(:,1); nr = zdatal(:,2);

R1 =zdatal(:,3); X1 = zdatal(:,4);

R2 = zdata2(:,3); X2 = zdata2(:,4);

7ZB1 =RI1+j*X1; ZB2 =R2 +j*X2;
nbr=length(zdatal(:,1)); nbus = max(max(nl), max(nr));



if exist('V') == 1
if length(V) == nbus
Vo=V,
else, end
else, VO = ones(nbus, 1) + j*zeros(nbus, 1);
end
fprintf("\nLine-to-line fault analysis \n')
ff=999;
while ff> 0
nf = input('Enter Faulted Bus No. ->");
while nf <= 0 | nf > nbus
fprintf('Faulted bus No. must be between 1 & %g \n', nbus)
nf = input('Enter Faulted Bus No. ->);
end
fprintf("\nEnter Fault Impedance Zf=R +j*X in ")
Zf = input('complex form (for bolted fault enter 0). Zf =");
fprintf(’ \n")
fprintf('Line-to-line fault at bus No. %g\n', nf)
a =cos(2*pi/3)+j*sin(2*pi/3);
sctm=[111;1a"2a;1aa"2];
1a0=0;
Ial = VO(nf)/(Zbus1(nf,nf)+Zbus2(nf, nf)+Zf); la2=-Ial;
1012=[1a0; Ial; Ia2];
Ifabc = sctm*1012;
Ifabecm = abs(Ifabc);
fprintf('Total fault current = %9.4f per unit\n\n', Ifabcm(2))
fprintf('Bus Voltages during the fault in per unit \n\n')
fprintf("  Bus  -----—-- Voltage Magnitude \n")
fprintf('  No. Phasea Phaseb Phasec\n')

for n = 1:nbus

V{0(n)= 0;

Vfl(n)= VO(n) - Zbusl(n, nf)*Ial;

V12(n)= 0 - Zbus2(n, nf)*Ia2;

Vabc = sctm*[V{0(n); Vfl1(n); VI2(n)];

Va(n)=Vabc(1); Vb(n)=Vabc(2); Ve(n)=Vabe(3);

fprintf(’ %5g',n)

fprintf("' %11.4f, abs(Va(n))),fprintf(’ %11.4f, abs(Vb(n)))
fprintf(' %11.4f\n', abs(Vc(n)))

end

fprintf(’ \n")

fprintf('Line currents for fault at bus No. %g\n\n’, nf)
fprintf' From To  ----- Line Current Magnitude \n')
fprintf('  Bus Bus Phasea Phaseb Phasec\n')

for n= 1:nbus

for [ = l:nbr
if nl(I) =n | nr(I) ==n
if nl(I) == k = nr(I);

elseif nr(I) == n k = nl(I);



end
ifk~=0
InkO(n, k) = 0;
Ink1(n, k) = (Vfl(n) - Vf1(k))/ZB1(1);
Ink2(n, k) = (V2(n) - VI2(k))/ZB2(1);

Inkabc = sctm*[InkO(n, k); Ink1(n, k); Ink2(n, k)];
Inkabcm = abs(Inkabc); th=angle(Inkabc);
if real(Inkabc(2)) <0

fprintf('%7¢g', n), fprintf('%10g’, k),
fprintf(" %11.4f, abs(Inkabc(1))),fprintf(’ %11.4f, abs(Inkabc(2)))
fprintf(" %11.4f\n’, abs(Inkabc(3)))
elseif real(Inkabc(2)) ==0 & imag(Inkabc(2)) > 0
fprintf("%7¢', n), fprintf("%10g', k),
fprintf(" %11.4f, abs(Inkabc(1))),fprintf(’ %11.4f, abs(Inkabc(2)))
fprintf("' %11.4f\n’', abs(Inkabc(3)))
else,
end else,
end
else, end
end
if n==nf
fprintf("%7¢',n), fprintf(’ F),
fprintf(’ %11.41, Ifabcm(1)),fprintf(' %11.4f, Ifabcm(2))
fprintf(’ %11.4f\n', Ifabcm(3))
else,
end end
resp=0;
while stremp(resp, 'n')~=1 & stremp(resp, 'N')~=1 & stremp(resp, 'y')~=1 & stremp(resp,
Y'~=1
resp = input('Another fault location? Enter "y" or "n" within single quote ->");
if stremp(resp, 'n')~=1 & stremp(resp, N')~=1 & stremp(resp, 'y')~=1 & stremp(resp,
"Y'~=1
fprintf("\n Incorrect reply, try again \n\n'), end
end
ifresp=="y' | resp=="Y"
nf' = 999;
else ff=0; end
end % end for while

Balanced Three- phase fault

% The program symfault is designed for the balanced three-phase
% fault analysis of a power system network. The program requires
% the bus impedance matrix Zbus. Zbus may be defined by the

% user, obtained by the inversion of Ybus or it may be

% determined either from the function Zbus =zbuild(zdata)

% or the function Zbus = zbuildpi(linedata, gendata, yload).



% The program prompts the user to enter the faulted bus number

% and the fault impedance Zf. The prefault bus voltages are

% defined by the reserved Vector V. The array V may be defined or

% it is returned from the power flow programs lfgauss, lfnewton,

% decouple or perturb. If V does not exist the prefault bus voltages

% are automatically set to 1.0 per unit. The program obtains the

% total fault current, the postfault bus voltages and line currents.function symfault(zdata,
Zbus, V)

nl = zdata(:,1); nr = zdata(:,2); R = zdata(:,3);
X = zdata(:,4);
nc = length(zdata(1,:));
if nc >4
BC = zdata(:,5);
elseif nc ==4, BC = zeros(length(zdata(:,1)), 1);
end
ZB =R +j*X;
nbr=length(zdata(:,1)); nbus = max(max(nl), max(nr));
if exist('V') == 1
if length(V) == nbus
Vo=V,
else, end
else, VO = ones(nbus, 1) + j*zeros(nbus, 1);
end
fprintf("\Three-phase balanced fault analysis \n')
ff=999;
while ff> 0
nf = input('Enter Faulted Bus No. ->");
while nf <=0 | nf > nbus
fprintf('Faulted bus No. must be between 1 & %g \n', nbus)
nf = input('Enter Faulted Bus No. ->");
end
fprintf("\nEnter Fault Impedance Zf =R + j*X in ")
Zf = input(‘complex form (for bolted fault enter 0). Zf=");
fprintf(’ \n")
fprintf('Balanced three-phase fault at bus No. %g\n', nf)

If = VO(nf)/(Zf + Zbus(nf, nf));

Ifm = abs(If); Ifmang=angle(If)*180/pi; fprintf('Total
fault current = %8.4f per unit \n\n', Ifm)

Y% fprintf(" p.u. \n\n', Ifm)

fprintf('Bus Voltages during fault in per unit \n\n')
fprintf(" Bus  Voltage Angle\n")

fprintf' No. Magnitude degrees\n')

for n = l:nbus
if n==nf
Vi(nf) = VO(nf)*Z{/(Zf + Zbus(nf,nf)); Vim = abs(V{(nf)); angv=angle(V{(nf))*180/pi;
else, Vi(n) = VO(n) - VO(n)*Zbus(n,nf)/(Zf + Zbus(nf,nf));
Vim = abs(Vf(n)); angv=angle(Vf(n))*180/pi;



end
fprintf(’ %4g', n), fprintf('%13.4f, Vim),fprintf('%13.4f\n', angv)

end
fprintf(' \n")

fprintf('Line currents for fault at bus No. %g\n\n', nf)
fprintf'  From  To Current Angle\n')
fprintf'  Bus  Bus Magnitude degrees\n')

for n= 1:nbus
%Ign=0;
for I = L:nbr
if nl(I) =n | nr(I) ==n
if nl(I) ==n k = nr(l);
elseif nr(I) == n k = nl(1);
end
if k==0
Ink = (VO(n) - Vf(n))/ZB(I);
Inkm = abs(Ink); th=angle(Ink);
%ifth <=0
if real(Ink) > 0
fprintf(" G, fprintf('%7g',n), fprintf('%12.4f,
Inkm) fprintf('%12.4f\n', th*180/pi)
elseif real(Ink) ==0 & imag(Ink) <0
fprintf(" G, fprintf('%7g',n), fprintf('%12.4f,
Inkm) fprintf('%12.4f\n', th*180/pi)
else, end
Ign=Ink;
elseifk ~=0
Ink = (Vf(n) - V1(k))/ZB(D)+BC()*Vf(n);
%Ink = (Vf(n) - V1(k))/ZB();
Inkm = abs(Ink); th=angle(Ink);
%Ign=Ign+Ink;
%ifth <=0
if real(Ink) > 0
fprintf("%7¢', n), fprintf('%10g', k),
fprintf("%12.4f, Inkm), fprintf('%12.4f\n’, th*180/pi)
elseif real(Ink) ==0 & imag(Ink) <0
fprintf("%7¢', n), fprintf('%10g', k),
fprintf("%12.4f, Inkm), fprintf('%12.4f\n', th*180/pi)
else, end
else, end
else, end
end

if n==nf
fprintf("%7¢',n), fprintf(’ F"), fprintf('%12.4f,
Ifm) fprintf('%12.4f\n', [fmang)



else, end
end

resp=0;

while stremp(resp, 'n')~=1 & stremp(resp, 'N')~=1 & stremp(resp, 'y')~=1 & stremp(resp,
"Y')~=1

resp = input('Another fault location? Enter "y" or "n" within single quote ->");

if stremp(resp, 'n")~=1 & stremp(resp, 'N')~=1 & strcmp(resp, 'y")~=1 & stremp(resp,

