Plutus Pioneer Program - Cohort 3 - Lecture 1 - January 12, 2022

Building Example Code and Learning Plutus
Playground

Contributed By:
Joe Totes

Table of Contents

Preparation for Lecture 1

The EUTxO Model

The Auction Contract in the EUTxO Model
The Auction Contract in Plutus Playground
Homework

abrwd=

Preparation for Lecture 1

Before we can get started in lecture 1, we first must get our
development environment configured. This guide will be using a
fresh install of Ubuntu linux.

If you want to use linux but only have a computer with Windows,
you can run a virtual environment inside of Windows. A great step
by step guide for how to get started can be found here:

How to install an Ubuntu VM in Windows

You can copy and paste any of the code in this guide directly into
your terminal or IDE. If you are new to linux and are unfamiliar with
terminal shell commands, this cheat sheet gives a quick overview:
Linux Command Master List

The haddock documentation is also a great source of information for
all the public plutus libraries. This can be found here:
Documentation for all public Plutus Libraries

First, Open up the terminal to get started. We will first install the
necessary dependencies first for a fresh copy of linux.

We need to install Nix and get it configured properly to use I0G’s
caches. In this guide we will be doing a single user install.

https://github.com/Totes5706
https://youtu.be/x5MhydijWmc
https://drive.google.com/file/d/10xz7Dm3E_20doL08Wu_dfWJqiIfvTKlc/view?usp=sharing
https://playground.plutus.iohkdev.io/doc/haddock/

Before we can install Nix, we need to make sure the version of linux
you are using has curl installed. First run:

~$ sudo sh -c 'apt update & apt install curl'’

Now that curl is installed, we can now install Nix. Run:

~$ sh <(curl -L https://nixos.org/nix/install) --no-daemon

Output:

Installation finished! To ensure that the necessary environment
variables are set, either log in again, or type

. /home/totinj/.nix-profile/etc/profile.d/nix.sh

Now to finish, we need to set the environment with the following
command notice from above.

Very important here to replace “totinj” with your current linux user!!

~$. /home/totinj/.nix-profile/etc/profile.d/nix.sh

We now need to add Input Outputs caches to greatly speed up the
building process. Without this step, you might be running nix-shell
for days rather than minutes! Let’s create a new config file that has
the associated I0G links. Run:

~$%$ mkdir ~/.config/nix
echo 'substituters = https://hydra.iohk.io https://iohk.cachix.org
https://cache.nixos.org/' >> ~/.config/nix/nix.conf
echo 'trusted-public-keys =

hydra.iohk.io:f/Ea+s+dFdN+3Y/G+FDgSq+a5NEWh]GzdjvKNGvO/EQ=
iohk.cachix.org-1:DpRUyj7h7V830dp/i6Nti+NEO2/nhblbov/8MW7Rqoo=
cache.nixos.org-1:6NCHdD59X43100gWypbMrAURkbJ16ZPMQFGspcDShjY=" >>
~/.config/nix/nix.conf

With Nix now installed and configured, we will clone the appropriate
repositories from github. We will be cloning the plutus-apps and the
plutus-pioneer program.

First, let’s clone plutus-apps:

~$ git clone
https://github.com/input-output-hk/plutus-apps.git

Next, let’s clone the plutus-pioneer-program repo:

~$ git clone

https://github.com/input-output-hk/plutus-pioneer-program.

You can now navigate to the current week01 directory in the
plutus-pioneer-program folder and open the cabal.project file:

~/plutus-pioneer-program/code/week01$ cat cabal.project

Grab the plutus-apps tag inside the cabal.project file:

location: https://github.com/input-output-hk/plutus-apps.git

tag:41149926c108c71831cfe8d244c83b0eedbf5c8a

Head back to to the plutus-apps directory and update it to the
current git tag:

~/plutus-apps$ git checkout main

~/plutus-apps$ git pull

~/plutus-apps$ git checkout

41149926c108c71831cfe8d244c83b0eedbf5c8a

You should now be up to date and can run nix-shell in this directory.
Run nix-shell:

~/plutus-apps$ nix-shell

Nix-shell will take a good amount of time to build the first time you
are running it, so be patient. If you have setup your caches
correctly, you will notice it building from https://hydra.iohk.io.

If successful, you should see the nix-shell:

[nix-shell:~/plutus-apps]$

Head back to the weekO01 folder to start running the cabal
commands:

[nix-shell:~/plutus-pioneer-program/code/week01]$% cabal update

[nix-shell:~/plutus-pioneer-program/code/week01]$ cabal build

[nix-shell:~/plutus-pioneer-program/code/week01]$ cabal repl

These will also take a long time to run the first time. If successful,
you should now be ready to start the lecture:

Ok, one module loaded.

