vVY W

":"

Y v

¥ v

IT-504: Computer Arithmetic: Learning Outcome

(referencel V. Rajaraman, PHI Publications)
Expected Outcome

Represent decimal numbers with fractional parts using normalized floating point
representation

Explain why floating point numbers are normalized
Add, subtract, multiply, and divide normalized floating point numbers

Explain the consequences of using normalized floating point representation of
numbers on arithmetic operations with these numbers

Explain the difference between truncation and rounding errors in computation
Explain what is meant by ill-conditioning and numerically unstable algorithms
Represent decimal numbers as binary and hexadecimal numbers and vice versa
Represent binary floating point numbers using IEEE floating point standards

Introduction to Numerical Algorithms
The main features of a computer which influence the the formulation of algorithms are:

1. The algorithm is stored in the memory of the computer.This facilitates the repetitive
execution of instructions.

2. Results of computation may be stored in the memory and retrieved when necessary for
further computation

3. The sequence of execution of instructions may be altered based on the results of
computation.The facility to rest the sign of a number or test if it is zero coupled with rhe
presence of the entire algorithm computer’s memory enables alternate routes to be taken
during the execution of the algorithm.

4. The computer has the capability to perform only the basic arithmetic operations of
addition,subtraction,multiplication and division.

In Numerical Analysis together with representation of numbers (Integers and Real), there are 2-types
of arithmetic operations that are available in a computer.

1. Integer Arithmetic
2. Real /Floating point Arithmetic

Integer Arithmetic

Integers are signed numbers without fractional parts.

Integers are mainly used in counting and subscripts

Integer Arithmetic deals with integer operands
Integer Arithmetic

Real arithmetic uses numbers with fractional parts as operands.
They are used in most computations.

Floating Point representation of numbers

There are two types of arithmetic operations available in a computer. These are:

(1) Integer anthmetic
(1) Real or floating-point arithmetic.

Integer arithmetic, as the name implies, deals with integer operands, that is.
numbers without fractional parts. It is used mainly in counting and as subscripts.

Real arithmetic uses numbers with fractional parts as operands and is used
in Most computations.

Due to economic considerations computers are designed such that each
location (also called a word) in memory stores only a finite number of digits.
Consequently all operands in arithmetic operations have only a finite number of
digits. For illustrative purpose we will assume that a (hypothetical) computer has
a memory in which each location can store 6 digits and has provision to store
one or more signs. One method of representing real numbers in such a computer
would be to assume a fixed position for the decimal point and store all numbers
(after appropriate shifting if necessary) with an assumed decimal point as shown
in Figure 2.1.

One memaory location or word
+

2 4 5| 6 2| 4
&

Sign Assumed decimal point

Fieure 2.1 A memory location storing the numhber 2456.24.

I such a convention is used the maximum and minimum (in magnitude)
numbers that may be stored are 9999.99 and 0000.01 respectively. This range

is quite inadequate in practice and a different convention for representing real
numbers is adopted. This convention aims to preserve the maximum number of
significant digits in a real number and also increase the range of values of real
numbers stored. This representation is called the normalized floating point mode
of representing and storing real numbers. In this mode a real number is expressed
as a combination of a mantissa and an exponent. The mantissa is made less than
I and greater than or equal to 0.1 and the exponent is the power of 10 which
multiplies the mantissa. For example the number 44.85 x 10° is represented in
this notation as (.4485E8 (EB is used to represent 10%). The mantissa is 0.4485
and the exponent is 8. The number is stored in a memory location as shown in
Figure 2.2,

Sign of Sign of
mantissa + + exponent

4 | 4| B|5|0)| 8

*

T mantissa exponent

Implied decimal
paint

Figure 2.2 Representation of 0.4485E8 in normalized floating-point mode.

In the above case the 6 digits available in a memory location are arbitrarily
divided into two parts. Four digits are used for the mantissa and two for the
exponent. The mantissa and the exponent have their own independent signs.
While storing numbers the leading digit in the mantissa 1s always made non-
zero by appropriately shifting it and adjusting the value of the exponent. Thus
the number 0.004854 would be stored as shown in Figure 2.3. The shifung
of the mantissa to the left till its most significant digit is non-zero is called
normalization. The normalization is done to preserve the maximum number of
useful (information carrying) digits. The leading zeros in 0.004854 serve only
to locate the decimal point. This information may thus be transferred to the
exponent part of the number and the number stored as 0.4854 E-2.