Y')~=1
fprintf("\n Incorrect reply, try again \n\n'), end
end
ifresp=="y' | resp =="Y"
nf=999;

else ff=0; end
end % end for while

NETWORK CODE

zdatal=[0 1 0 0.25

0 2 0 025
1 2 0 0125
1 3 0 015

2 3 0 025

0 2 0 0.1

1 2 0 0.3

1 3 0 0.35

2 3 0 0.7125];

zdata2=zdatal;

Zbus1=zbuild(zdatal)

Zbus0=zbuild(zdata0)

Zbus2=7Zbusl1;

symfault(zdatal,Zbus1)

lgfault(zdata0, Zbus0, zdatal, Zbus1, zdata2, Zbus2)
lIfault(zdatal, Zbusl, zdata2, Zbus2)
dlgfault(zdata0,Zbus0,zdatal,Zbus1,zdata2,Zbus2)
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UNIT-5

STABILITY ANALYSIS

INTRODUCTION

Power system stability of modern large inter-connected systems is a major problem for
secure operation of the system. Recent major black-outs across the globe caused by system
instability, even in very sophisticated and secure systems, illustrate the problems facing
secure operation of power systems. Earlier, stability was defined as the ability of a system to
return to normal or stable operation after having been subjected to some form of disturbance.
This fundamentally refers to the ability of the system to remain in synchronism. However,
modern power systems operate under complex interconnections, controls and extremely
stressed conditions. Further, with increased automation and use of electronic equipment, the
quality of power has gained utmost importance, shifting focus on to concepts of voltage
stability, frequency stability,

inter-area oscillations etc.

The IEEE/CIGRE Joint Task Force on stability terms and conditions have proposed the
following definition in 2004: “Power System stability is the ability of an electric power
system, for a given initial operating condition, to regain a state of operating equilibrium
after being subjected to a physical disturbance, with most system variables bounded, so that
practically the entire system remains intact”. The Power System is an extremely non-linear
and dynamic system, with operating parameters continuously varying. Stability is hence, a
function of the initial operating condition and the nature of the disturbance. Power systems
are continually subjected to small disturbances in the form of load changes. The system must
be in a position to be able to adjust to the changing conditions and operate satisfactorily. The
system must also withstand large disturbances, which may even cause structural changes due
to isolation of some faulted elements. A power system may be stable for a particular (large)
disturbance and unstable for another disturbance. It is impossible to design a system which is
stable under all disturbances. The power system is generally designed to be stable under
those disturbances which have a high degree of occurrence. The response to a disturbance is
extremely complex and involves practically all the equipment of the power system. For
example, a short circuit leading to a line isolation by circuit breakers will cause variations in
the power flows, network bus voltages and generators rotor speeds. The voltage variations
will actuate the voltage regulators in the system and generator speed variations will actuate
the prime mover governors; voltage and frequency variations will affect the system loads. In
stable systems, practically all generators and loads remain connected, even though parts of
the system may be isolated to preserve bulk operations. On the other hand, an unstable
system condition could lead to cascading outages and a shutdown of a major portion of the
power system.
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ROTOR ANGLE STABILITY

Rotor angle stability refers to the ability of the synchronous machines of an interconnected
power system to remain in synchronism after being subjected to a disturbance. Instability
results in some generators accelerating (decelerating) and losing synchronism with other
generators. Rotor angle stability depends on the ability of each synchronous machine to
maintain equilibrium between electromagnetic torque and mechanical torque. Under steady
state, there is equilibrium between the input mechanical torque and output electromagnetic
torque of each generator, and its speed remains a constant. Under a disturbance, this
equilibrium is upset and the generators accelerate/decelerate according to the mechanics of a
rotating body. Rotor angle stability is further categorized as follows:

Small single (or small disturbance) rotor angle stability

It is the ability of the power system to maintain synchronism under small disturbances. In
this case, the system equation can be linearized around the initial operating point and the
stability depends only on the operating point and not on the disturbance. Instability may
result in

(1) A non oscillatory or a periodic increase of rotor angle

(i) (1) Increasing amplitude of rotor oscillations due to insufficient damping.
The first form of instability is largely eliminated by modern fast acting voltage regulators
and the second form of instability is more common. The time frame of small signal
stability is of the order of 10-20 seconds after a disturbance.

Large-signal rotor angle stability or transient stability

This refers to the ability of the power system to maintain synchronism under large
disturbances, such as short circuit, line outages etc. The system response involves large
excursions of the generator rotor angles. Transient stability depends on both the initial
operating point and the disturbance parameters like location, type, magnitude etc. Instability
is normally in the form of a periodic angular separation. The time frame of interest is 3-5
seconds after disturbance. The term dynamic stability was earlier used to denote the steady-
state stability in the presence of automatic controls (especially excitation controls) as
opposed to manual controls. Since all generators are equipped with automatic controllers
today, dynamic stability has lost relevance and the Task Force has recommended against its
usage.

MECHANICS OF ROTATORY MOTION

Since a synchronous machine is a rotating body, the laws of mechanics of rotating bodies are
applicable to it. In rotation we first define the fundamental quantities. The angle m is
defined, with respect to a circular arc with its center at the vertex of the angle, as the ratio of
the arc length s to radius r.
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The unit is radian. Angular velocity oy, is defined as
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dt

and angular acceleration as
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dt dt?
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(1)
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The torque on a body due to a tangential force F at a distance r from axis of rotation is
given by

T=xF (4)
The total torque is the summation of infinitesimal forces, given by

T=[rdF (35)
The unit of torque is N-m. When torque is applied to a body, the body experiences
angular acceleration. Each particle experiences a tangential accelerationa =ra ., where r
is the distance of the particle from axis of rotation. The tangential force required to
accelerate a particle of mass dm is

dF=adm=radm (6)

The torque required for the particle is

dT =rdF =" o dm (7)
and that required for the whole body is given by

B= ctf r’dm =la (8)
Here

I-= I r“dm (9)

is called the moment of inertia of the body. The unit is Kg — m”. If the torque is assumed
to be the result of a number of tangential forces F, which act at different points of the
body

T=3 tF
Now each force acts through a distance

ds =r db,
The work done is > F . ds

dW=)Y Frdo,=d8, T

W= [Tdb, (10)
and = d_W (11)
dea,

Thus the unit of torque may also be Joule per radian.

The power is defined as rate of doing work. Using (11)
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Pzd—szdg"‘zT(e)m (12)
dt dr

The angular momentum M is defined as

and the kinetic energy is given by
| g |1
KE=—-lw, =—Mon (14)
2 2
From (14) we can see that the unit of M is seen to be J-sec/rad.
SWING EQUATION:
From (8)
Ia=T
2
or Id ?’" =F (15)
dt-

Here T is the net torque of all torques acting on the machine, which includes the shaft
torque (due to prime mover of a generator or load on a motor), torque due to rotational

losses (friction, windage and core loss) and electromagnetic torque.

Let Ty, = shaft torque or mechanical torque corrected for rotational losses

T, = Electromagnetic or electrical torque

For a generator Ty, tends to accelerate the rotor in positive direction of rotation and for a

motor retards the rotor.

