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ABSTRACT 
A Self Balancing robot is a 2 wheeled robot 
that balances itself using a closed loop 
feedback system. This concept combines 
concepts of both robotics as well as control 
systems to realise a system capable of 
maintaining its balance on a surface in real 
time. In our approach we have used the 
concepts of An Inverted pendulum setup 
placed on a cart to estimate the equivalent 
kinematic equations, a transfer function/state 
space model and Matlab/Simulink and 
Simscape based simulations in which a PID 
controller is designed in order to make the 
robot successfully maintain its balance. 
In addition to the PID Controller design, we 
have explained another method of control 
called State-Feedback control which can be 
done through Ackermann’s formula and 
LQR control. 
​ The MATLAB code written has been 
modularised entirely with suitable functions. 
Subsystems have been developed for Simulink 
and Simscape based simulations for better 
understanding. 
Keywords: Self-Balancing robot, Closed loop 
system, Inverted Pendulum, Transfer 
function,State Space model, 
Modularisation,Subsystems,PID Controller, 
State-Feedback, Ackermann’s formula, LQR 
Control,Matlab,Simulink,Simscape; 

 
INTRODUCTION 
 
As the term ‘self balancing’ implies the robot 
must be able to maintain both its position 
and orientation in an upright position 
constant over a given period of time without 
losing balance and toppling over. 
In our study we have considered a two 
wheeled robot. Two wheeled robots achieve 
better mobility and rotation in confined or 
narrow spaces compared to humanoid 
robots.For this reason these bots are widely 
used in mobile robot platforms. However to 
maintain its balance a two wheeled robot 
must use the movement of its wheels and 
tilting its body  to compensate for any 
external force that it might incur in its 
normal working environment. If the external 
force exceeds the response capability of the 
robot, then the robot loses balance. 
Thus, to ensure optimum working of a two 
wheeled robot we must design and realise a 
system that would account for all the external 
factors that the robot might face in a dynamic 
real-time environment to ensure that it does 
not lose balance and topple over. 
 
Inverted Pendulum-Cart System 

An inverted pendulum is a pendulum 
which has its centre of mass(CoM) at the 

 



pivot point. It is unstable and will fall over 
without the addition of a control over it. 
It is a classic automation problem that has 
numerous theoretical approaches and several 
practical applications. 
The main objective of using this system will 
be to control or stabilize the pendulum angle 
and velocity as well as analysing the effect of 
control of the pendulum on the cart position. 
  
In this report, the concept of the inverted 
pendulum on a cart will be exploited to 
simulate the working of a small-scale 
self-balancing robot.  
 
PID 

It’s well known to us that the PID 
controller is a very reliable control technique 
according to many characteristics such as the 
very satisfying performance with the tuning 
methods with any linear-system, low cost, 
dealing with it is simpler than other 
techniques and very limited maintenance. 
Due to its simplicity, robustness and 
successful practical application, PID 
(Proportional-Integral-Derivative) controllers 
have become the most widely used controller 
in the industry. The problem which arises 
with the PID technique is the non-linear 
systems, the problem of affecting the speed 
after adding any additional loads, suffering 
from changing dynamics after a long time 
operation which will be very difficult to be 
covered with a fixed PID controller.  

 
Main Advantages of using PID Controllers: 
 

1.​ They improve the steady-state 
accuracy by decreasing the 
steady state error. 

2.​ As the steady-state accuracy 
improves, the stability also 
improves. 

3.​ PID controllers also help in 
reducing the unwanted offsets 
produced by the system. 

4.​ They can control the 
maximum overshoot of the 
system by adding the derivative 
gain to the system. 

5.​ They can help in reducing the 
noise signals produced by the 
system. 

6.​ They can also help to speed up 
the slow response of an 
overdamped system.       

This paper will utilise the PID controller as a 
method of control design to stabilize the 
plant i.e the inverted pendulum-cart system.            
PID Controller has been designed and the 
effect of the control over the pendulum angle 
and the cart position has been analysed 
thoroughly through the help of softwares like 
MATLAB, Simulink and Simscape. 

SIMSCAPE                                            
Simscape is an add-on present in SIMULINK 
which enables the user to create complex 
models of physical systems.With Simscape, 
you build physical component models based 
on physical connections that directly 
integrate with block diagrams and other 

 



modeling paradigms. It helped us develop the 
control systems aspect of our project and test 
the system-level performance. 

