
Lab 1. Introduction to Cortex M Assembly (Spring 2025)
All students do Lab 1 by themselves (no partner for Lab 1)

Preparation
Purpose
System Requirements
Procedure

Part a - Verify CCS Project for Lab1 is present and runs
Part b - Draw Flowchart
Part c - Write Pseudocode
Part d - Write Assembly
Part e - Debug
Part f - Grade

Before checkout
Demonstration during checkout
Deliverables
FAQ

Preparation
Read Chapter 1 in textbook or ebook, and bookmark these resources

-​ Appendix 3 of the textbook provides a detailed description of all assembly instructions.
-​ Addendum 1 is used for exams and provides a short description of all assembly instructions.
-​ Class Website contains links to all lab assignments and their due dates.
-​ Arm_Architecture_v6m_Reference_Manual.pdf

Setup instructions Steps 1-5 ECE319K CCS Installation Step By Step

Step 1: Download and install version 20.0.0 of CCS on your personal computer (MSPM0G3507)
​ ​ https://www.ti.com/tool/CCSTUDIO
​ ​ Choose “single file (offline)”, not on-demand (web)
​ ​ Does run on Windows, MacOS, or Linux
​ ​ Choose Custom install (not Full install)
​ ​ Choose MSPM0 32-bit Cortex M0+ as your microcontroller

Watch (old, needs rerecording) Install Texas Instruments CCS 12 4
Step 2: Download and install latest version of MSPM0-SDK — MSPM0 Software Development Kit (SDK)
​ ​ https://www.ti.com/tool/MSPM0-SDK
​ ​ Put it in the same folder as you installed CCS 20.0
​ ​ Watch (old, needs rerecording) Install SDK
Step 3: Download and unzip the projects for ECE319K called MSPM0_ValvanoWare
​ has the link for the Spring 2025 install zip file ECE319K CCS Installation Step By Step
​ Create and put a MSPM0_ValvanoWare folder somewhere it is easy for you to find and edit
Step 4: Open CCS and import ECE319K projects into CCS
Step 5: Plug in the LaunchPad, build, debug, open a terminal window, and run ECE319K_Lab1 project

https://docs.google.com/document/d/1vXgQQjhgNKa_yWAOaUQd8dnDtiaNL0WN5wcsK0VfqvY/edit?usp=sharing
https://youtu.be/iRIZn6N51Ww
https://youtu.be/LW_ChdNygso
https://docs.google.com/document/d/1vXgQQjhgNKa_yWAOaUQd8dnDtiaNL0WN5wcsK0VfqvY/edit?usp=sharing
https://users.ece.utexas.edu/~valvano/mspm0/CortexM0plus.pdf
https://users.ece.utexas.edu/~valvano/mspm0/Exam1-Addendum.docx
https://users.ece.utexas.edu/~valvano/mspm0/
https://users.ece.utexas.edu/~valvano/mspm0/Arm_Architecture_v6m_Reference_Manual.pdf
https://www.ti.com/tool/CCSTUDIO
https://www.ti.com/tool/MSPM0-SDK

​ ​ Watch (old, needs rerecording) Install ECE319K Lab Projects
Step 6: How to open a Terminal Window

Understanding the structure of labs in this course:
Lab documents in this course will continuously become longer and contain more parts. Please read the entire
document and understand the problem before attempting to write your solution. The document will contain useful
hints and pseudo-code that you can use to develop your code.

All lab assignments will have a checkout associated with them. During these checkouts you will be asked questions
to verify your understanding of the lab assignment and the code you wrote. Please be prepared and come on time to
these checkouts.

If you are struggling with the lab assignment, each lab will have its own lab lecture associated with it. Within the lab
lecture, a TA will explain what is expected and general tips on how to approach the lab. It is highly recommended to
watch the recording/attend lab lecture if you have any questions about what the lab is asking of you.

