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Abstract 

With the current progress and limitations of artificial intelligence (AI), optimal outcomes in any complex problem-solving scenario 

will involve humans and AI working together. Yet, there is no accepted standard or guidance to configure the structure of 

human-AI teams for optimizing performance. We propose to use principles of economics and Fitts’ list1 to provide this guidance. 

The study of the allocation of scarce resources provides the ideal model for mapping out the allocation of team members to 

accomplish an objective. Tasks can be allocated on an absolute basis, or relative to other tasks and their allocation. Some 

economic measures to consider are error rate, output time, and cost per unit time, in addition to conceptual measures, including 

trust or confidence, AI processing power, and human cognitive capacity. Although there may be more specific considerations for 

any human-AI team structure, two dimensions emerge as critical for an understanding of how to achieve optimality following a 

cognitive task analysis. First, cognitive task analysis will help separate the distinct tasks from one another. Those constituent parts 

should lead to an assessment of which tasks are best performed by humans and AI after consulting Fitts’ list1. Second, an overall 

understanding of the task’s computational complexity will help determine the ideal level of automation (i.e., the overall amount 

of the task allocated to the human teammates versus the AI teammates). We conclude that economic principles can help guide 

optimal human-AI teaming configurations. If done successfully, team-structure assessments can aid AI developers and save money 

and resources from pursuing AI capabilities that can remain with human teammates. 

 

1​ INTRODUCTION 

 

1.1​ BEST OUTCOMES: HUMANS AND AI TOGETHER 

As artificial intelligence (AI) develops, it has become clear 
that optimal outcomes in complex problem-solving 
scenarios require humans and AI to work together. 
However, there is no widely accepted standard or 
guidance for configuring the structure of human-AI teams 
to optimize outcomes. The tasks involved in human-AI 
teaming are often complex and dynamic, making it 
difficult to determine the optimal allocation of tasks 
between humans and machines. Additionally, the 
characteristics of humans and machines can vary widely, 
adding to the complexity of the task allocation process. 

In his Treatise of Human Nature2, Hume discusses the 
division of labor, noting the efficiency of specialization 
across a group of laborers rather than the homogenized 
labor of a single worker completing various tasks. Enter 
the machine age: where machines, computers, robots, 
and AI have been primarily specialized. While we may yet 

see more general AI and robotic features capable of novel 
task completion, we now see the division of labor 
between humans and artificial agents (computers, 
robots, AI). 

1.2​ HOW MUCH SHOULD HUMANS AND AI CONTRIBUTE? 

One of the first questions we should ask about humans 
and AI teaming together is how much each should 
contribute. Although later we will argue that the 
components of the particular task change this answer, we 
can derive approximations depending on different 
factors. Perconti3 constructed such a general answer for 
human-AI collaboration for military scenarios focusing on 
maneuvering through an environment and derived such a 
response in Figure 1. 
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Figure 1: How uncertainty and timescale affect optimal 
human-AI structure in the battlespace3 
 

On the x-axis is timescale, represented categorically as 
days, hours, minutes, seconds, and milliseconds. The 
y-axis represents the amount of certainty (e.g., the 
highest value is complete uncertainty, lowest is complete 
knowledge) in the environment where the team 
operates. The intersection of timescale and certainty is 
coded to a specific color. The green hue represents the 
extent to which human teammates should contribute for 
optimal outcomes, while the red hue represents optimal 
AI contributions. This proportion is represented by Levels 
of Automation4 (LOA), a critical concept for the optimal 
structuring of teams. 

The area in the figure starts at large timescales with little 
need for AI intervention, except at higher levels of 
uncertainty. In the middle, most of the space requires 
both humans and AI. Finally, only with high levels of 
uncertainty and the shortest timescales, human cognitive 
capacity is exceeded, and only AI has hope of 
contributing. The Perconti3 figure recommends that for 
the vast majority of the space, there should be a mix of 
human-AI (i.e., mid-LOA) with limited cases of one or the 
other alone for optimal outcomes. 