Objective of the Project                                  
We have already established that the inverted 
pendulum is unstable without control and 
will fall over,unless we make the cart move to 
balance it.                                             
Additionally, the dynamics of the system here 
is non-linear. Hence, a suitable dynamic 
model with equations will be derived and 
modelled.                                                            
The objective of the control system modelled, 
will be to balance the inverted pendulum by 
applying a force to the cart that the 
pendulum is attached to.                              

Design Criteria and Requirements

This is a two-dimensional problem where the 
pendulum is constrained to move in the 
vertical plane as shown in the figure.               
For this system, the control input is Force F, 

which moves the cart horizontally, and the 
outputs are the angular position of the 
pendulum Ө and the horizontal position of 
the cart x.                                                             
The quantities of the constants used in the 
system are: 

M mass of  cart  0.5 kg 

m mass of the pendulum 0.2kg 

b coefficient of friction of 
the cart 

0.1 
N/m/sec 

l length to pendulum 
centre of mass 

0.3 m 

I Mass moment of inertia 
of pendulum 

0.006 
kgm2 

                                                                                                
The pendulum will initially begin moving 
from the upward equilibrium point, Ө= π.           
The design requirements for the system are: 
1. Settling time for Ө less than 5 seconds.                 
2. Pendulum angle: never more than 0.05 
radians from the vertical→ Maximum 
overshoot. 

NOTE: For the control aspect design of the 
system, only the control of the pendulum’s 
position and velocity will be dealt with. This 
is because the techniques used for the control 
are best suited for  Single input Single 
output(SISO) systems. Hence, none of the 
design criteria deal with the cart’s position.  
However, the controller’s effect on the cart 
position after the controller design has been 
analysed.                                                                                                

 



System Modelling: Force Analysis 
and System Equations 
The free-body diagram(FBD) of the two 
components of the inverted pendulum system 
is as follows: 

 
 
Summing the forces in the FBD of the cart in 
the horizontal direction, we get: 

 
 
Summing the forces in the FBD of the 
pendulum in the horizontal direction, 
reaction force N is given by:

 
 
From equations 1 and 2, we get one of the 
two main governing equations of the system: 

 
 
To get the second equation of motion of the 
system, summing the forces in the 
perpendicular direction, we get: 

 

Summing the moments about the centroid of 
the pendulum, we get: 

 
 
Combining these two equations, we get the 
final equation as: 

 
 
These equations are nonlinear and since the 
control design is w.r.t linear systems, we have 
linearised the system. 
 
Steps to linearize the following equations: 

1.​ Linearize about the vertical 
equilibrium position Ө = π. 

2.​ Let  Φ represent the deviation of the 
pendulum’s position from the 
equilibrium, given by: Ө= π+Φ. 

3.​ Using the small angle approximations 
of the nonlinear functions in our 
system equations:  
 

 θ = π + Φ
 𝑐𝑜𝑠 θ = 𝑐𝑜𝑠(π + Φ) =− 1
 𝑠𝑖𝑛 θ = 𝑠𝑖𝑛(π + Φ) =− Φ

( )2=0; 𝑑θ
𝑑𝑡

 
After substituting these approximations into 
our nonlinear equations of motion( eq. 3 and 
6), we get: 

 
 
These are the linear equations of motion. 
 
 

 



Transfer function Model 
 
Taking Laplace transform of the linear 
equations of motion, assuming zero-initial 
conditions, will yield: 

 
 
After solving for a single-input[U(s)] and 
single-output[Φ(s)], the transfer function for 
the pendulum is given by: 

 
 
Similarly solving for the cart position[X(s)], 
we get the transfer function for the cart as 
follows:

 
 
This concludes the Transfer function 
modelling. 
 
 
State-Space Modelling 
 
The linearized equations of motion from the 
previous section, can also be represented in 
the form of state-space after rearranging them 
in a series of first-order differential equations. 
 The equations can be put in matrix form as 
follows: 

 

 
 
Matlab Representation of Transfer 
function and State-space models 
 
The entire code has been modularized 
completely, for efficiency and better 
understanding. 
 
The user defined function 
transfer_function will give the same output 
as obtained before: 

 
 
 
 

 



Output in transfer function form: 

 
Similarly, a user-defined function called 
State_space_model was written which gives 
the same output in state-space form: 
 

Output in State-space form: 

 

  
The next section describes the Controller 
design for the system shown here: 
 
 
 
Controller Design 
In this section, a PID controller has been 
designed for the inverted-pendulum, 
considering a SISO system, without 
controlling the cart’s position. 
 
