

SELF- BALANCING ROBOT

​ ​ ​ PRAMOD KESHAV PES1201700582
​ ​ ​ ​ ​ AJAY VICTOR PES1201701170

​ ​ ​ ​ ​ PRASHANTH B PES1201701729

ABSTRACT
A Self Balancing robot is a 2 wheeled robot
that balances itself using a closed loop
feedback system. This concept combines
concepts of both robotics as well as control
systems to realise a system capable of
maintaining its balance on a surface in real
time. In our approach we have used the
concepts of An Inverted pendulum setup
placed on a cart to estimate the equivalent
kinematic equations, a transfer function/state
space model and Matlab/Simulink and
Simscape based simulations in which a PID
controller is designed in order to make the
robot successfully maintain its balance.
In addition to the PID Controller design, we
have explained another method of control
called State-Feedback control which can be
done through Ackermann’s formula and
LQR control.
​ The MATLAB code written has been
modularised entirely with suitable functions.
Subsystems have been developed for Simulink
and Simscape based simulations for better
understanding.
Keywords: Self-Balancing robot, Closed loop
system, Inverted Pendulum, Transfer
function,State Space model,
Modularisation,Subsystems,PID Controller,
State-Feedback, Ackermann’s formula, LQR
Control,Matlab,Simulink,Simscape;

INTRODUCTION

As the term ‘self balancing’ implies the robot
must be able to maintain both its position
and orientation in an upright position
constant over a given period of time without
losing balance and toppling over.
In our study we have considered a two
wheeled robot. Two wheeled robots achieve
better mobility and rotation in confined or
narrow spaces compared to humanoid
robots.For this reason these bots are widely
used in mobile robot platforms. However to
maintain its balance a two wheeled robot
must use the movement of its wheels and
tilting its body to compensate for any
external force that it might incur in its
normal working environment. If the external
force exceeds the response capability of the
robot, then the robot loses balance.
Thus, to ensure optimum working of a two
wheeled robot we must design and realise a
system that would account for all the external
factors that the robot might face in a dynamic
real-time environment to ensure that it does
not lose balance and topple over.

Inverted Pendulum-Cart System

An inverted pendulum is a pendulum
which has its centre of mass(CoM) at the

pivot point. It is unstable and will fall over
without the addition of a control over it.
It is a classic automation problem that has
numerous theoretical approaches and several
practical applications.
The main objective of using this system will
be to control or stabilize the pendulum angle
and velocity as well as analysing the effect of
control of the pendulum on the cart position.

In this report, the concept of the inverted
pendulum on a cart will be exploited to
simulate the working of a small-scale
self-balancing robot.

PID

It’s well known to us that the PID
controller is a very reliable control technique
according to many characteristics such as the
very satisfying performance with the tuning
methods with any linear-system, low cost,
dealing with it is simpler than other
techniques and very limited maintenance.
Due to its simplicity, robustness and
successful practical application, PID
(Proportional-Integral-Derivative) controllers
have become the most widely used controller
in the industry. The problem which arises
with the PID technique is the non-linear
systems, the problem of affecting the speed
after adding any additional loads, suffering
from changing dynamics after a long time
operation which will be very difficult to be
covered with a fixed PID controller.

Main Advantages of using PID Controllers:

1.​ They improve the steady-state
accuracy by decreasing the
steady state error.

2.​ As the steady-state accuracy
improves, the stability also
improves.

3.​ PID controllers also help in
reducing the unwanted offsets
produced by the system.

4.​ They can control the
maximum overshoot of the
system by adding the derivative
gain to the system.

5.​ They can help in reducing the
noise signals produced by the
system.

6.​ They can also help to speed up
the slow response of an
overdamped system.

This paper will utilise the PID controller as a
method of control design to stabilize the
plant i.e the inverted pendulum-cart system.
PID Controller has been designed and the
effect of the control over the pendulum angle
and the cart position has been analysed
thoroughly through the help of softwares like
MATLAB, Simulink and Simscape.

SIMSCAPE
Simscape is an add-on present in SIMULINK
which enables the user to create complex
models of physical systems.With Simscape,
you build physical component models based
on physical connections that directly
integrate with block diagrams and other

modeling paradigms. It helped us develop the
control systems aspect of our project and test
the system-level performance.

