dYdX Perpetual Contracts

Protocol Overview

Read on docs.dydx.exchange.

Introduction

The dYdX Perpetual Contracts protocol implements a synthetic trading market on Ethereum that
allows for exposure to arbitrary liquid assets using ERC20 tokens as collateral.

Similar to existing perpetual contracts, the price of the contract is tethered to the price of the
underlying asset by a dynamic interest rate, called the funding rate. An on-chain price oracle is used for
liquidation purposes, and secondarily, to calculate funding payments. The order book for the market
can remain off-chain, allowing for faster price movements and better liquidity.

Importantly, the contract’s underlying asset does not have to already exist as a token. For each account
trading the perpetual, profits and losses are exchanged using the margin ERC20 token. This effectively
allows users to trade assets that do not actually exist on Ethereum as long as a sufficient price oracle
exists. For example a BTC-USDC perpetual contract can exist as long as a BTC-USDC oracle exists. Only
USDC would be used as margin deposit for all parties; tokenized BTC is not required.

Defining a Perpetual Contract

Global State
Each Perpetual Contract is uniquely defined by:

The Margin Token (e.g. USDC)

The Margin Requirement (e.g. 7.5%)
The Price Oracle Contract

The Funding Oracle Contract

N

The choice of price oracle will determine the underlying asset of the contract (e.g. BTC).
In addition, the Perpetual Contract keeps track of:

1. The Global Index
2. The Unix time of the most recent Global Index update
3. User accounts

The Global Index is used in funding payment calculations and is explained in greater detail later.

https://docs.dydx.exchange/#/perpetual-protocol

Account State

For a given Perpetual Contract, each Ethereum address has a single account. Each account’s state
consists of:

1. The Margin Balance
2. The Position Balance
3. The Cached Index

The Margin Balance and Position Balance are each signed integer values. The Margin Balance is
denominated in Margin Token (e.g. USDC). The Position Balance is denominated in the underlying
asset (e.g. BTC), that is traded against the Margin Token. The Margin Balance may change due to
funding payments, deposits, and withdrawals. Both the Margin Balance and the Position Balance may
change due to trades.

The Cached Index of an account is equal to the Global Index at the last time that the account was
interacted with. The Cached Index is used when settling funding payments for an account.

Margin Requirement

The margin requirement is the minimum margin percentage that an account must maintain to avoid
liquidation. The margin percentage is defined as the value of any positive balances divided by the value
of any negative balances, minus 100%. For example, if 1 BTC is worth 1000 USDC according to the price
oracle, then an account with a Position Balance of -1 BTC and a Margin Balance of +1100 USDC would
have a margin percentage of 10%.

After each interaction with the Perpetual (except deposits), the smart contract checks the margin
percentage of each affected account. If the margin requirement is not met for an account, then the
account’s margin percentage must have increased and its position balance must have decreased in
absolute size and not changed signs during the interaction. This condition must be met for each
affected account, otherwise the transaction is reverted.

Funding Payments

The Perpetual aims to trade as close to the price of the underlying asset as possible. This helps traders
and market-makers understand and predict the price, maintain expectations for how it will perform,
and hedge their positions appropriately.

Like other perpetual contracts, we use a “funding rate” to incentivize traders to take the “unpopular”
market position and help tether the price of the Perpetual. The funding rate operates similarly to a
dynamic interest rate on traders’ positions, paid by longs and received by shorts, or vice-versa,
depending on market conditions.

Funding payments are made continuously and are effectuated via updates to the Global Index. The
Global Index is a signed number that starts at zero. It is updated at the start of any transaction to the
smart contract according to the formula:

I +=T X R X P

Where I is the Global Index, T is the time since the last index update, R is the current funding rate, and
P is the current price of the underlying relative to the margin token, according to the price oracle.

The funding rate can be positive (longs pay shorts) or negative (shorts pay longs), thus the Global Index
can both increase and decrease. The funding rate is determined by the funding oracle. This contract is
fed updates by an Admin address according to an off-chain algorithm that aims to keep the market
value of the Perpetual as close as possible to the underlying asset. The funding rate will be positive if
the Perpetual is trading higher than the price of the underlying, and negative if the Perpetual is trading
lower. Limits on the maximum value and the rate of change of the funding rate are implemented on the
funding oracle contract itself.

Each account’s funding payments are derived from changes in the Global Index, scaled by the size of
the account’s Position Balance (irrespective of leverage). Any time the Global Index is updated, each
account involved in the transaction will settle its funding payments since its last update. This is done
by updating the Margin Balance of the account according to the formula:

M—=(—1)xP

Where M is the Margin Balance of the account, I, is the newly updated Global Index, I, is the account’s
Cached Index, and P is the Position Balance of the account. Note that all of these variables are signed
numbers which can be positive or negative. After this settlement occurs, the account’s Cached Index is
set to the new Global Index. These calculations result in continuous, non-compounding, peer-to-peer
interest payments between traders.