The structure of the controller for this model 
is different because we are attempting to 
control the pendulum’s position,which 
should return to the vertical after the initial 
disturbance, so the reference signal to be 
tracked is zero. This type of situation is often 
called a Regulator problem. The external 
force applied to the cart is considered as an 
impulse disturbance.  
 
 
The block diagram for this system is as 
follows:

 
 
For easier analysis and design of the system, 
the modified block diagram is as follows: 

 



 
 
The resulting transfer function T(s) for the 
closed-loop system from an input force(F) to 
an output of pendulum angle(Φ) is given as: 
 

T(s)= =  Φ(𝑠)
𝐹(𝑠)

𝑃𝑝𝑒𝑛𝑑(𝑠)
1+𝐶(𝑠)𝑃𝑝𝑒𝑛𝑑(𝑠)

 
 
Matlab Code for PID Controller 
A user defined function called calculate_pid 
was written which plots the response of the 
pendulum system to different sets of PID i.e 
Kp,Ki and Kd values. 
 

 
The values for Kp,Ki and Kd were manually 
tuned in MATLAB through trial-and-error. 
Outputs for three specific cases obtained 
through the code have been put up here with 
relevant explanation. The outputs are the 

responses of the pendulum after applying an 
impulsive force on the cart. 
The impulse response was plotted using the 
command: impulse(T,t); 
 
Case 1:Kp=1;Ki=1;Kd=1 

 
 
This was the first set of values used to control 
the system. As seen from the graph, the 
system is not yet stabilized i.e it is still 
unstable. 
 
So, the proportional gain Kp was modified to 
alter the response. After some modifications, 
we arrived at this particular case. 
 
Case 2: Kp=100;Ki=1;Kd=1 

 
 
As can be observed from the graph, the 
system is now stabilised. 
The settling time for the pendulum is 1.64 
seconds which is less than the required 5 
seconds criterion.  

 



But the max overshoot or the deviation of the 
pendulum from the vertical is at 0.187 
amplitude which is much more than the 
required 0.05 value. 
 
So, to reduce the maximum overshoot, the 
derivative gain Kd was increased. 
 
The output for the final case is as follows: 
 
 
 
 
 
 
Case 3: Kp=100;Ki=1;Kd=20 
 

 
This graph shows the optimum response of 
the pendulum position. As can be seen from 
the characteristics, the maximum overshoot is 
limited to 0.0442 radians which satisfies the 
criterion. The settling time remains the same 
at 1.64 seconds, thus satisfying all the 
required design criteria. 
 
This ends the section on controller design 
using MATLAB. 
 

 
Subsystem: 

 
 
Output: 
 
 
Position 

 
Angle 

 
 
SIMSCAPE model of the System with and 
without Controller: 
As has already been established in the 
Introduction section, we have used Simscape 

 



to model the inverted pendulum-cart system 
using physical blocks. 
The overall system is as shown below: 
 

1.​ The desired position angle is 
represented through a constant block 
with constant fixed at 0. 

2.​ The Subtract block is present as a 
means of subtracting the feedback 
from the desired angle to result in the 
error signal which is in turn given to 
the PID block, which is the inbuilt 
block present in the SIMULINK 
library browser. 

a.​ The in-built PID block 
actually has 4 parameters 
namely the Kp,Ki and Kd 
values along with a coefficient 
called filter coefficient.  

b.​ If the PID function is 
observed in the block, the 
derivative part of the function 
is associated with a low pass 
filter.This is a note-worthy 
point. 

A manual switch was used to toggle between 
open-loop and a closed-loop system with a 
controller. 
The pulse generator represents the impulsive 
force acting on the cart. 
The inverted Pendulum and Cart 
subsystem shows the intricacies of the 
physical model created. It is as shown below: 

 

 
1.​ The solver configuration was kept to 

auto mode. 
2.​ Blocks representing the prismatic 

movement of the cart and the rotating 
motion of the pendulum were added 
and the parameters altered suitably. 

3.​ Blocks representing masses of the 
pendulum and cart are represented by 
the same names.  

Another subsystem called Wrap Angle 
subsystem was created because the measured 
angle of the pendulum had to be limited to -π 
to π radians.  
This subsystem is as shown: 
 

 
To limit the pendulum angle as mentioned 
above, π radians was added to the 
measurement using the bias block present in 
the diagram. Then the remainder was found 
out by dividing this sum by 2π and the 
remainder was passed through another bias 
block, where it was subtracted by π radians, 
thereby achieving our objective for this 
subsystem. 
 