Prelude Week@l.EnglishAuction>

https://hydra.iohk.io

The EUTxO Model

This is the transcript for the lecture video on EUTxOs by Lars
Briinjes. Further information about EUTxO models can be found
here: Accounting Systems for Blockchains

One of the most important things you need to understand in order to write Plutus smart
contracts is the accounting model that Cardano uses; and that is the so-called (E)UTxO model,
which is an abbreviation for extended unspent transaction output model. The UTxO model
without being extended is the one that has been introduced by Bitcoin. But there are other
models. Ethereum, for example, uses a so-called account-based model, which is what you're
used to from a normal bank, where everybody has an account and each account has a balance.
And if you transfer money from one account to another, then the balance gets updated
accordingly, but that is not how the UTxO model works. Unspent transaction outputs are exactly
what the name says. They are transaction outputs that are outputs from previous transactions
that happened on the blockchain that have not yet been spent.

So let's look at an example where we have two such UTxOs, one belonging to Alice, 100
ADA and another one belonging to Bob, 50 ADA. And as an example, let's assume that Alice
wants to send 10 ADA to Bob. So she creates a transaction and the transaction is something
that has inputs and outputs, can be an arbitrary number of inputs and an arbitrary number of
outputs. And an important thing is that you can always only use complete UTxOs as input. So, if
she wants to send 10 ADA to Bob, she can't simply split herexisting 100 ADA into a 90 to 10
piece. She has to use the full 100 ADA as input. So by using the UTxO 100 ADA as input to a
transaction. Alice has not spent that UTxO, so it's no longer an UTxO. It's no longer unspent, it's
been spent. And now she can create outputs for a transaction. So she wants to pay 10 ADA to
Bob. So one output will be 10 ADA to Bob, and then she wants her change back. So she
creates a second output of 90 ADA to herself.

And so this is how, even though you always have to consume complete UTxOs, you can
get your change back. So you consume the complete UTxO, but then you create an output for
the change and note that in a transaction, the sum of the input values must equal the sum of the
output values. So in this case, 100 ADA go in and 10 plus 90 ADA go out. This is strictly
speaking, not true. There are two exceptions, the first exception is transaction fees. So in the
real blockchain for each transaction, you have to pay fees. So that means that the sum of input
values has to be slightly higher than the sum of output values to accommodate for the fees. And
the second exception is the native tokens that we have on Cardano. So it's possible for
transactions to create new tokens. In which case the outputs will be higher than the inputs or to
burn tokens, in which case the inputs will be higher than the outputs. But that is a somewhat
advanced topic, how to handle minting and burning of native tokens in Plutus. And we'll come
back to that later in the course. So for now we only look at transactions where the sum of the
input value equals the sum of the output values.

https://iohk.io/en/blog/posts/2021/03/11/cardanos-extended-utxo-accounting-model/

So this is a first example of a simple transaction, and we see that the effect of a
transaction is to consume and spend transaction output and to produce new ones. So in this
example, one UTxO has been consumed, Alice original 100 ADA UTxO, and two new ones
have been created. One 90 ADA UTxO belongs to Alice and another 10 ADA UTxO belongs to
Bob. It's important to note that this is the only thing that happens on an UTxO blockchain. The
only thing that happens when a new transaction is added to the blockchain is that someform a
UTxOs becomes spent and UTxOs appear. So in particular, nothing is ever changed, no value
or any other data associated with the transaction output is ever changed. The only thing that
changes by a new transaction is that some of the formerly unspent transaction outputs
disappear and others are created, but the outputs themselves never change. The only thing that
changes is whether they are unspent or not.

Let's do one other example, a slightly more complicated one where Alice and Bob
together want to pay 55 ADA each to Charlie. So they create a transaction together. And as
inputs, Alice has no choice, she only has one UTxO, so she uses that one. And Bob also
doesn't have a choice because neither of his two UTxOs is large enough to cover 55 ADA. So
Bob has to use both his UTxOs as input. This time we need three outputs, one the 55 plus 55
equals 110 ADA for Charlie, and the two change outputs, one for Alice's change and one for
Bob's change. So Alice paid 90, so she should get 35 change and Bob paid 60. So he should
get five change. One thing | haven't yet explained is under which conditions a transaction can
spend a given UTxO. Obviously it wouldn't be a good idea if any transaction could spend
arbitrary UTxOs, if that was the case, then Bob could spend Alice's money without her consent.
So the way it works is by adding signatures to transactions, so for our first example, our
transaction one, because that consumes an UTxO belonging to Alice as input. Alice's signature
has to be added to the transaction. And in the second example, because there are inputs
belonging to both Alice and Bob, both Alice and Bob have to sign that transaction, which
incidentally is something you can't do in Daedalus. So you would have to use the Cardano CLI
for complex transactions like that.