+ -—

4 a | 5| 4|02

Implied decimal mantissa exponent

e

Figure 2.3 Eepresentation of 0004854 in normalized floating-point mode.

When numbers are stored using this notation the range of numbers
(magnitudes) that may be stored are 0.9999 x 10™ to 0.1000 x 10 which is
obviously much larger than that used in the fixed decimal point notation described
garlier. This increase in range has been obtained by reducing the number of
significant digits in a number by 2.

Floating Point Arithmetic

Addition

2.3.1 Addition

If two numbers represented in normalized floating-point notation are to be added
the exponents of the two numbers must be made equal and the mantissa shifted
appropriately. The details will be clarified by some examples.

Add 0.4540E5 to 0.5433E5. In this case the exponents are equal. Thus the
mantissas are added. The sum is thus 0.9979E5.

EXAMPLE ;2.2

Add 0.4546E5 to 0.5433E7. In this case the two exponents are not equal. The
operand with the larger exponent is kept as it is and the mantissa of the operand
with the smaller exponent is shifted righr by a number of places equal to the
difference in the two exponents. In this example the difference between the
exponents is (7 = 5) = 2. Thus the mantissa of 0.4546ES5 is shified right two
places. Each shift causes the last digit in the mantissa to be chopped off as the
arithmetic unit in our hypothetical compuier can accommodate only a 4-digit
mantissa. Operands after the shift are as shown below:

0.5433E7
0.0045E7
0.5478E7

Thus the sum is 0.5478E7.

EXAMPLE /2.3

Add 0.4546E3 1o 0.5433E7. In this case the first operand will be shifted 4 places
to the right and 0.0000E7 will be added to 0.5433E7.

EXAMPLE /24

Add 0.6434E3 to 0.4845E3. In this case the exponents are equal. When the
mantissas are added the sum is 1.1279E3. As the mantissa has 5 digiis and is
greater than 1 it is shifted right one place before it is stored. When it is shifted
the exponent is increased by one and the last digit of the mantissa is chopped off.
Thus the answer would be 0.1127E4.

Add 0.6434E99 to 0.4845E99. In this case again the sum of the mantissas
exceeds 1. Thus the mantissa is shifted right and exponent increased by 1
resulting in a value of 100 for the exponent. As the exponent part cannot store
more than two digits, in our hypothetical computer, the number is larger than the
largest number that can be stored in a word. This condition is called an overflow
condition and the arithmetic unit will intimate an error condition.

Subtraction of floating point numbers

L.A.4 dDubtraction

The operation of subtraction in nothing but adding a negative number. Thus the
principles are the same. A few examples will now be considered to clarify some
points.

EXAMPLE /2.6

Subtract (.9432E—4 from (.5452E-3. As the exponents are not equal the number
with the smaller exponent is shifted right and the exponent increased by 1 for
each right shift. Thus the result 1s 0.5452E-3 -0.0943E-3 = 0.4509E-3.

EXAMPLE /2.7

Subtract 0.5424E3 from 0.5452E3. The exponents are equal. Thus the mantissas
are subtracted. The result is 0.0028E3. As the most significant digit of the
mantissa is 0 the mantissa is shifted left till the most significant digit 1s non-zero.
{Remember that in normalized floating point the mantissa is = 0.1 and < 1). For
each left shift of the mantissa the exponent is reduced by 1. Thus the result is
0.2800E1. The trailing zeros in the results do not carry any information but are
carried by the computer in all further calculations as though significant.

The subtraction 0.5452E -99 —0.5424E -99 leads to the answer 0.0028E -99.
Again the mantissa is shifted left (for normalization). In this process the exponent
is reduced by 1. The exponent would thus become — 100 with the first left shift. As
the exponent in our hypothetical computer can store only two digits —100 cannot
be accommodated in the exponent part of the number. In this case the result is
smaller than the smallest number which could be stored in this (hypothetical)
computer. This condition is called an underflow condition and the arithmetic unit
will signal an error condition.

To recapitulate, i the result of an arithmetic operation gives a number
smaller than 0.1000E =99 then it is called an underflow condition. Similarly any
result greater than 0.9999E99 leads to an overflow condition.