RESULTS for SimScape: 
This section presents the results obtained 
through graphs and the animation 

 



screenshots obtained from the SimMechanics 
Explorer. 
 
Open-Loop Behaviour 

 
This graph shows the outputs of the 
pendulum i.e q pendulum→ yellow graph 
shows the position of the pendulum; w 
pendulum→ blue graph shows the angular 
velocity of the pendulum; cart position→ red 
graph shows the cart position, to compare the 
cart position with that of the pendulum. 
There is a fluctuation in the q and w 
pendulum, meaning, that the pendulum is 
trying to balance itself on the cart, but the 
position of the cart is increasing gradually 
indicating that it is moving in the positive 
direction i.e towards the right. Thus, the 
system is not getting balanced. This shows 
the open-loop behaviour of the system. 
 

 
This graph shows the cart velocity → blue 
graph and the cart position→ yellow 
graph,which is the same as explained in the 

previous graph. The velocity of the cart is 
increasing and decreasing as can be observed 
in the graph, and not balancing itself at the 
end of the simulation time which was 10 
seconds.  
 
Closed-Loop Behaviour with PID 
Running the simulation with the manual 
switch switched to the PID controller, these 
two graphs were obtained. 
 

 
 
The notation for the graph is the same as that 
of the open-loop. But it can be observed here 
that there are no fluctuations like before. 
Instead, the system is balanced. After the 
initial impact,the controller was able to 
quickly bring down the pendulum angle to 
zero and the pendulum velocity is zero 
indicating the pendulum is balanced. 
The position of the cart indicates that the 
cart is moving slowly with constant velocity 
in the negative X direction to keep the 
pendulum balanced. 
 

 

 



 
This graph indicates the position and velocity 
of the cart. The cart position remains the 
same as before and the velocity of the cart is 
increasing at the start due to the impulse 
disturbance, but later is made constant.  
 

 
This screenshot shows the balanced state of 
the pendulum-cart system with their CoM 
indicated in the figure. The animation videos 
for the same can be accessed through the link 
provided at the start of the document. 
 
This ends the section on the PID controller 
design along with the respective results 
obtained. 
 
In addition to the traditional PID Control 
design, another kind of control known as 
Linear Quadratic Regulator(LQR) was 
designed with the help of a course assignment 
from Technische Universitat 
Kaiserslautern(TUK). 
We took resources from this assignment, tried 
to control the Inverted pendulum-cart 
system. This has been presented as a 
proof-of-concept for our project. 

 
State Space Controller 
Credits: Alen Turnwlad (ETI TUK) 

Here we consider a simplified model of the 
Pendulum-Cart system as shown below 
where the point mass mp is connected to the 
cart with the mass mc via a massless arm with 
the length L. q1 is the displacement of the cart 
and q2 is the angle of the pendulum. As 
input, u is the force applied to the system. 

 

Here we will handle the stabilization problem 
around the upper position of the pendulum. 
We have only considered the linearized 
model. 

Dynamic Model of the System 

The Equations of motion of the above system 
can be derived using methods such as 
Lagrange-Formulations or Newton-Euler 
Dynamic equations. 

 



From this we obtain

Here d1 and d2 are known as damping 
factors representing friction in both the cart 
velocity and angular joint velocity 
respectively. 

We consider a state representation as

 

Here q = is q1 and q2 which is position and 
angular displacement; q1.,q2. are the linear 
and angular velocities. 

Linearizing about q1*,q2* = 0 we get  

 

 

MATLAB modelling 

For the above system we use the following 
constant values as shown 

State Space model as given below 

 

Output considered 

 

As seen from above, for the angular 
displacement as output, the System is not 
Observable. Thus we consider position 
displacement as output so as to design a 
controller for a system, it will make the 
system to be both Controllable and 
Observable. 

Building the System 

Using inbuilt MATLAB function ‘ss’ we can 
enter the A, B, C and D matrices of a state 
space model to create a state space model of a 
given system. 

 



 

The Controllability, Observability and the 
location of the poles of the system can be 
tested by using inbuilt function . 

 

 

​  

Using above commands, we    obtain   
Controllability and Observability Matrix, 

respectively as:  

 

The root locus plot is as shown below: 

 

From this plot we see that there is always a 
pole on the right half of the s- plane at any 
given point of time due to which a standard P 
controller alone will not stabilize the system. 
Thus we make use of a State Feedback 
Controller here. 