The accelerating torque for a generator

Ta= Thr—T, (16)
Under steady-state operation of the generator, Ty, is equal to Te and the accelerating
torque is zero. There is no acceleration or deceleration of the rotor masses and the
machines run at a constant synchronous speed. In the stability analysis in the following
sections, Ty, is assumed to be a constant since the prime movers (steam turbines or hydro
turbines) do no act during the short time period in which rotor dynamics are of interest in

the stability studies.
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Now (15) has to be solved to determine &, as a function ol time. Since &,
measured with respect to a stationary reference axis on the stator, it is the measure of tt
absolute rotor angle and increases continuously with time even at constant synchronot

speed. Since machine acceleration /deceleration is always measured relative 1

synchronous speed, the rotor angle is measured with respect to a synchronously rotatir
reference axis. Let

csm :Qm - (ﬂs.- ! (IT}

il
where ¢, is the synchronous speed in mechanical rad/s and &, is the angul:

displacement in mechanical radians.

Taking the derivative of (17) we get

dfs‘"i dgm
A i mﬁﬂl
dt di
d*s d*e
qm = .}m ( 1 8}
di” i
Substituting (18) in (15) we get
d*s
dt”
Multiplying by @, on both sides we gel
d*d,
@, —" =@, (Ty—T.) N-m (20)
di
From (12) and (13), we can write
d*s
M 1m :Pm_Pa W (21)
dr”

where M 1s the angular momentum, also called nertia constant
Py, = shaft power input less rotational losses
P. = Electrical power output corrected for losses

P, = acceleration power
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M depends on the angular velocity @, . and hence is strictly not a constant, because @,
deviates from the synchronous speed during and after a disturbance. However, under
stable conditions @, does not vary considerably and M can be treated as a constant. (21)

is called the “Swing equation”. The constant M depends on the rating of the machine and
varies widely with the size and type of the machine. Another constant called H constant
(also referred to as inertia constant) is defined as
stored kinetic energy in mega joules
at sychronous speed

H= _ — MJIMVA (22)
Machine rating in MVA

H falls within a narrow range and typical values are given in Table 9.1.
If the rating of the machine is G MV A, from (22) the stored kinetic energy is GH
Mega Joules. From (14)

GH:%M@mhﬂ 23)
or
7
M= 26l MIJ-s/mech rad (24)
@y

The swing equation (21) is written as

ur %8, BB P

@ dt* G G

sm

(25)

In (.25) o, is expressed in mechanical radians and @,,, in mechanical radians per second
(the subscript m indicates mechanical units). If 0 and @ have consistent units then mec

2H d*6 _
o, dr’

P,=P—P. pu (20)

a 1

o) @0d Py is

. : ) D
Here @, is the synchronous speed in electrical rad/s (w, =(IE](0

acceleration power in per unit on same base as H. For a system with an electrical
frequency f Hz, (26) becomes
H d*0
Tf di?

- P =P-P. pu 27)

€

when & is in electrical radians and
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%
e ﬁ =P =F—FP, pu (28)
180 f dr”
when & is in electrical degrees.
(27) and (28) also represent the swing equation. It can be seen that the swing equation s a

second order differential equation which can be written as two first order differential

equations:
"
A0 p p (29)
@, dt
ﬁ =0-0, (30)
dt '

in which @, @, and & are in electrical units. In deriving the swing equation, damping

has been neglected.

Table 1 : H constants of synchronous machines

Type of machine H (MJ/MVA)

Turbine generator condensing 1800 rpm | 9—-6
3600 tpm | 7-4

Non condensing 3600 rpm | 4-3
Water wheel generator
Slow speed <200 rpm | 2-3

High speed > 200 rpm | 2 -4

Synchronous condenser

Large | 1.25 25% less for hydrogen cooled
1.0 . &
Small
Synchronous motor with load varying
from 1.0 to 5.0 2.0

In defining the inertia constant H, the MV A base used is the rating of the machine. In a
multi machine system, swing equation has to be solved for each machine, in which case,
a common MVA base for the system has to chosen. The constant H of each machine must
be consistent with the system base.

Let
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Gmaen = Machine MV A rating (base)
Gystem = System MV A base

In (9.25), H is computed on the machine rating G =G,

it

Multiplying (9.25) by e on both sides we get

Sysiem

Gmach 2H dg(’c;m _ Pm_ P 3 Gma('ﬁ (-% l )
G.;_vsrem Cosm d_rz G:mch Gsy.tfem )
2H system d 8 5
- =P — P. pu (on system base)
@,,  dt
Gmac}z
WhEI'E! H S}"Stﬁ]]] = H — {32)

In the stability analysis of a multi machine system, computation is considerably
reduced if the number of swing equations to be solved is reduced. Machines within a
plant normally swing together after a disturbance. Such machines are called coherent
machines and can be replaced by a single equivalent machine, whose dynamics reflects
the dynamics of the plant.

Example 1:

A 50Hz, 4 pole turbo alternator rated 150 MV A, 11 kV has an inertia constant of
9 MJ / MVA. Find the (a) stored energy at synchronous speed (b) the rotor acceleration if
the input mechanical power is raised to 100 MW when the electrical load is 75 MW, (c¢)
the speed at the end of 10 cycles if acceleration is assumed constant at the initial value.
Solution:

(a) Stored energy = GH= 150 x 9 = 1350 MJ

(b) Py=Pp—-P. =100-75=25 MW

q
AR s, 00 =0.15 Ml -5 /%

M= =
180f 180x50

d*s

#gi°

0.15 25
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2 2
Acceleration a = ¢ (f: = =166.6 %/s’
dt= 0.15

2 2
=166.6 x— °“m/s
P

= 166.6 x 2 X Lth;m's
P

360
2 1
=166.6 x — x —— x 60 rpm/s
P 360

= 13.88 rpm/s

* Note “e =electrical degree; °m = mechanical degree;: P=number of poles.
10
c) 10cycles= —=0.2s
(c) 10cy 50

' 5
Ns = Synchronous speed = % = 1500 rpm

Rotor speed at end of 10 cycles =Ng +a x 0.2
= 1500 + 13.88 x 0.2 = 1502.776 rpm
Example 2:
Two 50 Hz generating units operate in parallel within the same plant. with the
following ratings:
Unit 1: 500 MVA, 0.8 pf, 13.2 kV, 3600 rpm: H=4 MJ/MVA
Unit 2: 1000 MVA, 0.9 pf, 13.8 kV, 1800 rpm: H =5 MJ/MVA

Calculate the equivalent H constant on a base of 100 MVA.

Solution:
B Glmach
Hisysrem ! Hlmach K=y
= 4x @zﬂ) MI/MVA
100

G" mach

H 2svstem = H 2 mach -
system

1000

= 5x——=50 MJ/MVA
100

H,, =H,+H,=20+50=70 MI/MVA
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This is the equivalent inertia constant on a base of 100 MVA and can be used when the two
machines swing coherently.

POWER-ANGLE EQUATION:

In solving the swing equation, certain assumptions are normally made (i) Mechanical power
nput Pm is a constant during the period of interest, immediately after the disturbance (i1)
Rotor speed changes are insignificant. (iii) Effect of voltage regulating loop during the
transient is neglected i.e the excitation is assumed to be a constant. As discussed in section
9.4, the power—angle relationship plays a vital role in the solution of the swing equation.

POWER-ANGLE EQUATION FOR A NON-SALIENT POLE MACHINE:

The simplest model for the synchronous generator is that of a constant voltage behind an
impedance. This model is called the classical model and can be used for cylindrical rotor
(non—salient pole) machines. Practically all high—speed turbo alternators are of cylindrical
rotor construction, where the physical air gap around the periphery of the rotor is uniform.
This type of generator has approximately equal magnetic reluctance, regardless of the
angular position of the rotor, with respect to the armature mmf.

The power output of the generator is given by the real part of E, Ia .

E Z8—¥, £0°

a R + ix (38)
a -Jnd
_ E, £6 —V, £0°
Neglecting Ry, 1, =— —
JX 4
‘E, £90°=8 V, 290°Y'|
P=r {(E, £5) - !
. \ Xa X i
-
Eﬂg cos90° E_V, cos (90°+ &)
N ,\'d Td
E,V, sind
= — (39)
X 4
(Note- = stands for real part of)
. : 5 . . B, 'V,
The maximum power that can be transferred for a particular excitation is given by z
Xy

at & = 90",
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POWER ANGLE EQUATION FOR A SALIENT POLE MACHINE:

Here because of the salient poles, the reluctance of the magnetic circuit in which flows the
flux produced by an armature mmf in line with the quadrature axis is higher than that of the
magnetic circuit in which flows the flux produced by the armature mmf in line with the
direct axis. These two components of armature mmf are proportional to the corresponding
components of armature current. The component of armature current producing an mmf
acting in line with direct axis is called the direct component, Id. The component of armature
current producing an mmf acting in line with the quadrature axis is called the quadrature axis
component, Iq.