1.3​ TEAM STRUCTURE GUIDANCE 

While the media often focuses on how and where AI 
overtakes humans in more and more tasks (e.g., playing 
chess and generating malicious content), human-machine 
teaming remains a viable and versatile path forward. 
Evidence shows that humans and AI working together 
outperform AI or humans alone5,6,7. 

Parasuraman and Riley8 have documented the 
suboptimal results of a purely functional allocation (e.g., 
loss of situational awareness and a lack of vigilance). 
Burkhard et al.9 notes the advantages of variable task 
allocation. The interactive effects of teaming complicate 
the ability to predict in advance an optimal structure 
based on its components (individual humans and artificial 
agents); Cummings and Bruni10 propose using sensitivity 
analysis tools to measure the balance of these effects on 
the outcome. Finally, Mingyue Ma et al.11 and Groom and 
Nass12 argue that humans will ultimately find artificial 
agents untrustworthy, to the team’s detriment. 

1.4​ FITTS’ LIST 

One resource that takes particular importance for our 

goal of deriving guidance for the optimal structure of 
human-AI teams is Fitts’ List1. In 1951, Paul Fitts led an 
inter-governmental panel to discuss how to understand 
and develop the burgeoning field of cybernetics (i.e., the 
study of closed feedback between biological and 
technical systems). The result of this project turned into 
Fitts’ List, a double-sided list of skills that humans have, 
which far exceed machines, and skills the machines have, 
which exceed humans. Table 1 represents Fitts’ List. 
 

Table 1: Fitts’ List1 

Humans Better Machines Better 

Detecting inconsistencies In extreme environments 

Diverse sensing Sensing particular stimuli 

Perceiving patterns Response speed 

Attention to relevancy Processing speed 

Creative thinking Precision in repetition 

Strategic task allocation Multitasking 

Flexibility Smooth force exertion 

Learning from experience Accurate performance 

Low-chance events Impervious to distraction 

Induction  Deduction 

 

The most remarkable feature of Fitts’ List is that it has 
been robust to years of further research13 and 
technological advances such that it can cover AI as well 
Gupta. We will cover this more in Section 3 below. Still, 
Fitts’ List allows us to divide roles and responsibilities, 
not just a general division of labor, but specified tasks. 
When a human performs a task better, it should be 
assigned to humans, and when AI is better at a task, it 
should be assigned to AI. 

1.5​ ECONOMICS: SCARCE RESOURCE ALLOCATION 

Economics is the study of how individuals and societies 
choose to allocate scarce resources, why they 
allocate them that way, and the consequences of 
those decisions 15. One of the central concepts in 
economics is scarcity. Scarcity refers to limited 
resources with wants and needs that exceed 
available supply. This means individuals and 
societies must choose how to allocate these 
limited resources. For example, a society may 
have limited food-production resources while 
people have increasing wants and needs for food. 
Thus, choices must be made about allocating 
these resources, such as whether to produce 
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more food or use those resources to produce 
something else. Various factors drive economic 
decisions, including individual preferences, 
market forces, and government policies. 
Individuals make decisions based on their 
preferences and constraints, such as their income 
or the prices of goods and services. Market 
forces, such as supply and demand, play a role in 
determining prices and the allocation of 
resources in a market economy. Government 
policies like taxes and regulations can also affect 
economic outcomes. 

2​ ECONOMICS AS A GUIDE FOR TEAM STRUCTURE 

2.1​ WHY ECONOMICS? 

No one would ever buy or sell anything if we all placed 
the same value on an asset. If one person had a coat and 
another needed a coat, it would be a zero-sum situation 
whereby, if someone sold the coat, it would be the same 
situation in reverse—one person needs a coat, and one 
person has a coat. If one person has two coats, they will 
place less value on one coat than someone with no coats. 
This is what drives economic activity. 