Everything I've explained so far is just about the UTxO model, not the extended UTxO
model. So this is all just a simple UTxO model. And the extended part comes in when we talk
about smart contracts. So in order to understand that, let's just concentrate on one consumption
on a UTxO by an input. And as | just explained, the validation that decides whether the
transaction this input belongs to is allowed to consume that you take so in the simple UTxO
model relies on digital signatures. So in this case, Alice has to sign the transaction for this
consumption of the UTxO to be valid. And now the idea of the extended UTxO model is to make
this more general. So instead of just having one condition, namely that the appropriate signature
is present in the transaction. We replace this by arbitrary logic, and this is where Plutus comes
in. So instead of just having an address that corresponds to a public key, and that can be
verified by a signature that is added to the transaction, instead we have more general
addresses that are not based on public keys or the hashes of public keys, but instead contain
arbitrary logic that can decide under which condition this specific UTxO can be spent by a
transaction. So instead of an address going to a public key, like Alice's public key in this
example, there will be an arbitrary script, a script containing arbitrary logic. And instead of the

signature in the transaction, the input will justify that it is allowed to consume this output with
some arbitrary piece of data that we call the redeemer. So we replace the public key address.

Alice in our example by a script, we place a digital signature by a redeemer which is an
arbitrary piece of data. Now, the next question is, what exactly does that mean? What do we
mean by arbitrary logic? And in particular it's important to consider what information? What
context does this script have? So there are several options. And the one indicated in this
diagram is that all the script sees is the redeemer. So all the information the script has in order
to decide whether it's okay for the transaction to consume this UTxO or not is looking at the
redeemer. And that is the thing that Bitcoin incidentally does.So, in Bitcoin, there are smart
contracts, they are just not very smart.They are called Bitcoin script and Bitcoin script works
exactly like this. So there's a script on the UTxO site and a redeemer on the input side and the
script gets the redeemer and can use the redeemer to decide whether it's okay to consume the
UTxO or not. But that's not the only option, we can decide to give more information to the script.
So, Ethereum uses a different concept. In Ethereum the script basically can see everything, the
whole blockchain,the whole state of the blockchain. So that's like the opposite extreme of
Bitcoin. Bitcoin the script has very little context, all it can see is the redeemer. In Ethereum the
solidity scripts in Ethereum can see the complete state of the blockchain. So that enables
Ethereum's scripts to be much more powerful so they can do basically everything, but it also
comes with problems because the scripts are so powerful, it's also very difficult to predict what a
given script will do and that opens the door to all sorts of security issues and dangerous,
because it's very hard to predict for the developers of an Ethereum smart contract what can
possibly happen because there are so many possibilities.

So what Cardano does is something in the middle, so it doesn't offer such a restricted
view as Bitcoin, but also does not have a global view as Ethereum, but instead chooses a
middle ground. So the script can see the whole blockchain, can see the state of the word
blockchain, but it can't see the whole transaction that is being validated. So, in contrast to
Bitcoin it can just see this one input, the redeem of this one input, but it can see that and all the
other inputs of the transaction and also all the outputs of the transaction and the transaction
itself, and the Plutus script can use that information to decide whether it's okay to consume this
output.

Now, in this example, there's only one input, but if this transaction had more than one
input, then the script would be able to see those as well. There's one last ingredient that Plutus
scripts need in order to be as powerful and expressive as Ethereum scripts. And that is a
so-called datum which is a piece of data that can be associated with a UTxO in addition to the
value. So at a script address, like in this example, in addition to this 100 ADA value, that can be
an arbitrary piece of data attached, which we call datum. And with this, we can actually
mathematically prove that Plutus is at least as powerful as Ethereum, so everything, every logic
you can express in Ethereum you can also express in this extended UTxO model that Cardano
uses, but it has a lot of important advantages in comparison to the Ethereum model. So for
example, in Plutus, it is possible to check whether a transaction will validate in your wallet
before you ever sent it to the chain. So something can still go wrong, so for example, your
transaction can consume an output and then when it gets to the chain, somebody else has
already consumed that output.This output has already been consumed by another

transaction.You can't prevent that, but in that case, your transaction will simply fail without you
having to pay any fees. But if all the inputs are still there, that your transaction expects, then you
can be sure that the transaction will validate and that it will have the effect that you predicted
when you ran it in your wallet .