Make sure J21 and J22 are configured to select XDS for the UART channel (not BP). Move jumpers on J21 and J22
so they are up (when holding the board so the silk screen is right side up), as shown in the Figure 1.0 below. Each
project has a readme.html file that shows how to configure the jumpers.

Figure 1.0. Set the J21 J22 jumps to select XDS for UART function.

Purpose
The general purpose of this laboratory is to familiarize you with the software development steps using the CCS IDE.
In Lab 1, you will learn how to write assembly code for the Cortex M0+. The specific objectives for Lab 1 include

●​ Edit/build/load/run/debug cycle on CCS
●​ Using registers as pointers
●​ Accessing 32-bit and 8-bit values from memory
●​ Performing arithmetic and logical operations

https://youtu.be/eF_xZZ5wnQo
https://docs.google.com/document/d/1vXgQQjhgNKa_yWAOaUQd8dnDtiaNL0WN5wcsK0VfqvY/edit#bookmark=id.zanj9w3mcoxo

System Requirements
The data structure defines the EIDs and Lab 1 grades for the class. Figure 1.1 shows an example with three students.
Each student has an EID and a Score. The EID parameter is a pointer to a string. The strings are variable length
arrays of 8-bit ASCII characters terminated with a null (0). The ASCII ‘0’ (0x30) is different from the null (0). All
EIDs have two or three upper case letters followed by 1 to 6 decimal digits. The Score is a 32-bit signed integer. The
list of students is terminated with a null pointer (0) in the EID field. When your Lab 1 program is called, R0 is
passed with a pointer to the list of students. Your function will search the list and return the result in R0 as specified
by your specific assignment.

Figure 1.1. Data structure with three students.

The data structure shown in Figure 1.1 could have been created with Program 1.1.
 .text
 .align 2
myClass: .long pAB123 // pointer to EID
 ​ .long 95 // Score
 ​ .long pXYZ1 // pointer to EID
 ​ .long 96 // Score
 ​ .long pAB5549 // pointer to EID
 .long 94 // Score
 ​ .long 0 // null pointer means end of list
 ​ .long 0
pAB123: .string "AB123"
pXYZ1: .string "XYZ1"
pAB5549: .string "AB5549"

Program 1.1. Data structure with three students.

Open a memory window, execute View->Memory. In the address field, type myClass. Set the format to 32-bit hex.
You should be able to see the list, 3 elements, null-terminated, each element as a pointer to a string and a grade.

Figure 1.2. Memory browser with three students defined in ECE319K_Lab1.s.

Next, see the strings, in the address field, type the hex address of the first string, in this example it is 0x00000C28.
Your compiler might create a different place. Set the format to 8-bit hex. You should be able to see the list, 3
elements, null-terminated, each element as a pointer to a string and a grade.

Figure 1.3. Memory browser with three strings defined in ECE319K_Lab1.s.

To find out the exact requirements for your lab, enter your EID into the specified location in the
ECE319K_Lab1.s file. After entering your EID, build, and run the system with Phase=0. View the serial
terminal to see your assignment.

You will be randomly assigned to solve one of the many Lab 1 assignments based on your EID. Double check you
have entered your correct EID before starting to solve the problem.

Option 1: Return R0 equal to the Score based on your EID, return R0 equal to -1 if your EID is not in the list. For
example, assuming Figures 1.1 and 1.2, if your EID is “XYZ1”, then return 96 (the score for “XYZ1” is 96). For
example, if your EID is “XYZ12”, then return -1 (because your EID is not in the list).

Option 2: Return R0 equal to the index value of your EID, return R0 equal to -1 if your EID is not in the list. For
example, assuming Figures 1.1 and 1.2, if your EID were “AB123” you would return 0 (AB123 is index 0). For
example, assuming Figures 1.1 and 1.2, if your EID were “AB4459” you would return 2 (AB4459 is index 2). For
example, if your EID were “JV999” you would return -1 (your EID is not in the list).