State Feedback Controller 

A State Feedback Controller can be designed 
based on our preferred placement of poles. 
There are 2 different approaches we can use 
to design said feedback system. The state 
feedback system is a negative feedback system. 

1) ​ Ackermann’s Formula 

MATLAB provides an inbuilt function acker 
that performs pole placement on the basis of 
Ackermann’s formula given the A, B matrices 
of the State Space system. 

It calculates a gain matrix k such that the 
state feedback u = - kx where x is the state 
representation would place the poles at the 
locations as per the user’s choice. 

(Here the Eigenvalue of A – bk matches the 
value of p) 

 



 

O/P: 

 

2) ​ LQR (Linear Quadratic Regulator) 

LQR is another approach to calculate the 
gain matrix k for a state feedback system for a 
system using weight matrices Q and R which 
are the weight matrices for states and inputs 
respectively. The optimum pole values are 
calculated based on the weight values 
provided which in turn provide an optimal 
Controller. 

 

O/P: 

 

Desired trajectory for the system can be 
obtained by providing the position as an 
input to the state feedback system. This can 
be shown via the Simulink model of the 
controller. 

 

The state feedback controller is used to 
estimate the force to be applied to move the 
robot from one point to another while 
maintaining its balance. 

Here the input vector x gives us the current 
position of the bot and des_pos give the 
desired final position, the difference of these 
two gives the distance by which the bot is to 
be moved, which when multiplied by gain 
matrix K of the designed controller, gives the 
force u to be applied on the bot. 

 In practice there are no continuous time 
controllers, hence we discretize the designed 
system using the MATLAB function ‘c2d’ 
which converts a continuous time system to a 
discrete time system, provided with a 
sampling time Ts in seconds. 

 

 

 



 

Here sys_d is the discrete time system, Ad, 
Bd, Cd, Dd are the discrete time matrices for 
the State Space model of the system. 

 The Controller is now redesigned for a 
discrete system using either of the 2 methods 
mentioned above. As the optimal value of Q 
and R were provided by the paper of 
reference, we decided to use the LQR method 
to design said controller. 

 

Here Ob is the observer gain used to design a 
discrete time observer. 

State Observer 

A good controller allows access to all the 
states of the system. This is not always the 
case, as what we obtain from the controller 
and the system is only the output of the 
system. Using the obtained output of the 
system we can reconstruct the states of the 
system. 

As we have seen above, the system can be 
designed using the state equation 

 

 

The system above is a continuous time system 
which uses x0 as its initial conditions. 

 The various states of the system can be 
observed within a system with the use of a 
State Observer. A State observer is essentially 
a reproduction of the system, with the output 
y and the force u as inputs to reproduce the 
states x.  

 

Here we see that the integrator is replaced 
with a time delay, as this is a discrete time 
system. The continuous variables of the 
system are replaced by the discrete time 
variables A_d, B_d, C_d, D_d as obtained 
above. 

The output of the model is then compared 
with the output of the observer system and is 
feedback with an observer gain as designed 
above. Thus, the observer as designed 
reproduces the state vector of the system. 

This is seen from the equations: 
 

 



 
 

Final Model 

 

Plant and ref trajectory are blocks provided 
by the git repository to plot the self-balancing 
robot with variable motion on a flat surface. 

Output 
The output of the state variable within 10 
seconds as obtained from the observer are given 
above. 
Here Y is position displacement, B is angular 
displacement, R is linear velocity, G is angular 

velocity: 

 
 
We also obtained a real time of the behaviour 
of the self-balancing robot as designed by the 
University with the help of the Plant and 
another function call_plot.m provided with 
the documentation for the State Space 
Modelling. 

 

 

CONCLUSION 

The dynamic mathematical model for the 
Inverted Pendulum-Cart system was 
modelled and simulated systematically. 

Entire MATLAB code was modularized 
completely so that it was more efficient and 
understandable. 

 



All the simulations obtained in different 
simulation environments were validated and 
verified and were shown to satisfy the design 
criteria. 

Due to time constraint and other 
unprecedented events, we could not undergo 
the hardware aspect of the project which 
included adaptive control, reinforcement 
learning and such. 

Finally, the self-balancing robot was 
simulated and illustrated as a proof of 
concept,which has various applications in the 
practical field. 
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