Interacting with the Protocol

EXTERNAL FUNCTIONS CORE PROTOCOL ORACLES

[(admin functions) ‘ |_P10racle.sol ‘
PerpetualV1.sol

[setLocalOperator()]‘\\{ P1Admin.sol
min.sol

| (getter functions) }\\{ P10perator.sol

[deposit() }\\—| P1Getters.sol

[withdraw()]—% P1Margin.sol

ﬂ P10rders.sol ‘
{ trade()]—/’“{ FUESEE0 \{ P1Liqudiation.sol
/—| P1FinalSettlement.sol

[withdrawFinalSettlement()]—/ P1Deleveraging.sol

‘ |_P1Funder.sol ‘

TRADERS

AL

High-level structure of the protocol.
Overview

Users interact with the smart contract by calling one of three functions:

1. Deposit
2. Withdraw
3. Trade

The structure of each function is as follows:

The Global Index is updated.

Funding payments of affected accounts are settled and Cached Indexes are updated.
The action (Deposit/Withdraw/Trade) is processed.

The margin percentage of each affected account is checked.

N

We describe each function in more detail below.
Deposit

This function increases an account’s Margin Balance by transferring in some amount of Margin Token
from the caller’s ERC-20 balance.

Withdraw

This function decreases an account’s Margin Balance by transferring out some amount of Margin
Token. The function takes as an argument a destination address to receive the tokens. Withdrawals
cannot be completed if the account’s margin percentage is below the margin requirement.

Trade

A trade happens between two accounts, affecting the Margin and Position balances of those two
accounts. The term “trade” is used broadly here to refer to any operation involving a transfer of
balances, and the exact types of trades allowed will depend on the Trader contracts in use (described
below).

Since a trade is the only way to change the Position Balance of an account, and is always executed as a
transfer between two parties, the total net Position Balances across all accounts in a given Perpetual
market will, at any time, sum to zero.

Trades are sent to external “Trader” smart contracts for processing and approval. These Trader
contracts must be approved by the Perpetual Admin before they can be used. Arguments to the trade
function include the address of the Trader contract to use, maker and taker addresses, and additional
data depending on the Trader contract. If the trade is approved, the Trader will return an amount of

Margin and Position to transfer between the two accounts. The transfer is then executed by the
Perpetual contract.

Multiple trades may be processed at once as an atomic batch. The margin percentages of accounts are
checked at the end of a batch of trades.

Trader Contracts

Below, we outline the three Trader Contracts that will be available at the launch of the protocol. Our
architecture aims to keep trader logic outside of the core Perpetual smart contract, allowing us to
cleanly make changes and upgrades to trade functionality by approving new Trader contracts.

Orders

The Orders contract is a Trader that allows a taker to execute a trade with a maker, given a signed order
from the maker. This allows traders to place orders by signing an order object off-chain. An order
matching service (e.g. dYdX) can then match and execute trades on-chain by acting as the “taker” for
each order.

Makers can cancel orders, either via an off-chain signature (which must then be relayed on chain), or by
calling the cancel function directly on the Orders smart contract.

Note that since no tokens are actually transferred during trades (only Margin and Position Balances),
liquidity for trades is exclusive to the Perpetual and cannot be sourced from other DEXes.

Liquidation

If an account’s margin percentage falls below the Perpetual’s margin requirement, then the account
may be liquidated. This process allows the liquidator to assume the margin and position balances
(wholly or in-part) of the liquidated account. This transfer of balances occurs at the exact ratio of
balances in the liquidated account, therefore, the margin percentage of the liquidated account does not
change during liquidation.

Any account may choose to act as a liquidator. If there exists enough liquidity in the market, this action
is beneficial to the liquidator since the liquidated account has positive market-value.

Deleveraging

If the oracle price changes rapidly, the value of some accounts may drop below zero before there is a
chance to liquidate them at a profit. In such cases, deleveraging is used to maintain the solvency of the
system.

An account with negative net value (i.e. a negative margin percentage) is said to be underwater, and
may be targeted for deleveraging. The process is similar to liquidation, in that the balances of the target
account are taken on by another account, in this case called the offsetting account. Unlike liquidation,

the deleveraging operation allows the caller to specify any account as the offsetting account, as long as
it has a position opposite the target (short vs. long) and of greater or equal size.

The Perpetual Admin is responsible for triggering deleveraging whenever an account is underwater.
The Admin will use an “insurance fund” as the offsetting account, if available. Otherwise, the Admin
will determine the offsetting account via an off-chain algorithm that prioritizes accounts with a high
amount of profit and leverage.

If, due to unforeseen circumstances, the Perpetual Admin is offline for a period of time, then any
third-party may trigger deleveraging to maintain the solvency of the system. Third-parties are
required to mark underwater accounts and wait a time lock in advance of deleveraging, ensuring that
the Admin has priority in executing deleveraging.

Final Settlement

Final settlement is a one-way operation which locks in the current oracle price and Global Index, and
restricts all operations except for a special withdrawal function allowing users to exit their positions at
the locked price.

Final settlement may be triggered by the Perpetual Admin at the end-of-life of a given Perpetual smart
contract. It may also be triggered in the event that a critical vulnerability is discovered that is deemed
to pose a significant risk to user funds.

	dYdX Perpetual Contracts
	Introduction
	Defining a Perpetual Contract
	Global State
	Account State
	Margin Requirement
	Funding Payments

	Interacting with the Protocol
	Overview
	Deposit
	Withdraw
	Trade

	Trader Contracts
	Orders
	Liquidation
	Deleveraging

	Final Settlement