Power output P=V I_cos@

=E,l;+E,I, (40)
E, =V sind (41a)
E,=V, coso (41b)
E ~E
I, =—2—% =1 sinl§+6) (41c)
£y
E
l,=—%=1,cos(d+8) (41d)
X
q
Substituting (9.41c¢) and (9.41d) in (9.40), we obtain
E.V.sind V7'(x,—x )sin26
P = g f + ! ( a q} {42)
X, 2x, %,

(9.42) gives the steady state power angle relationship for a salient pole machine. The second
term does not depend on the excitation and is called the reluctance power component. This
component makes the maximum power greater than in the classical model. However, the
angle at which the maximum power occurs is less than 90°.

TRANSIENT STABILITY:

As defined earlier, transient stability is the ability of the system to remain stable under large
disturbances like short circuits, line outages, generation or load loss etc. The evaluation of
the transient stability is required offline for planning, design etc. and online for load
management, emergency control and security assessment. Transient stability analysis deals
with actual solution of the nonlinear differential equations describing the dynamics of the
machines and their controls and interfacing it with the algebraic equations describing the
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interconnections through the transmission network. Since the disturbance is large, linearized
analysis of the swing equation (which describes the rotor dynamics) is not possible. Further,
the fault may cause structural changes in the network, because of which the power angle
curve prior to fault, during the fault and post fault may be different. Due to these reasons, a
general stability criteria for transient stability cannot be established, as was done in the case
of steady state stability (namely PS > 0). Stability can be established, for a given fault, by
actual solution of the swing equation. The time taken for the fault to be cleared (by the
circuit breakers) is called the clearing time. If the fault is cleared fast enough, the probability
of the system remaining stable after the clearance is more. If the fault persists for a longer
time, likelihood of instability is increased. Critical clearing time is the maximum time
available for clearing the fault, before the system loses stability. Modern circuit breakers are
equipped with auto reclosure facility, wherein the breaker automatically recloses after two
sequential openings. If the fault still persists, the breakers open permanently. Since most
faults are transient, the first reclosure is in general successful. Hence, transient stability has
been greatly enhanced by auto closure breakers.

Some common assumptions made during transient stability studies are as follows:

1. Transmission line and synchronous machine resistances are neglected. Since
resistance introduces a damping term in the swing equation, this gives pessimistic results.
2. Effect of damper windings is neglected which again gives pessimistic results.

3. Variations in rotor speed are neglected.

4. Mechanical input to the generator is assumed constant. The governor control
loop is neglected. This also leads to pessimistic results.
5. The generator 1s modeled as a constant voltage source behind a transient

reactance, neglecting the voltage regulator action.
6. Loads are modeled as constant admittances and absorbed into the bus admittance matrix.

The above assumptions, vastly simplify the equations. A digital computer program for
transient stability analysis can easily include more detailed generator models and effect of
controls, the discussion of which is beyond the scope of present treatment. Studies on the
transient stability of an SMIB system, can shed light on some important aspects of stability
of larger systems. The figure below shows an example of how the clearing time has an effect
on the swing curve of the machine.
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Modified Euler’s method:

Eulers method is one of the easiest methods to program for solution of differential
equations using a digital computer . It uses the Taylor*s series expansion, discarding all
second—order and higher—order terms. Modified Euler*s algorithm uses the derivatives at the
beginning of a time step, to predict the values of the dependent variables at the end of the
step (t1 = t0 +At). Using the predicted values, the derivatives at the end of the interval are
computed. The average of the two derivatives is used in updating the variables.

Consider two simultaneous differential equations:

& = f.(x,y,1)
dt ’
ay _ gt 0.7 8 )

dr
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Starting from initial values x0, y0, t0 at the beginning of a time step and a step size & we
solve as follows:

Let
DI = f}_{XG,}rﬂ.t{]) = ﬁ
dt |,
dy
D, = f\(Xp.Vo.tg) = —
y = Iyt Xo,¥Yo.lo s )

x"'=x,+D_h _
' Predicted values

}*P :}11} TD-.'. .Ih
dx )

Dyp= — = rx':.xp-}'rpﬂtl)
dr|p
dy :

D}rP = = t}f{xP }’rpwtlj
dt |,

X{=Xq+ L, b h

£, +.13 5
}-’1 = yo + : 2 - h

x 1and y1 are used in the next iteration. To solve the swing equation by Modified Euler*s
method, it is written as two first order differential equations:
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do

— =

dt

de P, P, —P.sino
de M M

Starting from an initial value o, _oat the beginning of any time step, and choosing a step
size _t s, the equations to be solved in modified Euler*s are as follows:

d;J =D =,

dt |,

do| . P, — P, simdy
drl, = M

8P: 5{} + Dy At

ﬁ :DIP:mP
dt |
dw P —P_sind
— =Dgp=
dt |, M
51—59+(D]+D1P}ﬁ

\ 2
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01 and ®; are used as initial values for the successive time step. Numerical errors are
introduced because of discarding higher—order terms in Taylor’s expansion. Errors can be
decreased by choosing smaller values of step size. Too small a step size, will increase
computation, which can lead to large errors due to rounding off. The Runge- Kutta

method which uses higher—order terms is more popular.

Example :A 50 Hz, synchronous generator having inertia constant H = 5.2 MJ/MVA and

£

x; = 0.3 pu is connected to an infinite bus through a double circuit line as shown in
Fig. 9.21. The reactance of the connecting HT transformer is 0.2 pu and reactance of each
line is 0.4 pu. ‘Eg‘ = 1.2 pu and |V‘ = 1.0 pu and P; = 0.8 pu. Obtain the swing curve

using modified Eulers method for a three phase fault occurs at the middle of one of the

transmission lines and is cleared by isolating the faulted line.
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Solution:

Before fault transfer reactance between generator and infinite bus
0.4
X1=03+0.2 +7 =(0.7 pu

P % = 1714 pu.

Initial P, = 0.8 pu= Py,

Initial operating angle 6, = sin”! % = 27.82° = 0.485 rad.

When fault occurs at middle of one of the transmission lines, the network and its

reduction is as shown in Fig a to Fig c.

o e

— = TrTrE=F ¥
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19
“0000°

E,=12 T
()

The transfer reactance is 1.9 pu.

1.2% 1.0

Since there is no outage, Pnaxm = Pnax1=1.714

P .
Smax = T — sin™" m_ =7 —sin™ (ﬂj =2.656 rad
max /1 1.714

Pm (gmax _50_ ) = ‘Pmax 1 COS 5@ + Prm‘x I Cos-émax
E max [l B

max I1

COS Ocr =

0.8(2.656—0.485) — 0.63 cos(0.485) + 1.714 cos (2.656)
1.714 - 0.63

_ 1.7368 — 0.5573 —1.5158 —_ 03102
1.084

e = cos™ (- 0.3102) = 1.886 rad = 108.07°

with line outage
Xm=03+02+04=09pu
1.2x 1.0

Praxm = =1333 mu

0.8
= R = 2.498 rad
Omax 1.333
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7.7
Modified Eulers method

8o = 27.82° =0.485 rad
0;=00rad/sec(att= 00)

Choosing a step size of 0.05 s, the swing is computed. Table a gives the values of the
derivatives and predicted values. Table b gives the initial values 6,. ®, and the values at

the end of the interval 6y, ®;. Calculations are illustrated for the time step t =0.2 s.