Procedure
The basic approach to this lab will be to develop and debug your system using the MSPM0 Launchpad. Your lab
assignment is automatically graded and your current grade can be seen in the terminal after running your code.
There is no external hardware required for Lab 1, just run the code on the Launchpad.

Part a - Verify CCS Project for Lab1 is present and runs
To begin working on your lab assignment, perform the following tasks. Find a place on your hard drive to save all
your MSPM0 software for this course. In Figure 1.4, it will be called MSPM0_ValvanoWare, created when you
downloaded and unzipped the starter project in . Please ensure that all ECE319K CCS Installation Step By Step
of your lab assignments for this course are located in the same folder as many of these assignments will attempt to
access other folders present in MSPM0_ValvanoWare. Notice the projects you use for the labs will be folders that
have the format of “ECE319K_LabX” where X will be the number of the lab.

Figure 1.4. Directory structure with your Lab1.

It is important for the directory structure to look like Figure 1.4. Notice the directory relationship between the lab
folders and the inc (include) folder. The inc folder will contain shared files used by all the projects in this class.
Begin with the ECE319K_Lab1 project.

Make sure you can compile it and run on the LaunchPad. Running the system with your EID will reveal the exact
requirements for your Lab 1. Please contact your TA if the starter project does not compile or run on the LaunchPad.

https://docs.google.com/document/d/1vXgQQjhgNKa_yWAOaUQd8dnDtiaNL0WN5wcsK0VfqvY/edit?usp=sharing

You will edit the ECE319K_Lab1.s file 1) red arrow). The ECE319K_Lab1main.c is the grader 2) purple arrow.
You should not edit the grader file. However, when the graders are provided, feel free to see how the graders work.

Figure 1.5. Start CCS and open the ECE319K_Lab1 project.

Please enter your EID into ECE319K_Lab1.s as shown with the red arrow in Figure 1.6. Your EID is used by a
random number generator to select the assignment you need to implement. Please double check that you have
entered your EID correctly. Initially, leave the Phase flag as 0 so the grader will show you examples of input lists
and output expectations (purple arrow).

Figure 1.6. Put your EID into your ECE319K_Lab1.s file.

Run the system with your EID and Phase=0. Copy the text of the Terminal window and paste it into a text editor
(such as Notepad). You will study the input/output expectations to fully understand your particular assignment.

Part b - Draw Flowchart
Write a flowchart for your solution. We expect 5 to 15 symbols in the flowchart. A flowchart describes the algorithm
used to solve the problem and is a visual equivalent of pseudocode. See Section 1.7 in the textbook for examples of
how a flowchart may be structured.

Part c - Write Pseudocode
While flowcharts are two dimensional, pseudo code is linear flowing from two to bottom. Write pseudocode for this
program. We expect 5 to 15 steps in the pseudocode. You may use any syntax you wish, but the algorithm should be

clear. Note, pseudocode ought to embody the algorithm and therefore be language blind. The pseudocode will
become comments when developing the solution in any language.

Part d - Write Assembly
You will write assembly code for the Lab1 assembly function.

Part e - Debug
When developing your code, incrementally set the value of the Phase variable to test a variety of test cases with
your program. Set the Phase flag to 1 so the grader will call your function with the first test case. Put a breakpoint in
your code and single step through your solution do see whether your function calculates and returns the proper
result. Please see the TAs for debugging techniques and tips that are available within CCS.​

Once your function operates for the first example, change the Phase flag to 2 so the grader will call your function
with the second test case. Repeat the debugging for Phases 3 - 7.

Part f - Grade
Once you have passed all individual test cases, run with the Phase set to 10. This will test your program with the
actual grader that will call your function several times repeatedly.

Figure 1.7. Running with Phase=10, grade results in Serial Console.

NOTE: You can run the grader with Phase set to 10 as many times as you would like. Please continue developing
your code until the grader returns full credit for the assignment.

Before checkout
For all labs, please complete the following BEFORE checkout.