Objective of the Project
We have already established that the inverted
pendulum is unstable without control and
will fall over,unless we make the cart move to
balance it.
Additionally, the dynamics of the system here
is non-linear. Hence, a suitable dynamic
model with equations will be derived and
modelled.
The objective of the control system modelled,
will be to balance the inverted pendulum by
applying a force to the cart that the
pendulum is attached to.

Design Criteria and Requirements

This is a two-dimensional problem where the
pendulum is constrained to move in the
vertical plane as shown in the figure.
For this system, the control input is Force F,

which moves the cart horizontally, and the
outputs are the angular position of the
pendulum Ө and the horizontal position of
the cart x.
The quantities of the constants used in the
system are:

M mass of cart 0.5 kg

m mass of the pendulum 0.2kg

b coefficient of friction of
the cart

0.1
N/m/sec

l length to pendulum
centre of mass

0.3 m

I Mass moment of inertia
of pendulum

0.006
kgm2

The pendulum will initially begin moving
from the upward equilibrium point, Ө= π.
The design requirements for the system are:
1. Settling time for Ө less than 5 seconds.
2. Pendulum angle: never more than 0.05
radians from the vertical→ Maximum
overshoot.

NOTE: For the control aspect design of the
system, only the control of the pendulum’s
position and velocity will be dealt with. This
is because the techniques used for the control
are best suited for Single input Single
output(SISO) systems. Hence, none of the
design criteria deal with the cart’s position.
However, the controller’s effect on the cart
position after the controller design has been
analysed.

System Modelling: Force Analysis
and System Equations
The free-body diagram(FBD) of the two
components of the inverted pendulum system
is as follows:

Summing the forces in the FBD of the cart in
the horizontal direction, we get:

Summing the forces in the FBD of the
pendulum in the horizontal direction,
reaction force N is given by:

From equations 1 and 2, we get one of the
two main governing equations of the system:

To get the second equation of motion of the
system, summing the forces in the
perpendicular direction, we get:

Summing the moments about the centroid of
the pendulum, we get:

Combining these two equations, we get the
final equation as:

These equations are nonlinear and since the
control design is w.r.t linear systems, we have
linearised the system.

Steps to linearize the following equations:

1.​ Linearize about the vertical
equilibrium position Ө = π.

2.​ Let Φ represent the deviation of the
pendulum’s position from the
equilibrium, given by: Ө= π+Φ.

3.​ Using the small angle approximations
of the nonlinear functions in our
system equations:

 θ = π + Φ
 𝑐𝑜𝑠 θ = 𝑐𝑜𝑠(π + Φ) =− 1
 𝑠𝑖𝑛 θ = 𝑠𝑖𝑛(π + Φ) =− Φ

()2=0; 𝑑θ
𝑑𝑡

After substituting these approximations into
our nonlinear equations of motion(eq. 3 and
6), we get:

These are the linear equations of motion.

Transfer function Model

Taking Laplace transform of the linear
equations of motion, assuming zero-initial
conditions, will yield:

After solving for a single-input[U(s)] and
single-output[Φ(s)], the transfer function for
the pendulum is given by:

Similarly solving for the cart position[X(s)],
we get the transfer function for the cart as
follows:

This concludes the Transfer function
modelling.

State-Space Modelling

The linearized equations of motion from the
previous section, can also be represented in
the form of state-space after rearranging them
in a series of first-order differential equations.
 The equations can be put in matrix form as
follows:

Matlab Representation of Transfer
function and State-space models

The entire code has been modularized
completely, for efficiency and better
understanding.

The user defined function
transfer_function will give the same output
as obtained before:

Output in transfer function form:

Similarly, a user-defined function called
State_space_model was written which gives
the same output in state-space form:

Output in State-space form:

The next section describes the Controller
design for the system shown here:

Controller Design
In this section, a PID controller has been
designed for the inverted-pendulum,
considering a SISO system, without
controlling the cart’s position.

The structure of the controller for this model
is different because we are attempting to
control the pendulum’s position,which
should return to the vertical after the initial
disturbance, so the reference signal to be
tracked is zero. This type of situation is often
called a Regulator problem. The external
force applied to the cart is considered as an
impulse disturbance.