0y = 0.761
wy=2.072
Pﬂl = Dg

5.
M = 2 |- 0.0331 2/ rad
I x 50

Pmax (after fault clearance) = 1.333 pu
Dy =2.072

_ 0.8-1.3335in(0.761) _
0.0331

8" =0.761 + ( 2.072 x 0.05) = 0.865
@ =2.072 + (- 3.604 x 0.05) = 1.892
Dip=1.892

8 —1.333 si .865
szz{}S 1.3 Sln(086}:—6.482
0.0331

(2.0?2 + 1.89’2]

D, — 3.604

o1=0.761 + 0.05 = 0.860

o1=2.072 + 0.05 = 1.82

(— 3.604 — 6.482]

01, ®; are used as initial values in next time step.
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Table a : Calculation of denivatives in modified Euler’s method

[ D, D, 5 @ Dip Dap

0 0.0 15296 | 0485 | 0.765 | 0.765 | 15.296
005 | 0765 | 14977 | 0.542 | 1514 | 1.514 | 14.350
0.10 | 1.498 | 14.043 | 0.636 | 2200 | 2.200 | 12.860
0.15 | 217 | -0299 | 0.761 | 2.155 | 2.155 | -3.600
020 | 2.072 | -3.604 | 0.865 | 1.892 | 1.892 | -6.482
025 | 1.820 | -6.350 | 0951 | 1502 | 1.502 | -8.612
030 | 1446 | -8424 | 1.015 | 1.025 | 1.025 | - 10.041
035 | 0984 | -9.827 | 1.054 | 0493 | 0.493 | - 10.843
0.40 | 0467 | -10.602 | 1.065 | -0.063 |-0.063 | - 11.060
0.45 [-0.074 | - 10.803 | 1.048 | -0.614 |-0.614 | - 10.720
0.50 [-0.612] -1046 | 1.004 | -1.135 |-1.135| -9.800
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Table b : calculations of §,. @, and 8;. ®; in modified Euler’s method

T an(pu ) 0o Wo 0] 01 01

rad rad / sec rad rad / sec deg

0 1.714 0.485 0.0 - - -
0" 0.630 (0.485 0.0 0.504 0.765 28.87
0.05 0.630 0.504 0.765 0.561 1.498 32.14
0.10 0.630 0.561 1.498 0.653 2.170 37.41
0.15 1.333 0.633 2.170 0.761 2.072 43.60
0.20 1.333 0.761 2.072 0.860 1.820 49.27
0.25 1.333 (0.860 1.820 0.943 1.446 54.03
0.30 1.333 (0.943 1.446 1.005 (0.984 57.58
0.35 1.333 1.005 0.984 1.042 0.467 59.70
0.40 1.333 1.042 0.467 1.052 | -0.074 60.27
0.45 1.333 1.052 -0.074 1.035 | -0.612 59.30
0.50 1.333 1.035 -0.612 | 0.991 | -1.118 56.78
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7.8

Runge - Kutta method
In Range - Kutta method, the changes in dependent variables are calculated from

a given set of formulae, derived by using an approximation, to replace a truncated
Taylor’s series expansion. The formulae for the Runge - Kutta fourth order

approximation, for solution of two simultaneous differential equations are given below;

Given d—“‘ =£ &.¥:D
dr

dy
d_-r =fy (x,y,0)

Starting from initial values Xg, yo. to and step size h, the updated values are

X]IXQ-I*é (k]+2k2 +2k3+k4)

Yi=Yp+ é (1 + 2l + 215 + 1)
where k; =fx (X0, yo.lo) h

k ! h
=1 (Xo ey Yot il +3} h

-

k l h
ks = fx (.rn+72, }=0+72,r0 +7] h

ka=fy (xo+ ks, yo+ L. to+h)h
li =1y (Xq, yo. to) h

k [ h
Iz=fy (.x'g +?‘ ) _\-=U+E‘,ro +3] h

la=1y (xa+% ; }’0+%,rﬂ+ﬁJ h

L= fy (xo+ ks, vo+ s, tg+h) h
The two first order differential equations to be solved to obtain solution for the swing

equation are:

s _
dr

0]
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dow P, P, - P sind

Starting from initial value g, wg, tg and a step size of At the formulae are as follows

Example

Obtain the swing curve for previous example using Runge - Kutta method.

Solution:

dr M M
ki = mg At
{Pm — P sin 50}
lg= ; At
M
(53]
k=|w, +—| At
i
PP sinfﬁﬁ - —1}
I, = > At
; M
!
k3"—2 Wy + == At
2.

kq = (g + 13) At

by = P, - P, sin(d, +k, }} -
n M
6135@4“% [k]+2k2+2k3+k4]

[OF] 2030-%% [11 + 21 + 215 + {4]

g = 27.82° = 0.485 rad.
mg=0.0rad/sec. (att=0)
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Choosing a step size of 0.05 s, the coefficient ki, ks, k3, kg and 1y, 15, 13, and 14 are
calculated for each time step. The values of & and © are then updated. Table a gives the
coefficient for different time steps. Table b gives the starting values &, o for a time stef
and the updated values 6;, o obtained by Runge - Kutta method. The updated values are
used as initial values for the next time step and process continued. Calculations are
illustrated for the time stept=0.2 s.

6p =0.756

M = 0.0331 s/ rad

oy = 2.067

Pn=0.28

P = 1.333 (after fault is cleared)

k; =2.067 x 0.05=0.103

| [08 - 1.333 sin(0.756)
' 0.0331

}x 0.05 =-0.173

3
k= [" 067 - %} 0.05 =0.099

‘;\
08— 1.333 sin{O.TSﬁ . LD‘ J

I, = = 2 1%0.05 =-0.246
0.0331
ks = [-. }005—0097
08—1"’;'%%&.1[1( b 0099]
I; = - |x0.05 =-0.244
(0.0331

ks = (2.067 - 0.244) 0.05 = 0.091

0.8 — 1.333 5in (0.756 + 0.097)
0.0331

14:

}XUD 5 =-0.308

, .
o1= 0.756 + s [0.103 + 2 x 0.099 + 2 x 0.097 + 0.091] = 0.854
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0)122.06?%-% [0.173 +2%x-0.246+2x-0.244-0. 308] = 1.823

Now 6 = 0.854 and o = 1.823 are used as initial values for the next time step. The
computations have been rounded off to three digits. Greater accuracy is obtained by

reducing the step size.

Table a : Coefficients in Runge - Kutta method
s ki Iy ko b k3 I3 K4 I4
0.0 0.0 0.764 | 0.019 | 0.764 | 0.019 | 0.757 | 0.038 | 0.749
0.05 | 0.031 0.749 | 0.056 | 0.736 | 0.056 | 0.736 | 0.075 | 0.703
0.10 | 0.075 0.704 | 0.092 | 0.674 | 0.091 0.667 | 0.108 | 0.632
0.15| 0.108 |-0.010| 0.108 | —-0.094 | 0.106 |-0.095| 0.103 | -0.173
0.20 | 0.103 |-0.173 | 0.099 |—-0.246 | 0.097 |-0.244| 0.091 | -0.308
8.25 | 0.091 |-0.309| 0083 |—-0.368 | 0.082 |—-0.363| 0.073 | -0.413
0.30 | 0.073 |-0413| 0063 |-0.455| 0.061 |—-0.450 | 0.050 | -0.480
0.35| 0.050 |—-0483| 0.038 |—-0.510| 0.037 |-0.504| 0.025 | -0.523

0.40 | 0.025 |-0.523| 0012 |-0.536| 0011 |-0.529 | -0.001 | —0.534

0.45 | -0.001 | —0.534 | —0.015 | —0.533 | —0.015 | - 0.526 | —0.027 | —0.519
0.50 | —0.028 | —0.519 | —0.040 | —0.504 | —0.040 | —0.498 | —0.053 | —0.476

Table b: 6. @ computations by Runge - Kutta method

t Prax O [ON) 01 M 0y
(sec) | (pu) | (rad) | rad/sec | rad | rad/sec | deg
0 | 1.714 | 0.485 0.0
07 | 0.630 | 0.485 0.0 0.504 | 0.759 | 28.87
0.05 | 0.630 | 0.504 | 0.756 | 0.559 | 1.492 | 32.03
0.10 | 0.630 | 0.559 | 1.492 |0.650 | 2.161 | 37.24
0.15 | 1.333 | 0.650 | 2.161 |0.756 | 2.067 | 43.32
0.20 | 1.333 | 0.756 | 2.067 | 0.854 | 1.823 | 48.93
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Note: dg, mg indicate values at beginning of interval and o;, ®;

0.25 | 1.333 | 0.854 | 1.823 | 0936 | 1459 |53.63
0.30 | 1.333 | 0.936 | 1.459 | 0998 | 1.008 | 57.18
0.35 | 1.333 | 0998 | 1.008 | 1.035 | 0.502 | 59.30
0.40 | 1.333 | 1.035 | 0.502 | 1.046 | —0.029 | 59.93
0.45 | 1.333 | 1.046 | — 0.029 | 1.031 | — 0.557 | 59.07
0.50 | 1.333 | 1.031 | = 0.557 | 0.990 | — 1.057 | 56.72

at end of interval. The

fault is cleared at 0.125 seconds. ... Py = 0.63 at t = 0.1 sec and Py = 1.333 at t=0.15

sec, since fault is already cleared at that time. The swing curves obtained from modified

Euler’s method and Runge - Kutta method are shown in Fig. It can be seen that the two

methods yield very close results.