Multiplication of floating point numbers

2.3.3 Multiplication

Two numbers are multiplied in the normalized floating-point mode by multiplying
the mantissas and adding the exponents. After the multiplication of the mantissas

the result mantissa i1s normalized as in addition/subtraction operation and the
exponent appropriately adjusted. Some examples are given below to illustrate
the procedure.

EXAMPLE /29

+0.5543E12 < 0.4111E - 15=0.22787273E -3 =0.2278E -3

Digcarded

EXAMPLE 2.10

O0.1TT1E10 = 0.1234E15=0.01370974E25 = 0.1370E24

Dhiscarded

0.1111E51 x 0.4444E50 = 0.04937284E101 = 0.4937E100
—Answer overflows.

Division of floating point numbers

2.3.4 Division

In dividing a number by another the mantissa of the numerator is divided by that
of the denominator. The denominator exponent 1s subtracted from the numerator
exponent. The quotient mantissa is normalized to make the most significant digit
non-zero and the exponent appropriately adjusted. The mantissa of the result
is chopped down to occupy 4 digits. Some examples are worked out below to
clarify the procedure.

EXAMPLE 213

0.9998E1 + 0.1000E - 99 = 9,9980E100 = 0.9998E101 —Result overflows.

EXAMPLE ;214
D900RE — 5 + 0.1000E98 = 0.,9998E — 104 —Result underflows.

Consequences of floating point numbers

241 Non-Associativity of Arithmetic

In the last section methods of performing the four arithmetic operations with

numbers in normalized floating-point mode were presented. It was seen that
numbers had to be truncated to fit into the 4 mantissa digits allowed in our
hypothetical computer for each number. This truncation leads to a number of
seemingly surprising results (namely, results which we are not used to in our
experience with arithmetic). For instance (2/3) x 6 =4 as we all know. However,
when the arithmetic 1s performed with floating-point numbers 0.6667 added 6
times gives 0.3997E1 whereas 0.6667 x 6 gives 0.4000E1. In other words, the
equation 6x = x + x + x + x + x + x is not true! (Check this using floating-point
arithmetic.)

Another consequence of the floating-point representation is that the
associative and the distributive laws of arithmetic are not always valid. In other

B

Words

a+b)=c#la=-c)+b
alb =)= (ab - ac).

These are illustrated with examples below.

Let a = 0.5665E1
b =0.5556E - |
¢ =0.5644E1
(a+ b) =0.5665E1 + 0.5556E — |
=0.5665E1 + 0.0055E1
=0.5720E1
(@+b)—c =035720E1 - 0.5644E1
= 0.0076E1
= 0.7600E — |

(a =) =0.5665E1 - 0.5644E1
=0.0021E1 =0.2100E - 1
(a=c)+ b =02100E -1 + 0.5556E - 1

=0.7656E - 1
It is thus seen that (a + b)—c # (a —) + b.

In fact the correct answer if no number is truncated is .7656F — 1.

Let o =0.5555E1
b = 0.4545E1

¢ =04535El
(b=¢) =0.0010E1 = 0.1000E - 1
alh—) = 0.5555E1 x 0.1000E - 1
= 0.0555E0 = 0.5550E - 1
ab =0.5555E1 x 0.4545E1 = (.2524E2
ac = 0.5555E1 x 0.4535E1 = 0.2519E2

ab = ac = 0.0005E2 = 0.5000E -1
Thus a(b —c) # ab —ac.

In fact, if the intermediate results are not truncated, the correct answer is
0.5555E - 1.

The above examples are intentionally chosen to illustrate the inaccuracies
that may build up due to shifting and truncation of numbers in arithmetic
operations. The wide disparity in the results obtained in the examples 15 due
to the fact that in each case the difference of two almost equal numbers 1s
involved. Whenever such a condition occurs in practice one should be careful. If
possible, subtraction operation should be eliminated altogether as illustrated in

tha Fallamnme aranaala

EXAMPLE 218

Evaluate (1 — cos x) at x = 0.1396 radians
cos (0.1396) = 0.9903
1 —cos (0.1396) = 0.1000E1 — 0.9903E0

= 0.1000E1 - 0.0990E1 = 0.1000E - 1.

If we rewrite (1 — cos x) as 2 sin® x/2 then the value is:

sin [%] =sin 0.0698 = 0.6974E — 1

2 sin’ ; =(0.2000E1) * (0.6974E — 1) % (0.6974E — 1)
= 0.9727E -2

The value obtained by the alternate formula is closer to the true value 0.9728E - 2.