This is definitely not the case in Ethereum, in Ethereum in the time between you
constructing the transaction and it being incorporated into the blockchain, a lot of stuff can
happen concurrently and that's unpredictable, and that can have unpredictable effects on what
will happen when your script eventually executes. So that means in Ethereum it's always
possible that you have to pay gas fee for a transaction, although the transaction eventually fails
with an error, and that is guaranteed not to happen in Cardano. In addition to that, it's also
easier to analyze a Plutus script and to check or even proof that it is secure because you don't
have to consider the whole state of the blockchain, which is unknowable. You can concentrate
on this context that just consists of the spending transaction. So you have a much more limited
scope and that makes it much easier to understand what a script is actually doing and what can
possibly happen or what could possibly go wrong.So this is it, that's the extended UTxO model
that Plutus uses.

So to recapitulate in extending the normal UTxO model, we replace public key
addresses from the normal UTxO model with scripts, Plutus scripts, and instead of legitimizing
the consumption of new UTxO by digital signatures, as in the simple UTxO model, arbitrary data
called redeemer is used on the input side. And we also add arbitrary custom data on the output
side. And the script as context when it runs, sees the spending transaction, the transaction one,
in this example. So given the redeemer and the datum and the transaction with its other inputs
and outputs, the script can run arbitrary logic to decide whether it's okay for this transaction to
consume the output or not. And that is how Plutus works.

One thing | haven't mentioned yet is who is responsible for providing datum, redeemer
and the validator, the script that validates whether a transaction can consume an input. And the
rule in Plutus is that the spending transaction has to do that whereas the producing transaction
only has to provide hashes.So that means if | produce an output that sits at a script address,
then this producing transaction only has to include the hash of the script and the hash of the
datum that belongs to this output. But optionally, it can include the datum and the script as well,
fully, but that's only optional. And if a transaction wants to consume such a script output, then
that transaction,the spending transaction has to include the datum and the redeemer and the
script. So that's the rule, how it works in Plutus, which of course means that in order to be able
to spend a given input, you need to know the datum because only the hash is publicly visible on
the blockchain. Which is sometimes a problem and not what you want and that's where this
possibility comes into to also include it in the producing transaction. Otherwise only people that
know the datum by some other means not by looking at the blockchain would be able to ever
spend such an output.

So this is the UTxO model, the extended unspent transaction output model. And that is
of course not tied to a specific programming language.l mean, what we have is Plutus, which is
based on Haskell, but in principle, you could use the same concept, the same UTxO model with
a completely different programming language. And we also plan to write compilers from other
programming languages to Plutus script which issort of the assembly language and aligned

Plutus.So there's an extended UTxO model is different from the specific programming language
we use.In this course, we will use Plutus obviously, but the understanding the UTxO model is
independently valid from understanding Plutus or learning Plutus syntax.

The Auction Contract in the EUTx0O Model

The code in Plutus is broken down into on-chain and off-chain
code. On-chain code just checks and validates, it just says yes or no.
The off-chain code actively creates that translation that will then
pass validation. Both of the on-chain and off-chain parts are
uniformly written in haskell. This is largely advantageous as code
can be shared, and you only need to concern yourself with one
programming language.

Looking at the auction contract EnglishAuction.hs, we see the
various data types are listed first in the contract:

minLovelace :: Integer
minLovelace =

data Auction = Auction
aSeller :: !PaymentPubKeyHash
aDeadline :: !POSIXTime
aMinBid :: lInteger
aCurrency :: !CurrencySymbol
aToken :: !TokenName
deriving (P.Show, Generic, ToJSON, FromJSON, ToSchema)

instance Eq Auction where
{-# INLINABLE (==) #-}

a == b = (aSeller a ==
(aDeadline a ==
(aMinBid a ==
(aCurrency a ==
(aToken a ==

PlutusTx.unstableMakeIsData
PlutusTx.makeLift '‘'Auction

data Bid = Bid

aSeller b) &&
aDeadline b) &&
aMinBid b) &&
aCurrency b) &&
aToken b)

'"Auction

{ bBidder :: !PaymentPubKeyHash

, bBid :: lInteger
} deriving P.Show

instance Eq Bid where
{-# INLINABLE (==) #-}
b == ¢ = (bBidder b == bBidder c) &%

b
(bBid b == bBid «¢)