65 T T T T T T
+ - Modified Euler's Method
60~ o - Rungs-Kutta Method P i .
e S
_r,-\#’_-f' \"F:,
550 ,J./I.’. |
7

S0 j[,""'" .
. iy
? ,.,:"
£ 45 / 8
E #
5 /

40} r —

7
3
{r‘
a5t / -
7
#
B0t P i
a5 | | | | | |
0 0.1 0.2 0.4 0.4 0.5 0.6
Time (seconds)
Fig: : Swing curves with Modified Euler’ and Runge-Kutta methods

0.7
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Milne’s Predictor Corrector method:

The Milne’s formulae for solving two simultaneous differential equations are

given below.
Consider d—‘ =t (5 Yy, t)
dr

dy
— =1, (X, ¥, 1)
dt A

With values of x and y known for four consecutive previous times, the predicted value for

n+ 1" time step 1s given by

4h , , ,
“Irifl = X3 +T [2“‘}1—2 — Xt 2“'}'1 ]
4h
P . . K # 5 >
Yast™ Yo s 3 [2-\"”—2 = Moy 3 2\‘n ]

Where 1" and y* are derivatives at the corresponding time step. The corrected values are

Ao 5 v
Xntl = Xy +? [xrr—l +4xn + Yas1 ]

hr, y /
Yoe1 = Y, 1+? [}‘ﬂ—l +4_V” T+ Yne ]

s P P
where X 1 fx ("‘n+1" -‘-‘Jn-—l-‘ 'fn;l}

L

Yost = 1 (“}il- Vs rn+1)

To start the computations we need four initial values which may be obtained by
modified Euler’s method, Runge - Kutta method or any other numerical method which is
self starting, before applying Milne’s method. The method is applied to the solution of
swing equation as follows:

Define 6, = uch [ o,
dt

, _do P,— P sino,

@,
dt M
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4A¢t
P = ’ o ’
1) @, , +—% [2&)”_2— ar, - + 28, ]

n+l T

6n+l - 811—1 + % [5;;4 + 45:: i (Sr’Hl ]

n+l1

Ar[ y » i ]
Opel = Opq + T w,  +40, + o

4 P

Where nil T E{)ﬂ+1
. P
B Pm B Pmax sim §?E+1
mﬂ+l - M
Example

Solve example using Milne’s method.

Solution:
To start the process, we take the first four computations from Range Kutta method
t=0.0s o1 =0.504 o1 =0.759
t=0.05s 0 =0.559 oy = 1.492
t=0.10s 03 = 0.650 w3 =2.161
t=015 5 o4 = 0.756 my = 2.067

The corresponding derivatives are calculated using the formulae for 0, and@, . We get
o, =0759 @ =1497
g, =1492 @, =14.075
0; =2.161 o, =12.65
0, =2.067 @, =-3.46

We now compute ds and s, at the next time stepi.e t=0.2 s.

g g 2 gt ot st ]
= (50 2X00 [2%1.492 — 2.161+ 2% 2.067] = 0.834
p 4At

W; = O + [20),_, - +2m4]
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e T o4 [2 % 14.075 — 12.65 + 2 x (—3.46)] = 1.331
8 =133l
o - Q81O 5
85 =03 + %[5; +40, +§;]
i L [2.161 + 4% 2.067 +1.331] = 0.846

mgz@)ﬁ%[ﬂ)} +40), +a

05
=2.161 + % [12.65 — 4 x 3.46 — 5.657 | = 2.047

8 =ws=2.047

,  0.8-1.333sin (0.846)

s —35.98
' 0.0331

The computations are continued for the next time step in a similar manner.

MULTI MACHINE TRANSIENT STABILITY ANALYSIS

A typical modern power system consists of a few thousands of nodes with heavy

interconnections. Computation simplification and memory reduction have been two
major issues in the development of mathematical models and algorithms for digital
computation of transient stability. In its simplest form, the problem of a multi machine

power system under going a disturbance can be mathematically stated as follows:

it) = f,(x(1) —o0 <1 <0
i) = £y (x(t)) 0<t<t,
ilr) = £y (x(0)) t,<t <o

x(r] is the wvector of state variables to describe the differential equations

governing the generator rotor dynamics, dynamics of flux decay and associated generator
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controller dynamics (like excitation control, PSS, governor control etc). The function f;
describes the dynamics prior to the fault. Since the system is assumed to be in steady
state, all the state variable are constant. If the fault occurs at t = 0, fj; describes the
dynamics during fault, till the fault is cleared at time t;. The post—fault dynamics is
governed by fpr. The state of the system x. at the end of the fault-on period (at t = t)
provides the initial condition for the post—fault network described which determines
whether a system is stable or not after the fault is cleared. Some methods are presented in
the following sections to evaluate multi machine transient stability. However, a detailed

exposition is beyond the scope of the present book.

REDUCED ORDER MODEL
This is the simplest model used in stability analysis and requires minimum data.
The following assumptions are made:
e Mechanical power input to each synchronous machine is assumed to be
constant.
*  Damping is neglected.
® Synchronous machines are modeled as constant voltage sources behind
transient reactance.

® Loads are represented as constant impedances.

With these assumptions, the multi machine system is represented as in Fig. 9.26.



Power System Analysis

Vi
A |
V.
2
h Ip
Transmission | . ¥
network : Ll
A | Yia
e 3 __’l_f.".m

p B £ }m loads
() E f!é 8» ¥ Lin

Reference node

Fig 9.26 Multi machine system

Nodes 1,2 ...... n are introduced in the model and are called internal nodes (the
terminal node is the external node connected to the transmission network). The swing
equations are formed for the various generators using the following steps:

Step 1: All system data is converted to a common base.
Step 2: A prefault load flow is performed,. to determine the prefault steady state voltages,
at all the external buses. Using the prefault voltages, the loads are converted into
equivalent shunt admittance, connected between the respective bus and the reference
node. If the complex load at bus i is given by
S, =P, +0,
the equivalent admittance is given by
_ Su B — oy
Li = 5
‘Vu ‘VL:'

3_

Step 3: The internal voltages are calculated from the terminal voltages, using
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i

E| 28] =W+ jxu 1,

*

= ‘Vi‘ ¥ M’Zﬁ%

i

(Ps: = jOs:)
V.

4

= ‘Vi‘ L ;U'm

0, is the angle of E; with respect to V. If the angle of V; is PB;, then the angle of

'y
E;, with respect to common reference is given by 0, = 8. + f5,. Pgi and Qg; are obtained

from load flow solution.
Step4: The bus admittance matrix Yy formed to run the load flow is modified to include
the following.
(i) The equivalent shunt load admittance given by, connected between the
respective load bus and the reference node.

(ii) Additional nodes are introduced to represent the generator internal nodes.

Appropriate values of admittances corresponding to x, , connected between

the internal nodes and terminal nodes are used to update the Ypys.

(i11) Ypys corresponding to the faulted network is formed. Generally transient
stability analysis is performed, considering three phase faults, since they are
the most severe. The Ypys during the fault is obtained by setting the elements
of the row and column corresponding to the faulted bus to zero.

(iv) Ypus corresponding to the post—fault network is obtained, taking into account
line outages if any. If the structure of the network does not change, the Yy
of the post-fault network is same as the prefault network.

Step 5: The admittance form of the network equations is

I=Yms V¥
Since loads are all converted into passive admittances, current injections are present only
at the n generator internal nodes. The injections at all other nodes are zero. Therefore, the

current vector I can be partitioned as

4]
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where I, is the vector of current injections corresponding to the n generator internal

nodes. Ypys and V are also partitioned appropriately. so that

R

where E, 1s the vector of internal emfs of the generators and V is the vector of external

bus voltages. From (9.91) we can write
Li=YiEa+ Y2 Vy
O0=Y3E,+Ys V,
we get

Vl = Yd-_IYSE:r
=0 ¥ ) =T B
where Y = Y, -Y, ¥;' Y, is called the reduced admittance matrix and has dimension

nxn. Y gives the relationship between the injected currents and the internal generator

voltages. It is to be noted we have eliminated all nodes except the n internal nodes.

Step 6: The electric power output of the generators are given by
Pai=wr[E I;.]

