The following points

$$A(0, 1), B(1, 6), C(1.5, 7.75), D(1.9, 8.79)$$
 and  $E(2, 9)$ 

lie on the curve y = f(x). The table below shows the gradients of the chords AE and BE.

| Chord             | AE | BE | CE | DE |
|-------------------|----|----|----|----|
| Gradient of chord | 4  | 3  |    |    |

(a) Complete the table to show the gradients of CE and DE.

$$\begin{array}{l} {\rm gradient~of~CE} = \frac{7.75 - 9}{1.5 - 2} = 2.5 \\ {\rm gradient~of~DE} = \frac{8.79 - 9}{1.9 - 2} = 2.1 \end{array}$$

(b) State what the values in the table indicate about the value of f'(2).

2.1

2.

Functions f and g are defined by

$$f: x \mapsto 3x + 2, \quad x \in \mathbb{R},$$

$$g: x \mapsto 4x - 12, \quad x \in \mathbb{R}.$$

Solve the equation  $f^{-1}(x) = gf(x)$ .

$$y=3x+2$$
 $x=rac{y-2}{3}$ 
 $f^{-1}(x)=rac{x-2}{3}$ 
 $gf(x)=4(3x+2)-12$ 
 $=12x-4$ 
 $rac{x-2}{3}=12x-4$ 
 $x-2=36x-12$ 
 $x=rac{10}{35}=rac{2}{7}$ 

[2]

[1]

[4]

An arithmetic progression has first term 7. The *n*th term is 84 and the (3*n*)th term is 245.

Find the value of n. [4]

$$egin{aligned} u_n &= a + (n-1)d \ 84 &= 7 + (n-1)d \ 77 &= nd - d \ u_{3n} &= a + (3n-1)d \ 245 &= 7 + 3nd - d \ 238 &= 3(77 + d) - d \ d &= rac{7}{2} \end{aligned}$$

n=23

4.

A curve has equation y = f(x). It is given that  $f'(x) = \frac{1}{\sqrt{x+6}} + \frac{6}{x^2}$  and that f(3) = 1.

Find f(x). [5]

$$egin{aligned} \mathrm{f}'(x) &= (x+6)^{-rac{1}{2}} + 6x^{-2} \ \mathrm{f}(x) &= 2(x+6)^{rac{1}{2}} - 6x^{-1} + c \ 1 &= 2(9)^{rac{1}{2}} - 2 + c \ c &= -3 \ \mathrm{f}(x) &= 2\sqrt{x+6} - rac{6}{x} - 3 \end{aligned}$$

5.

(a) The curve  $y = x^2 + 3x + 4$  is translated by  $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$ .

Find and simplify the equation of the translated curve.

$$y = (x - 2)^2 + 3(x - 2) + 4$$
  
=  $x^2 - 4x + 4 + 3x - 6 + 4$   
=  $x^2 - x + 2$ 

**(b)** The graph of y = f(x) is transformed to the graph of y = 3f(-x).

Describe fully the two single transformations which have been combined to give the resulting transformation. [3]

Stretch by a scale factor of 3 parallel to  $y-\mathrm{axis}$  Reflects by the  $y-\mathrm{axis}$ 

[2]

(a) Find the coefficients of  $x^2$  and  $x^3$  in the expansion of  $(2-x)^6$ . [3]

coefficient of 
$$x^2=\binom{6}{2}2^4\cdot(-1)^2=240$$
 coefficient of  $x^3=\binom{6}{3}2^3\cdot(-1)^3=-160$ 

**(b)** Hence find the coefficient of  $x^3$  in the expansion of  $(3x + 1)(2 - x)^6$ . [2]

coefficient of 
$$x^3 = 240 \times 3 - 160 \times 1$$
  
= 560

7.

(a) Show that the equation  $1 + \sin x \tan x = 5 \cos x$  can be expressed as

$$6\cos^2 x - \cos x - 1 = 0. ag{3}$$

Let 
$$s = \sin x$$
,  $c = \cos x$ 

$$1 + \frac{s^2}{c} = 5c$$

$$c+1-c^2=5c^2$$

$$6c^2 - c - 1 = 0$$

(b) Hence solve the equation  $1 + \sin x \tan x = 5 \cos x$  for  $0^{\circ} \le x \le 180^{\circ}$ . [3]

$$egin{aligned} (2c-1)(3c+1) &= 0 \ c &= rac{1}{2}, -rac{1}{3} \ c &= 60,\, 109.5^\circ \, (1\mathrm{dp}) \end{aligned}$$

8.

A curve has equation  $y = \frac{12}{3 - 2x}$ .

(a) Find  $\frac{dy}{dx}$ . [2]

$$y = 12(3 - 2x)^{-1}$$

$$\frac{dy}{dx} = 12(-1)(3 - 2x)^{-2}(-2)$$

$$= \frac{24}{(3 - 2x)^2}$$

A point moves along this curve. As the point passes through A, the x-coordinate is increasing at a rate of 0.15 units per second and the y-coordinate is increasing at a rate of 0.4 units per second.

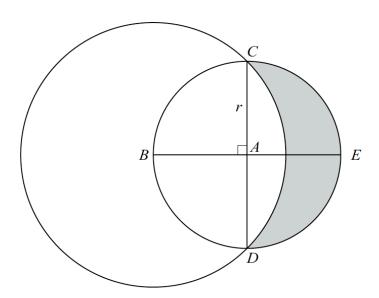
**(b)** Find the possible x-coordinates of A.

$$rac{\mathrm{d}x}{\mathrm{d}t} = 0.15, \ rac{\mathrm{d}y}{\mathrm{d}t} = 0.4$$
 $rac{\mathrm{d}y}{\mathrm{d}x} = rac{\mathrm{d}y}{\mathrm{d}t} imes rac{\mathrm{d}t}{\mathrm{d}x} = rac{0.4}{0.15} = rac{8}{3}$ 
 $rac{24}{(3-2x)^2} = rac{8}{3}$ 
 $(3-2x)^2 = 9$ 
 $3-2x = \pm 3$ 
 $2x = 3 \pm 3$ 
 $x = 0, 4$ 

()

[4]

9.