PlutusTx.unstableMakeIsData ''Bid
PlutusTx.makeLift ' 'Bid

data AuctionAction = MkBid Bid | Close
deriving P.Show

PlutusTx.unstableMakeIsData ''AuctionAction
PlutusTx.makeLift '‘'AuctionAction

data AuctionDatum = AuctionDatum
{ adAuction :: lAuction
, adHighestBid :: !(Maybe Bid)
} deriving P.Show

PlutusTx.unstableMakeIsData ''AuctionDatum
PlutusTx.makeLift ''AuctionDatum

data Auctioning

instance Scripts.ValidatorTypes Auctioning where
type instance RedeemerType Auctioning = AuctionAction
type instance DatumType Auctioning = AuctionDatum

Followed by the main on-chain code (validation):

{-# INLINABLE mkAuctionValidator #-}
mkAuctionValidator :: AuctionDatum -> AuctionAction -> ScriptContext -> Bool
mkAuctionValidator ad redeemer ctx =
traceIfFalse "wrong input value" correctInputValue &&
case redeemer of
MkBid b@Bid{..} ->
traceIfFalse "bid too low" (sufficientBid bBid) &&
traceIfFalse "wrong output datum” (correctBidOutputDatum b) &&
traceIfFalse "wrong output value" (correctBidOutputValue bBid) &&
traceIfFalse "wrong refund"” correctBidRefund &&
traceIfFalse "too late" correctBidSlotRange
Close ->
traceIlfFalse "too early" correctCloseSlotRange &&
case adHighestBid ad of
Nothing ->
tracelfFalse "expected seller to get token" (getsValue
(aSeller auction) $ tokenValue <> Ada.lovelaceValueOf minLovelace)
Just Bid{..} ->
tracelfFalse "expected highest bidder to get token"
(getsValue bBidder $ tokenValue <> Ada.lovelaceValueOf minLovelace) &&
tracelfFalse "expected seller to get highest bid" (getsValue
(aSeller auction) $ Ada.lovelaceValueOf bBid)

where
info :: TxInfo
info = scriptContextTxInfo ctx

input :: TxInInfo
input =
let
isScriptInput i = case (txOutDatumHash . txInInfoResolved) i of
Nothing -> False
Just _ -> True
xs = [i | i <- txInfoInputs info, isScriptInput i]
in
case xs of
[i] -> i
-> traceError "expected exactly one script input"

inval :: Value
inval = txOutValue . txInInfoResolved $ input

auction :: Auction
auction = adAuction ad

tokenValue :: Value
tokenValue = Value.singleton (aCurrency auction) (aToken auction)

correctInputValue :: Bool
correctInputValue = inVal == case adHighestBid ad of
Nothing -> tokenValue <> Ada.lovelaceValueOf minLovelace
Just Bid{..} -> tokenValue <> Ada.lovelaceValueOf (minLovelace + bBid)

sufficientBid :: Integer -> Bool
sufficientBid amount = amount >= minBid ad

ownOutput :: TxOut
outputDatum :: AuctionDatum
(ownOutput, outputDatum) = case getContinuingOutputs ctx of
[o] -> case txOutDatumHash o of
Nothing -> traceError "wrong output type"
Just h -> case findDatum h info of
Nothing -> traceError "datum not found"
Just (Datum d) -> case PlutusTx.fromBuiltinData d of
Just ad' -> (o, ad')
Nothing -> traceError "error decoding data"
-> traceError "expected exactly one continuing output”

correctBidOutputDatum :: Bid -> Bool
correctBidOutputDatum b = (adAuction outputDatum == auction) &&
(adHighestBid outputDatum == Just b)

correctBidOutputValue :: Integer -> Bool
correctBidOutputValue amount =
txOutValue ownOutput == tokenValue <> Ada.lovelaceValueOf (minLovelace +
amount)

correctBidRefund :: Bool

correctBidRefund = case adHighestBid ad of
Nothing -> True
Just Bid{..} ->

| o <- txInfoOutputs info
, txOutAddress o == pubKeyHashAddress bBidder Nothing

]
in
case os of
[o] -> txOutValue o == Ada.lovelaceValueOf bBid

-> traceError "expected exactly one refund output”

correctBidSlotRange :: Bool
correctBidSlotRange = to (aDeadline auction) "~ contains™ txInfoValidRange

info

correctCloseSlotRange :: Bool
correctCloseSlotRange = from (aDeadline auction) ~contains® txInfoValidRange

info

getsValue :: PaymentPubKeyHash -> Value -> Bool
getsValue h v =
let
[o] = [o’
o' <- txInfoOutputs info
txOutValue o' == v

in
txOutAddress o == pubKeyHashAddress h Nothing

Next is where the compilation happens:

typedAuctionValidator :: Scripts.TypedValidator Auctioning
typedAuctionValidator = Scripts.mkTypedValidator @Auctioning
$$(PlutusTx.compile [|| mkAuctionvalidator ||])

$$(PlutusTx.compile [|| wrap |]])
where
wrap = Scripts.wrapValidator @AuctionDatum @AuctionAction

After that follows with the off-chain code starting with the three
endpoints start, bid, and close.