Substituting for [; from (9.94) we get

G, & E ‘E,

j=1#i

Pgi =

E,

E}.| (ﬁ’ij sin (5, = C;"}) yrs é;‘j COos [6: - é‘})]

(This equation is derived in chapter on load flows)
Step 7: The rotor dynamics representing the swing is now given by
djé',.

i 2

i

M :PMi~P(31 T | n

The mechanical power Py is equal to the pre-fault electrical power output, obtained from
pre-fault load flow solution.
Step 8: The n second order differential equations can be decomposed into 2n first order

differential equations which can be solved by any numerical method .
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Though reduced order models, also called classical models, require less

computation and memory, their results are not reliable. Further, the interconnections of
the physical network of the system is lost.

FACTORS AFFECTING TRANSIENT STABILITY:

The relative swing of a machine and the critical clearing time are a measure of the
stability of a generating unit. From the swing equation, it is obvious that the generating
units with smaller H, have larger angular swings at any time interval. The maximum

Eg, Vv
power transfer Ppax = —

. where V is the terminal voltage of the generators. Therefore
X
d

an increase in .\'; . would reduce Pnax. Hence, to transfer a given power Pe, the angle 6
would increase since Pe = Ppax sin 0, for a machine with ]urgez‘.\';, . This would reduce the

critical clearing time, thus, increasing the probability of losing stability.

Generating units of present day have lower values of H, due to advanced cooling techniques, which
have made it possible to increase the rating of the machines without significant increase in the size.
Modern control schemes like generator excitation control, Turbine valve control, single-pole
operation of circuit breakers and fast-acting circuit breakers with auto re-closure facility have helped
in enhancing overall system stability.

Factors which can improve transient stability are
(1) Reduction of transfer reactance by using parallel lines.

(11) Reducing transmission line reactance by reducing conductor spacing and increasing
conductor diameter, by using hollow cores.
(ii1) Use of bundled conductors.

(iv)  Series compensation of the transmission lines with series capacitors. This also increases the
steady state stability limit. However it can lead to problem of sub-synchronous resonance.

(v) Since most faults are transient, fast acting circuit breakers with rapid re-closure facility can
aid stability.

(vi)  The most common type of fault being the single-line-to-ground fault, selective single pole
opening and re-closing can improve stability.

(vil) Use of braking resistors at generator buses. During a fault, there is a sudden decrease in
electric power output of generator. A large resistor, connected at the generator bus, would partially
compensate for the load loss and help in decreasing the acceleration of the generator. The braking
resistors are switched during a fault through circuit breakers and remain for a few cycles after fault is
cleared till system voltage is restored.

(viii) Short circuit current limiters, which can be used to increase transfer impedance during fault,
there by reducing short circuit currents.

(ix) A recent method is fast valving of the turbine where in the mechanical power is lowered

quickly during the fault, and restored once fault is cleared.
sk sk sk st sk sfe sk st sk st sfe sk sk st sk sie sk sk sk st sie sie sk sk sk sk sie sk sk sk st sk sie sk sk sk st sie sk sk sk sk st sie sk sk sk st sk sie sk sk sk st sie sk ske sk sk st sie sk ske skt skeosie sk sk skoskeoskesk sk
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Hall Ticket Number: | NRIA20
I

- 20A3202403

Il B. Tech. Il Semester Regular/Supplementary Examinations, March-2023
POWER SYSTEM ANALYSIS
{Electrical and Electronics Engineering)
Time: 3 Hours Max. Marks: 70

- Question paper contains FIVE units
Answer one question fram each unit
LELE TS

Unit-1

1. a) | For the system shown below, make use of direct inspection| 8M i
method to obtain Y... Take bus (1) as reference. The element

impedances are indicated in p_ul.m

jo4 |

(13 e
b) | Explain the importance of primitive network representation in 6M 1 n
power systems?

OR
2. a) | A 100 MVA, 13.8 kV, 3-© generator has a reactance of 20%.| 8M 1 w
The generator is connected to a 3-phase transformer T, rated
100 MVA 12.5 kV/ 110 kV with 10% reactance. The H.V. side of
the transformer Is connected to a transmission line of
reactance 100 ). The far and of the line is connected to a step
down transformer T: made of three single-phase transformers
each rated 30 MVA, 60 kV/ 10 kV with 10% reactance. The
generator supplies two motors connected on the L.V. side T,.
The motors are rated at 25 MVA and 50 MVA both at 10 kV with
15% reactance. Show the reactance diagram with all values in

er unit. Take generator rating as base. - __ |
b) | For the network shown below solve the bus incidence r&:ﬂriﬂ ™ |1 |

L] |

® o @ @

Unit-11
3. a) | Develop load flow equations sultable for solution by Newton| 8M 2 v
Raphson method using rectangular when only PQ buses are
present. —
b) | Compare Gauss-Seidel, Newton Raphson, Decoupled and Fast| 6M 2 i
decoupled methods with respect to i) Number of iterations and
ii) Convergence characteristics.

Page 1 of 2
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For the power system network shown below, determine Vs

using Gauss-Seidel method after first iteration? The impedance

values In p.u indicted in the network.

T Bus VI ~ Generation Load
MW MVAR MW MVAR

uuﬂg

Unit-il

a)

A 3-phase line operating at 11 kV and having a resistance of
1.5 01 and reactance of 6 {1 is connected to a generating station
bus bars through a 5 MVA step-up transformer having
reactance of 5%. The bus bars are supplied by a 12 MVA
generator having 25% of reactance. Calculate the short circult
kvA fed inte a symmetric fault at the (i) load end of the
transformer and (ii) H.V. terminals ume transformer.

T Explain how a synchronous generator is represented in short

circuit analysis?

1am

™

Y

iilustrate the modification of Zs. matrix for addition of an
| element from an old bus to reference.

Unit-1v
Derive an expression for fault current with necessary
conditions for a double-line fault as an unloaded generator,
Also draw sequence diagrams. What is the severity of fault
current compared to other type of faults?

™

OR

v

Determine the symmetrical components for the following 3-
phase currents.
Iy =1520° A, Iy =15.-230° A and |5~ 15-130° A

What is sequence impedance? Explain the sequence network of
an unloaded generator?

™

™

v

Unit-V

9. | Explain equal area criterion in detail? Elaborate its use for

predicting system stability and write its limitations.

[HH

10,

a)

Explain about the various factors affecting the transient
stability of the system?

b)

Explain Transfer reactance and Inertia constant related to

power system stability studies?

—ooOoo—
Page 2of 2
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sino
A graph that can be drawing withouat cressover of edges is termed
Planar graph
nos 1 q Edit Delete Non-planar graph
Tree
Graph
100 |
|
|
Base impedance in ohms is mathematically expressed as:
I [Base voltage im kV (line to line) | * 1000/ Base kVA
o | = Edit | Delete | 1pase voltage in kV (line to line) ]*2 * 1000 / Base kVA
[Base voltage in kV (line to line) |3 * 1000 f Base kVA
None of these
101 |
|
Which of the following statements is correct about Per unit systen
Tramsformer connections affect the per unit valaes
_l B i £ 21k HElete Referring electrical quantities from one side of the transformer tc
Very often per nnit impedances expand to very narrow range
None of these
|
102
WWhich of the following statement is false about Graph theory in F
An element of a graph is called an edge
lass 3 3 Edi DElate For m numbersr of nodes the rank of graph is n-1
Each current source is replaced by a short circuit in a graph
Planar graph is the one can be drawing without edges cross-over
[ o nur
|
103 The number of edges connected to a vertex or node is called:
iog | 1 1 Edit Delete g:ﬁ:'
Path
Sub graph
stem i
Certain graph has 4 nodes and 7 elements, the number of links is:
104 a
o 1 2 Edit Delete 4
11
28
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11

112

113

114

115

116

Edit

Edit

Edn

Edit

Edit

Edit

Delete

Delete

Delete

Delete

Delete

Delete

At a slack bus the quantities specified are:

Pand Q
Pamnd IVI
Pand é
VI and &

If E is number of elements and N is number of nodes then dimensi

E*N
EMm
E+N
E-N

Which of the following is correct about Z bus matrix:

Zbus = Ybus
Lbuas = 2.Ybus
Zbus = Ybhus-1
Zbas = Ybusl

In element node incidence matrix if the pth element is incident to :
of lollowing is correct:

apq =1
apq = -1
apq =0
apg = 2

If e is number of clements and n is number of nodes in graph, then
the dimensions:

e*n
e/n
etn
e-n

Susceptance is part of :