The block diagram for this system is as
follows:

For easier analysis and design of the system,
the modified block diagram is as follows:

The resulting transfer function T(s) for the
closed-loop system from an input force(F) to
an output of pendulum angle(Φ) is given as:

T(s)= = Φ(𝑠)
𝐹(𝑠)

𝑃𝑝𝑒𝑛𝑑(𝑠)
1+𝐶(𝑠)𝑃𝑝𝑒𝑛𝑑(𝑠)

Matlab Code for PID Controller
A user defined function called calculate_pid
was written which plots the response of the
pendulum system to different sets of PID i.e
Kp,Ki and Kd values.

The values for Kp,Ki and Kd were manually
tuned in MATLAB through trial-and-error.
Outputs for three specific cases obtained
through the code have been put up here with
relevant explanation. The outputs are the

responses of the pendulum after applying an
impulsive force on the cart.
The impulse response was plotted using the
command: impulse(T,t);

Case 1:Kp=1;Ki=1;Kd=1

This was the first set of values used to control
the system. As seen from the graph, the
system is not yet stabilized i.e it is still
unstable.

So, the proportional gain Kp was modified to
alter the response. After some modifications,
we arrived at this particular case.

Case 2: Kp=100;Ki=1;Kd=1

As can be observed from the graph, the
system is now stabilised.
The settling time for the pendulum is 1.64
seconds which is less than the required 5
seconds criterion.

But the max overshoot or the deviation of the
pendulum from the vertical is at 0.187
amplitude which is much more than the
required 0.05 value.

So, to reduce the maximum overshoot, the
derivative gain Kd was increased.

The output for the final case is as follows:

Case 3: Kp=100;Ki=1;Kd=20

This graph shows the optimum response of
the pendulum position. As can be seen from
the characteristics, the maximum overshoot is
limited to 0.0442 radians which satisfies the
criterion. The settling time remains the same
at 1.64 seconds, thus satisfying all the
required design criteria.

This ends the section on controller design
using MATLAB.

Subsystem:

Output:

Position

Angle

SIMSCAPE model of the System with and
without Controller:
As has already been established in the
Introduction section, we have used Simscape

to model the inverted pendulum-cart system
using physical blocks.
The overall system is as shown below:

1.​ The desired position angle is
represented through a constant block
with constant fixed at 0.

2.​ The Subtract block is present as a
means of subtracting the feedback
from the desired angle to result in the
error signal which is in turn given to
the PID block, which is the inbuilt
block present in the SIMULINK
library browser.

a.​ The in-built PID block
actually has 4 parameters
namely the Kp,Ki and Kd
values along with a coefficient
called filter coefficient.

b.​ If the PID function is
observed in the block, the
derivative part of the function
is associated with a low pass
filter.This is a note-worthy
point.

A manual switch was used to toggle between
open-loop and a closed-loop system with a
controller.
The pulse generator represents the impulsive
force acting on the cart.
The inverted Pendulum and Cart
subsystem shows the intricacies of the
physical model created. It is as shown below:

1.​ The solver configuration was kept to

auto mode.
2.​ Blocks representing the prismatic

movement of the cart and the rotating
motion of the pendulum were added
and the parameters altered suitably.

3.​ Blocks representing masses of the
pendulum and cart are represented by
the same names.

Another subsystem called Wrap Angle
subsystem was created because the measured
angle of the pendulum had to be limited to -π
to π radians.
This subsystem is as shown:

To limit the pendulum angle as mentioned
above, π radians was added to the
measurement using the bias block present in
the diagram. Then the remainder was found
out by dividing this sum by 2π and the
remainder was passed through another bias
block, where it was subtracted by π radians,
thereby achieving our objective for this
subsystem.

RESULTS for SimScape:
This section presents the results obtained
through graphs and the animation

screenshots obtained from the SimMechanics
Explorer.

Open-Loop Behaviour

This graph shows the outputs of the
pendulum i.e q pendulum→ yellow graph
shows the position of the pendulum; w
pendulum→ blue graph shows the angular
velocity of the pendulum; cart position→ red
graph shows the cart position, to compare the
cart position with that of the pendulum.
There is a fluctuation in the q and w
pendulum, meaning, that the pendulum is
trying to balance itself on the cart, but the
position of the cart is increasing gradually
indicating that it is moving in the positive
direction i.e towards the right. Thus, the
system is not getting balanced. This shows
the open-loop behaviour of the system.

This graph shows the cart velocity → blue
graph and the cart position→ yellow
graph,which is the same as explained in the

previous graph. The velocity of the cart is
increasing and decreasing as can be observed
in the graph, and not balancing itself at the
end of the simulation time which was 10
seconds.