StartParams = StartParams

spDeadline :: !POSIXTime

spMinBid :: !Integer

spCurrency :: !CurrencySymbol

spToken :: !TokenName

deriving (Generic, ToJSON, From]SON, ToSchema)

BidParams = BidParams

bpCurrency :: !CurrencySymbol

bpToken :: !TokenName

bpBid :: lInteger

deriving (Generic, ToJSON, FromJSON, ToSchema)

CloseParams = CloseParams

cpCurrency :: !CurrencySymbol

cpToken :: !TokenName

deriving (Generic, ToJSON, FromJSON, ToSchema)

type AuctionSchema =
Endpoint "start" StartParams
.\/ Endpoint "bid" BidParams
.\/ Endpoint "close" CloseParams

start :: AsContractError e => StartParams -> Contract w s e ()
start StartParams{..} = do
pkh <- ownPaymentPubKeyHash
let a = Auction
{ aSeller = pkh

aDeadline = spDeadline
aMinBid spMinBid
aCurrency = spCurrency
aToken spToken

AuctionDatum
{ adAuction a
, adHighestBid = Nothing
}
v = Value.singleton spCurrency spToken 1 <> Ada.lovelaceValueOf
minLovelace
tx = Constraints.mustPayToTheScript d v
ledgerTx <- submitTxConstraints typedAuctionValidator tx
void $ awaitTxConfirmed $ getCardanoTxId ledgerTx
logInfo @P.String $ printf "started auction %s for token %s" (P.show a)
(P.show V)

bid :: forall w s. BidParams -> Contract w s Text ()
bid BidParams{..} = do
(oref, o, d@AuctionDatum{..}) <- findAuction bpCurrency bpToken
logInfo @P.String $ printf "found auction utxo with datum %s" (P.show d)

when (bpBid < minBid d) $

throwError $ pack $ printf "bid lower than minimal bid %d" (minBid d)
pkh <- ownPaymentPubKeyHash
let b = Bid {bBidder = pkh, bBid = bpBid}

d' = d {adHighestBid = Just b}

v = Value.singleton bpCurrency bpToken 1 <> Ada.lovelaceValueOf

(minLovelace + bpBid)
r = Redeemer $ PlutusTx.toBuiltinData $ MkBid b

lookups = Constraints.typedValidatorLookups typedAuctionValidator P.<>
Constraints.otherScript auctionValidator P.<>
Constraints.unspentOutputs (Map.singleton oref o)
case adHighestBid of
Nothing -> Constraints.mustPayToTheScript d' v
<>
Constraints.mustValidateIn (to $ aDeadline
adAuction) <>
Constraints.mustSpendScriptOutput oref r
Just Bid{..} -> Constraints.mustPayToTheScript d' v
<>
Constraints.mustPayToPubKey bBidder

(Ada.lovelaceValueOf bBid) <>

Constraints.mustValidateIn (to $ aDeadline
adAuction) <>
Constraints.mustSpendScriptOutput oref r
ledgerTx <- submitTxConstraintsWith lookups tx
void $ awaitTxConfirmed $ getCardanoTxId ledgerTx
logInfo @P.String $ printf "made bid of %d lovelace in auction %s for token
(%s, %s)"
bpBid
(P.show adAuction)
(P.show bpCurrency)
(P.show bpToken)

close :: forall w s. CloseParams -> Contract w s Text ()
close CloseParams{..} = do
(oref, o, d@AuctionDatum{..}) <- findAuction cpCurrency cpToken
logInfo @P.String $ printf "found auction utxo with datum %s" (P.show d)

let t Value.singleton cpCurrency cpToken
r Redeemer $ PlutusTx.toBuiltinData Close
seller aSeller adAuction