Real, Admitiance
Imaginary, Admiltance
Real, Conductance
Imaginary, Conductance
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| Susceptance is part of :
Real, Admittance
L Bk | palabe Imaginary, Admittance
Real, Conductance
| Imaginary, Conductance
[ [
|
ONLINE QUIZ D/
|Se|ect NUmber... The dimensicn of bus incidence matrix is:
Select Subject Co
117 | 1 Edit = Delete | °*0 :
20A3202403 ex(n-1)
ex(n+l)
POWER SYSTEM ex(n+2)
MID CODE
MID- 2 |
SELECT RIGHT A |
Select Right Ans
HEIGHT Single line diagram ef which of the following power system is pos'
Select Heiaht - a) Power system with LG fault
’ 118 | 1 Edit | Delete | b) Balanced power system
Select Only webpi ¢} Power system with LL fault
d} Power system with LLG fault
Choose File No
PASTE QUESTIOM |
|
Single line diagram does not represents:
CONVERT a) Ratings of machines
119 1 Edit | Delete | b) MNeutral wire of transmission lines
¢} Delta connection of transformer winding
SAVE RECORD ) Star connection of transformer winding
. Cor
Slno | Mid Ans
In impedance diagram different power sysiem elements are repre
100 @ 2 2 120 1 Edit | Delete | -a) False
L) True
|
|
01 | 2 1 In impedance diagram different power system elements are repre
121 1 Edit Delete | a)False

b) True
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102 2 4 Edit
. Correct
Slno | Mid
Answer
103 2 3 Edit
104 2 3 Edit
105 2 2 Edit
106 2 1 Edit

Delete

Delete

Delete

Delete

Delete

are designed on the basis of swing curve:

1) Rotor windings

2) Stator windings
3)Transformer windings
4) Protection devices

The major cause of voltage instability is:

1) Transformer
2) Generator
3) Load

4) Transmission lines

Which of the following is a sparse matrix:

1)Jacobian matrix
2) Y bus matrix
3) Both of these
4) None of these

Which type of convergence takes place in Newton Raphson method:

1) Linear convergence

2) Quadratic convergence
3) Cubic convergence

4) None of these

Equal area criterion is applicable to:

1) Single machine connected to infinite bus
2) Two machines connected to infinite bus
3) Multi machine system connected to infinite bus

4) All of these

b s e
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Slno

109

110

111
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2 3
2 3
. Correct
Mid
Answer
2 3
2 2
2 2

Edit

Edit

Edit

Edit

Edit

Delete

Delete

Delete

Delete

Delete

i s |

The quantity H in swing equation is:

1) Kelvin constant
2) Motion of synchronous motor/3.55
3) Inertia constant

4) None of these

With respect to Graph theory in Power System Analysis for n number of nodes the rank of graph is:

1) nt+2
2)n
3)n-1
4) None

The approximate number of iteration required for n-bus system in Newton-Raphson method is:

11
2}n
33
4) n"2

1. Single line diagram of which of the following power system is possible?
a) Power system with LG fault

b) Balanced power system

c) Power system with LL fault

d) Power system with LLG fault

A power system will have greater flexibility of operation if they have
a) Only Base load plants operating in combination

b) Various types of power plants operating in combination

¢) Only Peak load plants operating in combination

d) Ouly thermal power plants operating in combination
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Single line diagram does not represents:
a) Ratings of machines
12 2 2 Edit | Delete | b) Neutral wire of transmission lines
¢) Delta connection of transformer winding
d) Star connection of transformer winding

In impedance diagram different power system elements are represented by symbols.

13 | 2 1 Edit | Delete | 2) False
b) True

c) None

In combined operation of several power plants the reserve capacity requirement is reduced.

14 | 2 2 Edit | Delete | ) False
b) True
c) none
. Correct
Slno | Mid
Answer

For a given power system, its zero and maximum regulation will occur at the impedance angle of
a) 45
115 2 1 Edit | Delete b) 60
c) 35
d) 50

A 200 bus power system has 160 PQ bus. For achieving a load flow solution by N-R in polar coordinates, the
minimum number of simultaneous equation to be solved is

e | 2 1 Edit | Delete | 339
b) 334
c) 357
d) 345
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Correct
Answer

Edit

Edit

Edit

Edit

Edit

Delete

Delete

Delete

Delete

Delete
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A 50 bus power system Ybus has 80% sparsity. The total number of transmission lines will be
a) 225
b) 563
c) 345
d) 456

The given graph is the depiction of on a large power system network.
a) Three phase motor getting short

b) L-G fault

¢) Ratings of machines

d) Any of the mentioned

A protection system engineer is planning to provide the complete protection, he can achieve this by
a) a two phase fault relays and three earth fault relays

b) a two phase fault relays and two earth fault relays

¢) two phase fault relays and three earth fault relays

d) three phase fault relays and two earth fault relays

A power system has a maximum load of 15 MW. Annual load factor is 50%. The reserve capacity of plant is
__ if the plant capacity factor is 40%.

a) 3.75 MW

b) 7.75 MW

c) 46.75 MW

d) 8.75 MW

The area under the load curve represents
a) maximum demand

b) load factor

¢) the average load on power system

d) number of units generated
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Correct
Answer

Edit

Edit

Edit

Edit

Edit

Delete

Delete

Delete

Delete

Delete
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If all the sequence voltages at the fault point in a power system are equal, then fault is
a) LLG fault

b) Line to Line fault

¢) Three phase to ground fault

d) LG fault

If the power system network is at Vs £ and receiving end voltage is Vi £ 0 consisting of the impedance of TL a:
(R+j5)Q. For maximum power transfer to the load, the most appropriate value of resistance R should be

a) 1.732
b) 3.45
)52
d) 0.33

Voltage regulation in the power system is
a) dip in voltage at sending end

b) rise in voltage at sending end

¢) rise in voltage at receiving end

d) dip in voltage at receiving end

Which of the following is not neglected during formation of reactance diagram from impedance diagram?
a) Shunt component of Transformers

b) Static loads

c) Resistance of various power system compomnents

d) Reactance of alternators

Which of the following is not a requirement for site selection of hydroelectric power plant?
a) Large catchment area

b) Rocky land

¢) Sedimentation

d) Availability of water
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Edit

Edit

Edit

Edit

Edit

Edit

Delete

Delete

Delete

Delete

Delete

Delete
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Which of the following is not an advantage of hydroelectric power plant?
a) no fuel requirement

b) continuous power source

¢) low running cost

d) no standby losses

Which of the following element of hydroelectric power plant prevents the penstock from water hammer
phenomenon?

a) Surge Tank

b) Draft tubes

c) Spillway

d) Valves and Gates

Which of the following part of thermal power plant causes maximum energy losses?
a) Alternator

b) Ash and unburnt carbon

¢) Boiler

d) Condenser

Which of the following are the most widely used condensers in modern thermal power plants?
a) Low level counter flow type jet condenser

b) Parallel flow type jet condenser

c) High level counter flow type jet condenser

d) Surface condensers

Which of the following is most suitable fuel for thermal power plant?
a) Bituminous coal

b) Lignite coal

¢) Anthracite coal

d) Peat coal

Which of the following is most advantageous and most widely method of solid fuel firing?
a) Spreader stoker firing

b) Pulverised fuel firing

¢) Underfeed firing

d) Stoker firing
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4 Edit
2 Edit
4 Edit
2 Edit
1 Edit
2 Edit

Delete

Delete

Delete

Delete

Delete

Delete

Which of the following method is used in large modern thermal power plants to heat feed water?
a) Open type heatre is used

b) Surface type heater is used

¢) Close type heater is used

d) Steam is directly taken from main turbine and used to heat it feed water

Which of the following pollutant causes acid rain?
a) NO2

b) 802

c) CO2

d) NO

What of the below mentioned statements are incorrect as compared to the HVDC system?
a) Distance limitation

b) Back to back connection is possible

¢) Extra reactive power compensation

d) More corona losses

When the ozone gas is produced as a by product of corona, that causes
a) increase of power factor

b) corrosion of wires

¢} improvement of regulation

d) reduction of power factor

Which component of gas turbine power plant is main cause of its low efficiency?
a) Compressor

b) Starting motor

¢) Gas turbine

d) Combustion chambe

Which of the following power plants can be profitably employed for supplying base loads as well as peak loads?
a) Diesel power plant

b) Hydroelectric power plant

¢) Thermal pawer plant

d) Nuclear power plant
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