Task allocation in a human-machine teaming situation is a 
market. While a machine may not value a task the way a 
shivering person might a coat, both tasks and agents have 
varying attributes that drive activity. This activity seeks a 
goal state, entropy or equilibrium, where all needs have 
been satisfied. The needs here satisfy the activity's 
outcome rather than individual desires. 

The scarcity of resources is one echelon of need. Once 
everyone has a coat, there is another layer of value in the 
various attributes of the coat—color, style, material, 
lining, length, etc.—and the preferences of those who 
might wear them. Measuring the relative difference in 
tasks and the human or AI agent's ability to execute the 
tasks is crucial to the allocation process. 

Similarly, in allocating tasks for human-machine teaming, 
functional assessments based on scarcity, such as the 
cognitive capacity for a human or processing power for a 
computer, are constrained and limit an asset. For 
example, you may have two clothes dryers, one much 
better than the other, but if you have a lot of clothes to 
dry and only a limited amount of time, you cannot dry 
them all in the better machine. Quality assessments like 
error rate, time to output, cost per time unit, and trust or 
confidence in output also create points of arbitrage that 

affect allocation decisions and optimization. 

2.2​ MEASUREMENT FACTORS 

2.2.1​ Factors of Scarcity or 
Constraint 

As with the example of the two coats, some factors 
represent limited resources, with scarcity being a key 
driver of economic exchange. For example, humans and 
artificial agents have separate, comparable limitations in 
human cognitive capacity and computer processing 
power. Cognitive capacity determines what a human 
teammate can do and is defined by the limits of divided 
attention. Divided attention does not burden an artificial 
agent much, depending on the extent of computing 
infrastructure. Still, calculation complexity may drive the 
need for processing power and cognitive capacity. 

Cognitive capacity (human) 

As the calculation complexity increases, the cognitive 
burden on humans tends to increase16,17. Complex 
calculations require more attention, focus, and mental 
effort, which can result in cognitive overload or fatigue. 
When performing complex calculations, humans may 
need to break down the problem into smaller parts, use 
heuristics or shortcuts, or rely on external aids such as 
calculators or spreadsheets. However, even with these 
aids, complex calculations can still be mentally 
demanding, leading to errors or slower performance. 

Processing power (computer) 

As the calculation complexity increases, the processing 
power required for computers also increases18. Complex 
calculations may require more memory, processing 
cycles, and sophisticated algorithms. For example, a 
simple arithmetic operation such as addition can be 
performed quickly by a computer. Still, complex 
mathematical operations, such as matrix multiplication or 
numerical integration, can require much more processing 
power. Depending on the available hardware and 
software resources, a computer may handle complex 
calculations efficiently, slow down or crash. 

Available time 

The time available for a task is usually time-bound by 
need. Computers have a speed advantage over humans 
in tasks computers can do, but if human interaction is 
required, then available time may remain a constraint for 
the team. 
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Environment 

The decision-making environment may impact the ability 
of either a human or an artificial agent to operate; for 
example, temperature, atmosphere, radiation, weather, 
landscape, among other factors. 

2.2.2​ Factors of Quality 

Another set of factors measures the output quality from 
a single participant or the entire team, such as error rate, 
time to output, cost per time or output, and trust or 
confidence in the output. These are the points of 
arbitrage where humans and artificial agents differ and 
therefore are most viable for analyzing trade-offs. 

Error rate 

The error rate is the number of errors a human or an 
automated agent makes divided by some output (time, 
units, etc.).  

Time to output 

Given that time is often constrained, the comparative 
time for a human and an automated agent to produce a 
given output is a likely factor for trade-off. 

Cost per time or output 

Another quality factor is the cost of a team member to 
perform for a period of time to produce a specified 
output. This could be pay for a human, or cloud service 
consumption fees for an artificial agent, for example. 
Parasuraman and Riley8 noted that “designers tend to 
automate everything that leads to an economic benefit 
and leave the operator to manage the resulting system” 
(i.e., cost is often the primary basis for task allocation). 