lookups = Constraints.typedValidatorLookups typedAuctionValidator P.<>
Constraints.otherScript auctionValidator P.<>
Constraints.unspentOutputs (Map.singleton oref o)
tx case adHighestBid of
Nothing -> Constraints.mustPayToPubKey seller (t <>
Ada.lovelaceValueOf minLovelace) <>
Constraints.mustValidateIn (from $ aDeadline
adAuction) <>
Constraints.mustSpendScriptOutput oref r
Just Bid{..} -> Constraints.mustPayToPubKey bBidder (t <>
Ada.lovelaceValueOf minLovelace) <>
Constraints.mustPayToPubKey seller
(Ada.lovelaceValueOf bBid) <>
Constraints.mustValidateIn (from $ aDeadline
adAuction) <>
Constraints.mustSpendScriptOutput oref r
ledgerTx <- submitTxConstraintsWith lookups tx
void $ awaitTxConfirmed $ getCardanoTxId ledgerTx
logInfo @P.String $ printf "closed auction %s for token (%s, %s)"
(P.show adAuction)
(P.show cpCurrency)
(P.show cpToken)

findAuction :: CurrencySymbol
-> TokenName
-> Contract w s Text (TxOutRef, ChainIndexTxOut, AuctionDatum)
findAuction cs tn = do
utxos <- utxosAt $ scriptHashAddress auctionHash
let xs = [(oref, o)
| (oref, o) <- Map.toList utxos
» Value.valueOf (_ciTxOutValue o) cs tn ==

]

case xs of
[(oref, 0)] -> case _ciTxOutDatum o of
Left _ -> throwError "datum missing"
Right (Datum e) -> case PlutusTx.fromBuiltinData e of
Nothing -> throwError "datum has wrong type"
Just d@AuctionDatum{..}

| aCurrency adAuction == cs && aToken adAuction == tn ->
return (oref, o, d)

| otherwise ->
throwError "auction token missmatch"”
-> throwError "auction utxo not found"

endpoints :: Contract () AuctionSchema Text ()

endpoints = awaitPromise (start' “select”™ bid' “select”™ close') >> endpoints
where

start’ endpoint @"start" start
bid' endpoint @"bid" bid
close’ endpoint @"close" close

mkSchemaDefinitions ' 'AuctionSchema

myToken :: KnownCurrency
myToken = KnownCurrency (ValidatorHash "f") "Token" (TokenName "T" :| [])

The Auction Contract in Plutus Playground

In order to get started with Plutus Playground, we need to have two
terminals running, both of which are in the nix-shell.

Let’s get started with terminal 1. Head to the plutus-apps directory
and first run nix-shell:

Terminal 1

~/plutus-apps$ nix-shell

Next we head to plutus-playground-server directory and run:

Terminal 1

[nix-shell:~/plutus-apps/plutus-playground-server]$

plutus-playground-server

If Successful, you will see the output:

Terminal 1

Interpreter Ready

Let’s get started with terminal 2. Head to the plutus-apps directory
and first run nix-shell:

Terminal 2

~/plutus-apps$ nix-shell

Next we head to plutus-playground-client directory and run:

Terminal 2

[nix-shell:~/plutus-apps/plutus-playground-client]$ npm run start

If Successful, you will see the output:

Terminal 2
[wdm]: Compiled successfully.
or

[wdm]: Compiled with warnings.

Keep both terminals open, and we should now be able to access
Plutus Playground from the browser.

Open a browser and head to the address:

https://localhost:8009

You will get a warning complaining about it being a risky website,
ignore the message to click through anyway.

You should now be able to successfully compile and run the auctions
contract by using the two buttons in the top right corner: "Compile”
and “Simulate”.

https://localhost:8009/

The next part is taken from reddit (u/RikAlexander) which walks
through plutus playground. Credit to him for this submission:

Press "simulate" (blue button in the top right).

This opens the Simulate window, where we can try out our newly compiled
contract.

This defaults to 2 wallets, to make things interesting though, add another one.
(the big "add wallet" button)

The whole idea of this contract is to auction off an NFT (Non-Fungible Token).
Each wallet has 10 lovelaces, and 10 T (T is the Token here).

Change the total of T's for Wallet1 to 1, and for Wallet2 and 3, to 0. (if there were
more than 1 it wouldn't be an NFT ofcourse)

Simply put: Wallet1 is going to put up for auction 1T, and Wallet2-3 will be bidding.
As you can see, each wallet has the functions "bid", "close" and "start".
Bid -> places a bid of x lovelaces

Start -> starts the bidding procedure with getSlot (how long will the bidding last
for), spMinBid (minimal lovelaces required)

Close -> closes the bidding; gives the highest bidder its NFT/Token

Note: "pay to wallet"” is always there, don't worry about that now :)

Wallet 1 x Wallet 2 x Wallet 3 x
Opening Balances Opening Balances Opening Balances
Lovelace 10 2 Lovelace 10 2 Lovelace 10 2
T 1 3 T 0 ¢ T 0 ¢
Available functions Available functions Available functions

Pay to Wallet + Pay to Wallet + Pay to Wallet +

6 - Wallet1 is going to put the Token up for auction, we'll do this by pressing the
"start" button at Wallet1.