1.​ Sign up for a checkout time with your TA.
2.​ Upload all files you modified to Canvas, make sure your name/EID is in the comments.
3.​ Upload your one PDF with all deliverables to Canvas.

Demonstration during checkout
All lab assignments will follow a similar grading rubric:

-​ 20% Deliverables - A collection of questions and code that will be submitted to Canvas (described below)
-​ 25% Performance - The result returned by the grader. Does your code handle all situations correctly?
-​ 5% Code Standard Adherence - The code you develop should be readable and well structured.

-​ 50% Demonstration - The TA will ask you questions during your lab checkout about the assignment and
your implementation. This also includes the visual correct execution of the lab assignment.

During your demonstration for this lab assignment, you will be asked to run your program for proper operation. You
should be able to single-step your program, explain what is happening and why. You need to understand the various
debugging techniques available in CCS and show the terminal output for your program.

For all labs, please have the following ready DURING checkout.

1.​ Have your one PDF with deliverables open and ALREADY SUBMITTED PRIOR TO CHECKOUT.
2.​ Have CCS with your lab assignment open, so the TA can ask you about your code.
3.​ Be on time to your lab checkout, being late to your checkout will result in a late penalty.
4.​ Demonstrate the lab to the TA.
5.​ Answer questions from the TA individually to determine your understanding.
6.​ Your score will be determined by the grading scheme above (TA will upload these to Canvas).

Deliverables
Upload your ECE319K_Lab1.s file to Canvas.

Combine the following components into one PDF file and upload this file to Canvas as well.

1)​ Your name, professor, and EID
2)​ Flowchart of the system
3)​ Pseudo-code for the algorithm
4)​ A screenshot of the Serial Console window, like Figure 1.7, showing your EID and score.

Optional Feedback : http://goo.gl/forms/rBsP9NTxSy

FAQ
Frequently asked questions relating to the lab assignment. This will be updated throughout the semester so please
check back regularly.

1)​ How do I open the terminal window to see my assignment?
a)​ How to open a Terminal Window

2)​ My MSPM0G3507 will no longer allow me to flash the device, how can I fix this?
a) Press-and-hold the BSL_Invoke button (near LED) while pressing and releasing the Reset button.
b) The device should go to BSL and stay in Active mode for ~10secs.
c) Attempt to program immediately after releasing reset.

3)​ Errors encountered, ECE319K_Lab1.out not built?

a)​ You have an error in assembly, scroll up in your build output to see the error
i)​ Common errors: illegal instruction

(1)​ Symbol error

4)​ How do I go about debugging my assembly function?
a)​ Place a breakpoint at the top, run the grader, then view what you want

i)​ Register view, memory browser, step, etc.

5)​ My makefile has an error, how do I fix it?

http://goo.gl/forms/rBsP9NTxSy
https://docs.google.com/document/d/1vXgQQjhgNKa_yWAOaUQd8dnDtiaNL0WN5wcsK0VfqvY/edit#bookmark=id.zanj9w3mcoxo

a)​ Your makefile isn’t actually what has an error, your code failed to build. Check the build output to
see the error.

6)​ Type ‘int32_t’ could not be resolved?

a)​ Open a new workspace and try to rebuild and compile, contact TAs if that does not fix the issue
i)​ Will need to reimport projects doing this, but no code will be lost

uint32_t could not be resolved error

https://docs.google.com/document/d/12MYv-z28-s78XExmK_M8fLtP4XxVZ7lwyba8aLjXpnY/edit

	Lab 1. Introduction to Cortex M Assembly (Spring 2025)
	Preparation
	Purpose
	System Requirements
	Procedure
	Part a - Verify CCS Project for Lab1 is present and runs
	Part b - Draw Flowchart
	Part c - Write Pseudocode
	Part d - Write Assembly
	Part e - Debug
	Part f - Grade

	Before checkout
	Demonstration during checkout
	Deliverables
	FAQ

