
Future of Emscripten Output
Modularization

 Sam Clegg

Where we are today
Default
Emscripten by default outputs plain JS code that can be used in a variety of ways. You can
include it directly within another JS file or on a web page or you can wrap it manually to turn it
into some kind of JS module. When used in this fashion native and JS symbols from the
emscripten compiled code are available directly as top level symbols. For Wasm symbols we
generate wrappers that are replaced/modified once the module is loaded. Attempting to call any
of these functions before initialization is complete will fail/assert. Emscripten internals are all
directly exposed in the global scope, and because of this only one module can exist in that
scope at once.

-sMODULARIZE
This option wraps the generated into a promise returning function and hides all the emscripten
internals from the user. The resulting code is compatible with the CommonJS module system.

-sEXPORT_ES6

This option builds on -sMODULARIZE and produces an ES6 module that exports a single
promise-returning function. The promise resolves with the module object.

-sMODULARIZE_INSTANCE
This option no longer exists. When it did, it used to export all module members individually,
rather than exporting a promise. As in the default case these would assert/fail if called too early.

Where we would like to be
Goals:

1.​ Emscripten internals should be hidden/inaccessible in all cases.
2.​ Emscripten modules should not interfere with each other on the same page.
3.​ It should be easy for users to generate valid ES6 modules.
4.​ Output should be consumable by bundlers

mailto:sbc@google.com

The JS community has been transitioning to ES6 modules for many years. Even though they
are still not common in web deployments, many projects use bundlers to produce flat JavaScript
from a set of ES6 modules. In other words, many teams use them during development and
expect all their inputs to be in the form of ES6 modules. This includes a lot of teams at Google,
for example anyone using MSS (go/mss).

In an ideal world we would have just a single output format, and it probably makes sense that
that would be ES6 modules. But I fear we don’t live in that world, at least not yet.

Plan of action
In order to get to where we want to be, the following steps are proposed:

Step 0: Design new configuration space
Choose a new configuration name that will enable all the options we want to be on by default
eventually.

Step 1: Bring back -sMODULARIZE_INSTANCE.
We might want to give it a better name. This mode is likely to be what most users actually
want. Most users don’t need to instantiate a module more than once so the default should really
be a single instance. In this mode only a single variable is set in the global scope which is
`Module` (or -sEXPORT_NAME if set).​
​
This new behavior can be enabled in -sSTRICT mode since this hiding of internals is
something that we would really like to do by default one day.

Can we think of a better name for this:

●​ -sMODULARIZE=instance (avoids a new setting)
●​ -sTYPE=module (a la node)
●​ -sESM
●​ -sMODULE
●​ -sEXPERIMENTAL (will enable this and other features here)

Whichever one we choose will trigger an experimental warning.

How does this interact with embind?

 Embind + ES Modules + Bundlers

Step 2: Add a new symbol export method: -sEXPORT=foo
We already have a plan this for a new way to export stuff: #8380. In this new scheme native
wasm symbols are no longer prefixed with underscore, meaning the exported name matches

https://docs.google.com/document/d/1vgStfPraPiQFtIDGi5cNEArXnNuczX_R0-0z833g9R8/edit?resourcekey=0--SkbszVTjvLgz_iULQk3iw&tab=t.0#heading=h.sulx668rhts9
http://goto.google.com/mss
https://github.com/emscripten-core/emscripten/issues/8380

the Wasm export name. Having the exported names match the Wasm names should make it
more likely that we can expose wasm exports directly, and make the job of the bundler simpler.

Since using this new export method will almost certainly be breaking change we can use it as a
signal that the user is opting into more modern behaviors, including
-sMODULARIZE_INSTANCE. Should we also default to -sEXPORT_ES6 in this mode?

Open questions

Should we expose module exports directly (à la -sMODULARIZE_INSTANCE)? - YES
This can make the dependency graph easier to analyze for bundlers. It's also simple to read as
it makes it very easy to see exactly which symbols are being imported from the
emscripten-generated module. We would need to separately export some kind of ready()
promise so that the user would know when it was safe to call the other exports.

I believe this is how ES6 Wasm module integration works. If so, it would be good to follow that
pattern.

Should we make -sEXPORT_ES6 the default when using c?
I hope we can do this. Do we need to continue to support the older/other module formats?

Should we make -sMODULARIZE the default?
This depends on how common the non-module use case is going to be going forward.

Can we completely remove the non-MODULARIZE path one day?
It sounds like CommonJS output, or vanilla JS output will likely have users for some time. It
would be good to somehow survey our users to find out if this is true and for how long it might
be needed.

Should EXPORT_NAME default to the output file name?
e.g if I run `emcc -o foo.js` should that generate a global `foo` object rather than a global
`Module` object. Note that `Module` is a bad name because it starts with an uppercase letter
which implies that its a type in JS, and not an instance.

What API should the ES module output provide?
Potential Options

http://foo.js
https://docs.google.com/document/u/0/d/13AlLKaycEVJdfr-a5FZqIWqL9FO8s7dt4ApGlHUcQis/edit

	Future of Emscripten Output Modularization
	Where we are today
	Default
	-sMODULARIZE
	-sEXPORT_ES6
	-sMODULARIZE_INSTANCE

	Where we would like to be
	Plan of action
	Step 0: Design new configuration space
	Step 1: Bring back -sMODULARIZE_INSTANCE.
	Step 2: Add a new symbol export method: -sEXPORT=foo

	Open questions
	Should we expose module exports directly (à la -sMODULARIZE_INSTANCE)? - YES
	Should we make -sEXPORT_ES6 the default when using c?
	Should we make -sMODULARIZE the default?
	Can we completely remove the non-MODULARIZE path one day?
	Should EXPORT_NAME default to the output file name?
	What API should the ES module output provide?