Closed-Loop Behaviour with PID
Running the simulation with the manual
switch switched to the PID controller, these
two graphs were obtained.

The notation for the graph is the same as that
of the open-loop. But it can be observed here
that there are no fluctuations like before.
Instead, the system is balanced. After the
initial impact,the controller was able to
quickly bring down the pendulum angle to
zero and the pendulum velocity is zero
indicating the pendulum is balanced.
The position of the cart indicates that the
cart is moving slowly with constant velocity
in the negative X direction to keep the
pendulum balanced.

This graph indicates the position and velocity
of the cart. The cart position remains the
same as before and the velocity of the cart is
increasing at the start due to the impulse
disturbance, but later is made constant.

This screenshot shows the balanced state of
the pendulum-cart system with their CoM
indicated in the figure. The animation videos
for the same can be accessed through the link
provided at the start of the document.

This ends the section on the PID controller
design along with the respective results
obtained.

In addition to the traditional PID Control
design, another kind of control known as
Linear Quadratic Regulator(LQR) was
designed with the help of a course assignment
from Technische Universitat
Kaiserslautern(TUK).
We took resources from this assignment, tried
to control the Inverted pendulum-cart
system. This has been presented as a
proof-of-concept for our project.

State Space Controller
Credits: Alen Turnwlad (ETI TUK)

Here we consider a simplified model of the
Pendulum-Cart system as shown below
where the point mass mp is connected to the
cart with the mass mc via a massless arm with
the length L. q1 is the displacement of the cart
and q2 is the angle of the pendulum. As
input, u is the force applied to the system.

Here we will handle the stabilization problem
around the upper position of the pendulum.
We have only considered the linearized
model.

Dynamic Model of the System

The Equations of motion of the above system
can be derived using methods such as
Lagrange-Formulations or Newton-Euler
Dynamic equations.

From this we obtain

Here d1 and d2 are known as damping
factors representing friction in both the cart
velocity and angular joint velocity
respectively.

We consider a state representation as

Here q = is q1 and q2 which is position and
angular displacement; q1.,q2. are the linear
and angular velocities.

Linearizing about q1*,q2* = 0 we get

MATLAB modelling

For the above system we use the following
constant values as shown

State Space model as given below

Output considered

As seen from above, for the angular
displacement as output, the System is not
Observable. Thus we consider position
displacement as output so as to design a
controller for a system, it will make the
system to be both Controllable and
Observable.

Building the System

Using inbuilt MATLAB function ‘ss’ we can
enter the A, B, C and D matrices of a state
space model to create a state space model of a
given system.

The Controllability, Observability and the
location of the poles of the system can be
tested by using inbuilt function .

​

Using above commands, we obtain
Controllability and Observability Matrix,

respectively as:

The root locus plot is as shown below:

From this plot we see that there is always a
pole on the right half of the s- plane at any
given point of time due to which a standard P
controller alone will not stabilize the system.
Thus we make use of a State Feedback
Controller here.

State Feedback Controller

A State Feedback Controller can be designed
based on our preferred placement of poles.
There are 2 different approaches we can use
to design said feedback system. The state
feedback system is a negative feedback system.

1) ​ Ackermann’s Formula

MATLAB provides an inbuilt function acker
that performs pole placement on the basis of
Ackermann’s formula given the A, B matrices
of the State Space system.

It calculates a gain matrix k such that the
state feedback u = - kx where x is the state
representation would place the poles at the
locations as per the user’s choice.

(Here the Eigenvalue of A – bk matches the
value of p)

O/P:

2) ​ LQR (Linear Quadratic Regulator)

LQR is another approach to calculate the
gain matrix k for a state feedback system for a
system using weight matrices Q and R which
are the weight matrices for states and inputs
respectively. The optimum pole values are
calculated based on the weight values
provided which in turn provide an optimal
Controller.

O/P:

Desired trajectory for the system can be
obtained by providing the position as an
input to the state feedback system. This can
be shown via the Simulink model of the
controller.

The state feedback controller is used to
estimate the force to be applied to move the
robot from one point to another while
maintaining its balance.

Here the input vector x gives us the current
position of the bot and des_pos give the
desired final position, the difference of these
two gives the distance by which the bot is to
be moved, which when multiplied by gain
matrix K of the designed controller, gives the
force u to be applied on the bot.