The diagram shows a circle with centre A and radius r. Diameters CAD and BAE are perpendicular to each other. A larger circle has centre B and passes through C and D.

(a) Show that the radius of the larger circle is  $r\sqrt{2}$ .

$$CA^2 + BA^2 = BC^2$$
 
$$BC = \sqrt{r^2 + r^2} = r\sqrt{2}$$

(b) Find the area of the shaded region in terms of r.

$$\begin{array}{l} \text{segment CADC} = \frac{1}{2} \Big( r \sqrt{2} \Big)^2 \Big( \frac{\pi}{2} \Big) - 2 \times \frac{1}{2} r^2 \\ \\ = \frac{\pi r^2}{2} - r^2 \\ \\ \text{shaded} = \frac{\pi r^2}{2} - \left( \frac{\pi r^2}{2} - r^2 \right) = r^2 \end{array}$$

[1]

[4]

[3]

10.

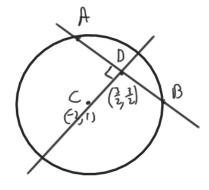
The circle  $x^2 + y^2 + 4x - 2y - 20 = 0$  has centre C and passes through points A and B.

(a) State the coordinates of C.

$$(x+2)^2 - 2^2 + (y-1)^2 - 1 = 20$$
 $(x+2)^2 + (y-1)^2 = 5^2$ 
 $C = (-2, 1)$ 

It is given that the midpoint, D, of AB has coordinates  $(1\frac{1}{2}, 1\frac{1}{2})$ .

**(b)** Find the equation of AB, giving your answer in the form y = mx + c.



$$ext{gradient of CD} = rac{rac{3}{2}-1}{rac{3}{2}+2} = rac{1}{7}$$
  $ext{gradient of AB} = -7$   $y-rac{3}{2} = -7igg(x-rac{3}{2}igg)$   $y=-7x+12$ 

(c) Find, by calculation, the x-coordinates of A and B.

$$(x+2)^2 + (-7x+12-1)^2 = 25$$
 $x^2 + 4x + 4 + 49x^2 - 154x + 121 = 25$ 
 $50x^2 - 150x + 100 = 0$ 
 $x^2 - 3x + 2 = 0$ 
 $(x-2)(x-1) = 0$ 
 $x = 1, 2$ 

The function f is defined, for  $x \in \mathbb{R}$ , by  $f: x \mapsto x^2 + ax + b$ , where a and b are constants.

(a) It is given that a = 6 and b = -8.

Find the range of f. [3]

$${
m f}(x) = x^2 + 6x - 8 \ = (x+3)^2 - 17$$
 range:  $y \geqslant -17$ 

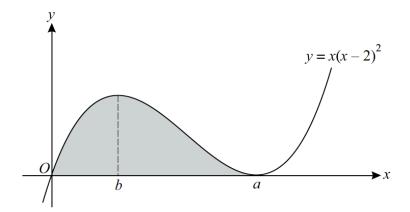
(b) It is given instead that a = 5 and that the roots of the equation f(x) = 0 are k and -2k, where k is a constant.

Find the values of b and k. [3]

$$x^{2} + 5x + b = 0$$
  
 $(x - k)(x + 2k) = 0$   
 $x^{2} + kx - 2k^{2} = 0$   
 $k = 5$   
 $b = -2(25) = -50$ 

(c) Show that if the equation f(x + a) = a has no real roots then  $a^2 < 4(b - a)$ . [3]

$$\mathrm{f}(x+a) = (x+a)^2 + a(x+a) + b = a$$
  $x^2 + 2ax + a^2 + ax + a^2 + b = a$   $x^2 + 3ax + 2a^2 + b - a = 0$   $(3a)^2 - 4\big(2a^2 + b - a\big) < 0$   $a^2 < 4(b-a)$ 



The diagram shows the curve with equation  $y = x(x - 2)^2$ . The minimum point on the curve has coordinates (a, 0) and the x-coordinate of the maximum point is b, where a and b are constants.

(a) State the value of a. [1]

$$a = 2$$

(b) Calculate the value of b. [4]

$$y = x^3 - 4x^2 + 4x$$
  $rac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 8x + 4$   $0 = (x - 2)(3x - 2)$   $b = rac{2}{3}$ 

(c) Find the area of the shaded region.

$$egin{align} ext{area} &= \int_0^2 ig(x^3 - 4x^2 + 4xig) \mathrm{d}x \ &= \left[rac{x^4}{4} - rac{4}{3}x^3 + 2x^2
ight]_0^2 \ &= rac{16}{4} - rac{4}{3} imes 8 + 2 imes 4 \ &= rac{4}{3} ext{ units}^2 \ \end{cases}$$

(d) The gradient,  $\frac{dy}{dx}$ , of the curve has a minimum value m.

Calculate the value of m. [4]

$$rac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 8x + 4$$
  $rac{\mathrm{d}^2y}{\mathrm{d}x^2} = 6x - 8 = 0$   $x = rac{4}{3}$   $f'\Big(rac{4}{3}\Big) = 3\Big(rac{4}{3}\Big)^2 - 8\Big(rac{4}{3}\Big) + 4 = -rac{4}{3} = m$ 

[4]