Trust or confidence in output 

Humans tend to trust other humans and distrust 
automation8. Engineering trust in a teaming relationship 
can be complicated5, and a lack of trust can be apparent 
in the output itself, or the user’s acceptance of the 
output. A computer may complete a task more quickly, 
but at the expense of transparency, which could mean 
more time is spent by human teammates or by users 
trying to understand the actions taken by the automation 
than for humans to execute the tasks themselves. 

2.2.3​ Human-Centric Factors 

Some factors are only a concern from the human 
perspective. Unlike robots (for now), psychological and 
sociological factors, such as level of engagement, the 
feeling of competition, and mortality, impact human 

productivity from an individual perspective and a societal 
concern for safety. 

Engagement 

Marx’s19 “theory of alienation” claims that inserting a 
layer of automation between a worker and their work has 
an alienating effect. Engagement or interest in one’s work 
can improve productivity20. However, engagement is not 
only a productivity concern; it can also impact other 
outcomes, such as employee morale and retention. 

Competition 

Awareness of the progress or even the presence of other 
competitors in the marketplace can drive productivity21. 
Although an artificial agent could be programmed to 
adjust rates based on external factors such as 
competition, these factors are usually transparent to the 
agent. In addition, following on from Marx, separating 
work from its context, including a sense of competition, 
makes people less like humans and more like machines. 

Although time to output is considered a quality output 
above, and time itself as a constraint, it should be noted 
that time pressure can hurt human performance10.  

Mortality 

The mortality of humans could be considered an 
environmental constraint (see section 2.2.1); for example, 
humans can only survive in a specific temperature range, 
with oxygen, limited radiation, etc. While a computer 
may share some environmental constraints, a human has 
awareness of the risk of injury or death, which may 
impact not only their performance, but also the decision 
to place them in a particular environment.  

2.3​ RELATIVE VERSUS ABSOLUTE TEAM MAPPING 

Ljesnjanin and Velagic22 provide an overview of 
market-based approaches to task allocation, but crucially, 
these are auction-based—that is, 
microeconomic—mechanisms. Relative or comparative 
advantage is more often associated with 
macroeconomics and trade. 

Absolute advantage refers to the ability of a person, 
group, or machine to produce a particular good or service 
more efficiently than another person, group, or machine. 
Relative advantage, on the other hand, refers to the 
ability of a person, group, or machine to produce a good 
or service at a lower opportunity cost than another 
person, group, or machine. In task allocation between 
humans and computers, decision-makers can use 
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absolute and relative advantage to determine which tasks 
best suit each entity. 

An example of absolute advantage for task allocation 
between humans and computers is using computer vision 
for image recognition tasks. Computers are typically 
better at processing large amounts of visual data quickly 
and accurately than humans. Therefore, tasks that 
involve image recognition, such as identifying objects in a 
photograph, can be allocated to computers with an 
absolute advantage. 

Customer service tasks are an example of relative 
advantage for task allocation between humans and 
computers. While computers may perform certain 
customer service tasks, such as responding to frequently 
asked questions, humans often have a relative advantage 
due to their ability to understand complex human 
emotions and provide personalized solutions. Therefore, 
tasks that require a high level of empathy and 
interpersonal communication, such as handling customer 
complaints, can be allocated to humans with a relative 
advantage. 

Figure 2 depicts a notional analysis of absolute versus 
relative advantage for two tasks concerning time to 
output. While the computer retains an absolute 
advantage over the human for both tasks, if the 
computer could not complete both tasks in parallel, then 
the human would be relatively efficient in completing 
task B while the computer completes task A. 