 In practice there are no continuous time
controllers, hence we discretize the designed
system using the MATLAB function ‘c2d’
which converts a continuous time system to a
discrete time system, provided with a
sampling time Ts in seconds.

Here sys_d is the discrete time system, Ad,
Bd, Cd, Dd are the discrete time matrices for
the State Space model of the system.

 The Controller is now redesigned for a
discrete system using either of the 2 methods
mentioned above. As the optimal value of Q
and R were provided by the paper of
reference, we decided to use the LQR method
to design said controller.

Here Ob is the observer gain used to design a
discrete time observer.

State Observer

A good controller allows access to all the
states of the system. This is not always the
case, as what we obtain from the controller
and the system is only the output of the
system. Using the obtained output of the
system we can reconstruct the states of the
system.

As we have seen above, the system can be
designed using the state equation

The system above is a continuous time system
which uses x0 as its initial conditions.

 The various states of the system can be
observed within a system with the use of a
State Observer. A State observer is essentially
a reproduction of the system, with the output
y and the force u as inputs to reproduce the
states x.

Here we see that the integrator is replaced
with a time delay, as this is a discrete time
system. The continuous variables of the
system are replaced by the discrete time
variables A_d, B_d, C_d, D_d as obtained
above.

The output of the model is then compared
with the output of the observer system and is
feedback with an observer gain as designed
above. Thus, the observer as designed
reproduces the state vector of the system.

This is seen from the equations:

Final Model

Plant and ref trajectory are blocks provided
by the git repository to plot the self-balancing
robot with variable motion on a flat surface.

Output
The output of the state variable within 10
seconds as obtained from the observer are given
above.
Here Y is position displacement, B is angular
displacement, R is linear velocity, G is angular

velocity:

We also obtained a real time of the behaviour
of the self-balancing robot as designed by the
University with the help of the Plant and
another function call_plot.m provided with
the documentation for the State Space
Modelling.

CONCLUSION

The dynamic mathematical model for the
Inverted Pendulum-Cart system was
modelled and simulated systematically.

Entire MATLAB code was modularized
completely so that it was more efficient and
understandable.

All the simulations obtained in different
simulation environments were validated and
verified and were shown to satisfy the design
criteria.

Due to time constraint and other
unprecedented events, we could not undergo
the hardware aspect of the project which
included adaptive control, reinforcement
learning and such.

Finally, the self-balancing robot was
simulated and illustrated as a proof of
concept,which has various applications in the
practical field.

INDIVIDUAL CONTRIBUTIONS

1.​ Initial Dynamic model and System
Equations: All members of the team

2.​ MATLAB code framework: Pramod
Keshav

3.​ Modularisation of the code: Ajay
Victor

4.​ SIMULINK model and
simulations:Prashanth B

5.​ SIMSCAPE simulations: Pramod
Keshav

6.​ State-Feedback Control Design: Ajay
Victor

Ajay Victor - MEDIUM
Pramod Keshav- HIGH
Prashanth B - MEDIUM

REFERENCES

1.​ Self-balancing robot implementing the
inverted pendulum concept- IEEE
Paper

1.​ Autonomous Dual Wheel Self

Balancing Robot Based on
Microcontroller- Journal of Basic and
Applied Scientific Research

2.​ https://in.mathworks.com/help/slcont
rol/gs/automated-tuning-of-simulink-
pid-controller-block.html

3.​ https://in.mathworks.com/products/si
mscape.html

4.​ https://www.electrical4u.com/types-of
-controllers-proportional-integral-deriv
ative-controllers/

5.​ CAE in der Regelungstechnik:
Exercises from University of
Kaiserslautern. (Instructor: Alen
Turnwlad (ETI TUK))

6.​ Self-Balancing robot-’DIRK’-
University of Twente

https://in.mathworks.com/help/slcontrol/gs/automated-tuning-of-simulink-pid-controller-block.html
https://in.mathworks.com/help/slcontrol/gs/automated-tuning-of-simulink-pid-controller-block.html
https://in.mathworks.com/help/slcontrol/gs/automated-tuning-of-simulink-pid-controller-block.html
https://in.mathworks.com/products/simscape.html
https://in.mathworks.com/products/simscape.html
https://www.electrical4u.com/types-of-controllers-proportional-integral-derivative-controllers/
https://www.electrical4u.com/types-of-controllers-proportional-integral-derivative-controllers/
https://www.electrical4u.com/types-of-controllers-proportional-integral-derivative-controllers/