Concept of ZERO in floating point arithmetic

The number zero has a precise meaning in arithmetic. However, while doing
arithmetic with real numbers represented in normalized floating-point mode
exact equality of a number to zero can never be ensured. This is again due to the
fact that most numbers in floating point are only approximations. To fix our idea
we will consider an example.

EXAMPLE 2.20

The roots of the quadratic equation x* + 2x — 2 = 0 are —1 + /3 . The roots
expressed in [loating point with 4-digit mantissa are 0.7320E0 and <0.2732E1.
If we substitute 0.7320E0 for x in the expression (x° + 2x) — 2 we should ideally
obtain zero, Using floating-point arithmetic, however, we get

(0.7320E0 = 0.7320E0 + 0.2000E1 = 0.7320E0) - 0.2000E1
=(0.5358E0 + 0.1464E1) = 0.2000E1 = =0.1000E - 2

If instead of computing (x* + 2x) first and then subtracting 2 from it, we compute
(2x = 2) and add it to x* (using floating-point arithmetic) we get =0.2000E - 3!
Similarly, if =0.2732E1 is substituted for x in (x* + 2x) — 2 we get =0.1000E - 2.

Thus even though the roots are substituted in the quadratic expression the result
i1s not zero. The main point 1o be noted is that in any computational algorithm
it is not advisable to give a branching instruction based on testing whether a
foating-point quantity is zero or not zero.

In the previcns chapier an algonitbm was Tormuslaced (o s0lve the simmliznasons
equation
e+ by =g
PREgY=r
a b c P q r
2,500 | 5200 | 6.200 1.251 2.605 3.152

It the equations are solved using Algorithm 1.2 and ordinary arithmetic (keeping
all the digits obtained in intermediate computations) the solution would be:

x =-0.32794E2 v=0.16958E2

Using floating-point arithmetic with 4-digit mantissa if Algorithm 1.2 is executed
the solution obtained would be:

x=-0.3217E2 v =0.1666E2

(The student is urged to check this using floating-point arithmetic before
proceeding further.)

Observe that the two solutions agree only in the two most significant digits.
The reason for the disagreement in the two solutions is again due to loss of
significant digits when the difference of two almost equal numbers is taken. The
solutions obtained will be equal in this particular case if 8 digits rather than 4
digits are used for the mantissa.

A still more startling result would be obtained in this example if the value
of ¢ is changed to 2.606 and the values of all the other variables are kept the
same. Observe that this i1s a change of 0.001 in one of the numbers. The solution
obtained for x and v using 4-digit mantissa and floating-point arithmetic is: x
= -0.2352E2 and v = 0.1250E2. A change in one coefficient by less than 1 in
two thousand has led to a change of more than 30 per cent in the values of x
ﬂnd }J This coefficient may have been obtained irr:nm other computations wﬂh

- aaa o 2w AaWe aaa a aasa W e o hsas aal.T .. BN o, e w ¥ aa c iz =T Haa. Ta = =l

Assesment

1.1

1.2

Revise the instructions for solving the simultaneous equations given at
the beginning of the chapter for the case when one or more of the co-
efficients a, b, ¢, p, g, r are zero.

In the program for solving simultaneous equations what is the physical
significance of (ag — bp) being zero?

1.3 Solve the simulataneous equations with the following values of a, b, ¢, p, ¢

and r.

a=2.500 b=15.200 ¢ =06.200
p=1251 g =2.605 r=3.152
Give the answer correct to four decimal digits.

1.4 Obtain an algorithm to find the sum of the following series to the first n

1.5

terms
. T DR
(1) cosxr=l-—x"+—x ——x +-
2! 4! 6!
2o
(ijlog, (l1+x)=x——+———+"
' 2 3 4

Obtain an algorithm to compute the sum §

1S
§= Zﬂxf

CpxtgS

1.6 Obtain an algorithm to evaluate
dp(x)
dx
where p(x) is the nth degree polvnomial

R
(a,x" +a,_x" ++ax+ay)

1.7 Develop an algorithm to read a vector, sum all its positive components,
count such components and sum separately all the negative components
of the vector.

1.8 Obtain an algorithm which given the coordinates of a point (x, v) will
write a message whether it is in or not in the first quadrant of the unit
circle.

