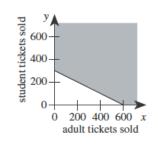
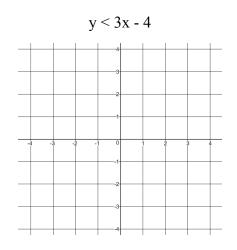
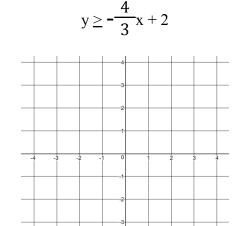
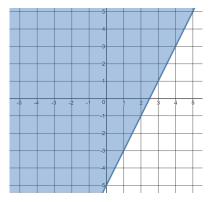
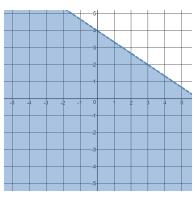

Linear Inequalities

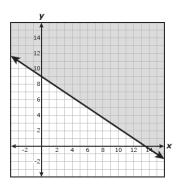

Tickets for the Senior Talent Show at George Washington Carver High School are \$3 for adults and \$2 for students. To cover expenses, a total of \$600 must be collected from ticket sales for the show. One of the following graphs in the standard (x, y) coordinate plane, where x is the number of adult tickets sold and y is the number of student tickets sold, represents all the possible combinations of ticket sales that cover at least \$600 in expenses. Which graph is it?

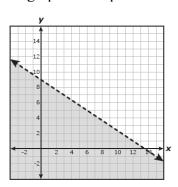


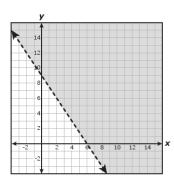


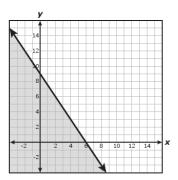



Graph these.

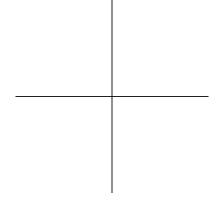



Write an inequality that represents each graph.





Which graph best represents the solution set of $-4x \le 6y - 54$?



Write an inequality that has the points (-2, -6) and (4, -3) on the line and (6, -4) and (2, -4) as solutions.

A student is ordering a flower arrangement. She can choose any combination of roses and carnations for her flower arrangement, and she does not want to spend more than \$30. If roses cost \$3 each and carnations cost \$2 each, which inequality represents all possible combinations of *x* roses and *y* carnations?

$$\mathbf{A} \, 3x + 2y < 30$$

$$\mathbf{B} \, 3x + 2y \le 30$$

$$C 2x + 3y > 30$$

$$\mathbf{D} \ 2x + 3y \le 30$$

The average annual energy cost for a certain home is \$4,334. The homeowner plans to spend \$25,000 to install a geothermal heating system. The homeowner estimates that the average annual energy cost will then be \$2,712. Which of the following inequalities can be solved to find *t*, the number of years after installation at which the total amount of energy cost savings will exceed the installation cost?

A)
$$25,000 > (4,334 - 2,712)t$$

B)
$$25,000 < (4,334 - 2,712)t$$

C)
$$25,000 - 4,334 > 2,712t$$

D) 25, 000
$$> \frac{4,332}{2,712}t$$