This will add an Action to the Action Sequence.
Here we need to set the parameters:

getSlot: 20 (the bidding will close on slot 20)
spMinBid: 3 (atleast 3 lovelaces are required)

spCurrency: 66 (the currencysymbol for the T token; will be explained in future
lectures)

spToken: T (the Token)

Wallet 1: start X
spDeadline

getSlot

[0

L]
<

spMinBid

| 3

<
<

spCurrency
unCurrencySymbol

|. 66 v ‘

spToken

unTokenMame

| | v ‘

Wallet 1
7 - Next we need to add a wait action (1 slot).

This will give all the actions time to be executed.

Wait *

O Wait For... Wait Unitil...

Blocks 1

<

8 - Now for this example Wallet2 will start the bidding with a Bid of 3 lovelaces.
Press the "bid" button at Wallet2, and update the Action with the parameters:
spCurrency: 66 (Same as above)

spToken: T (the Token)

bpBid: 3 (how much lovelaces)

Wallet 2: bid x
bpCurrency

unCurrencySymbol

‘sa «‘

bpToken

unTokenMName

Wallet 2

9 - Insert another wait action here (1 slot)
10 - Now Wallet3 also wants to place a bid.

Same as Wallet2, add a "bid" action, with all the same parameters as above;
except for the bpBid parameter.

This could be set to anything (min. 3), but for this example we'll set it to 5.

Wallet 3: bid X
bpCurrency
unCurrencySymbol

|55 «‘

bpToken

unTokenMName

Wallet 3

Great. The whole bidding sequence is DONE.

11 - To finish the bidding, we'll add yet another wait action; only this time we'll
"wait until” slot 20.

(remember the first action? At slot 20 the bidding will be closed!)

After this the last function (close) still needs to be added, to finalize the bidding
sequence.

We will call this from Wallet1, so add the "close" action from Wallet1, with the
correct parameters (you know what to do).

6
Wait X

Wait For... @ Wait Until...

Slot 20

<

Wallet 1: close X
cpCurrency
unCurrencySymbol

‘_ 66 v ‘

cpToken

unTokenMame

‘ T «‘

12 - Last but not least, we'll add another wait action here (1 slot)

Evaluation

Great we're done with the whole setup!

To execute everything on the simulated blockchain, press the green "Evaluate" button
on the bottom of your screen.

On the next screen you'll see the individual slots.

Slot 0, Tx 0 Slot1, Tx 0 Slot 2, Tx 0 Slot3, Tx 0

Slot 0, Tx 0 -> the Genesis slot. This is there to setup everything.
Wallet1 -> 1T and 10 lovelaces, Wallet2 -> 10 lovelaces, Wallet3 -> 10 lovelaces

Slot 1, Tx 0 -> The start action, this is where Wallet1 transfers it's 1T (the Token) to
the Contract.

Slot 2, Tx 0 -> The bid of Wallet2 (3 lovelaces)
Note: The contract now has 1T and 3 lovelaces
Slot 3, Tx 0 -> The bid of Wallet3 (5 lovelaces)

Note: The contract now has 1T and 5 lovelaces; Wallet2 gets it's 3 lovelaces back

Slot 20, Tx 0 -> Here Wallet3 has won the bidding "war", and is granted its 1T!
Also Wallet1 gets its 5 lovelaces :)

Note: The contract now does not have anything at all :) everything is nicely given
to it's rightful owners.

13 - To check the final output of all wallets, scroll down to the "Final balances"
section.

As you can see, Wallet3 now has the 1T.

Final Balances

Final Balance
]

4
2
0 ||

Wallet 1 Wallet 2 Wallet 3

Homework

The objective of the homework this week is to get familiar with
running the environment and playing around inside of Plutus
Playground. If you have been following the guide up to this point,
we should now have the essentials both knowledge and dev
environment wise to be ready to move on to lecture 2.

	Table of Contents
	Preparation for Lecture 1
	
	
	
	
	The EUTxO Model
	
	
	
	The Auction Contract in the EUTxO Model
	The Auction Contract in Plutus Playground
	Evaluation
	Homework