Figure 2. Absolute versus relative advantage 

 

In most cases, the time-to-output differential between a 
computer and a human would overwhelmingly favor the 
computer, obviating the relative advantage. Other factors 

measuring advantage, such as error rate or confidence in 
output, may present a more competitive trade-off. Both 
Ranz et al.23 and Burkhard et al.9 argue for variable task 
allocation based on efficiency considerations, and this 
framework supports that perspective. Burkhard et al.9 
even mention comparative advantage in passing but do 
not take the idea further. Considering the measurement 
of multiple factors, the selection for a given task can be 
determined using multi-objective pareto optimization24. 
Use of Pareto optimization also subsumes, to an extent, 
the sensitivity analysis proposed by Cummings and 
Bruni10. 

3​ LEVELS OF AUTOMATION AND TASK ALLOCATION 

The two most prominent factors in structuring a team are 
the relative amount of resources allocated to the team 
members and what roles each will take. For our purposes 
here, the team members reduce to two types—humans 
and AI. An account of how that mix of skills best match 
tasks would need to be produced for scenarios with given 
configurations of tasks and skills among the resources 
available. However, this is beyond the scope of the 
guidance we would like to recommend here. We will start 
with a more detailed account of Fitts’ List than in Section 
1, then review cognitive task analysis to show how to 
break down a task into constituent sub-tasks. Following 
this, we will account for the use of LOA, then review how 
to create an ideal task breakdown to promote optimal 
outcomes. 

3.1​ IMPORTANCE OF FITTS’ LIST 

A panel of researchers developing a list in 1951 would 
seem unlikely to be relevant to human and artificial 
intelligence team planning in 2023. However, that is our 
proposal here. When organizing a team of human beings, 
a leader would first consider the skills of each team 
member for assignment to specific roles. This is no 
different when dividing roles among human and AI 
agents. We need to know how human and AI skills differ, 
which is what Fitts’ List provides. 

One could acknowledge that Fitts’ List may have applied 
to machines in 1951, but ask whether it applies decades 
later, even with enormous advances in the development 
of AI. Cummings14 argued that although dissent over the 
robustness of Fitts’ List is prevalent, Fitts’ List has proven 
consistent throughout developments in technology (at 
least by 2014 with the publication of her article). A 
survey of engineering students showed that the students 
largely agreed with the claims of Fitts’ List for the 
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automation of 2015.  

de Winter and Dodou25 explain that the design of Fitts’ 
List includes six properties that make it ideal for the 
flexible inclusion of new technology developments. These 
properties are Plausibility, Explanatory adequacy, 
Interpretability, Simplicity, Descriptive adequacy, and 
Generalizability. Though we agree with this in principle, 
one potential path could prevent Fitts’ List from 
remaining accurate into the future. Cassenti, Veksler, and 
Ritter26 argue that the most common arguments against 
AI achieving human levels of cognitive acumen may not 
continue to prevent progress. Though this argument is 
beyond the scope of this paper, it is worth noting that AI 
may infringe on the human side of Fitts’ List, thus 
breaking the robustness of the List. However, at this time, 
AI is not there. 

Looking over Table 1, some general principles emerge. 
Humans have clear advantages over AI in dealing with 
anomalies, making inferences, flexibility, creativity, and 
deriving solutions to complex problems. AI has faster 
information processing, the ability to handle greater 
amounts of data simultaneously, accurate and precise 
outcomes, and immunity to distraction and stress. These 
divergent sets of skills cover a general landscape of 
settings, problem scenarios, and task sets. For example, 
Figure 1 shows that we should generally lean on human 
skills with longer timescales and greater certainty. With 
smaller timescales and greater uncertainty, AI needs to 
take a greater share of the task set to work fast and 
process vast amounts of data to reduce uncertainty, 
respectively.  

So, general principles can be derived for the differential 
use of AI versus human teammates. In the following 
sub-section, we will discuss cognitive task analysis, a tool 
leaders can use to break down problem scenarios into 
component tasks and assign team members with given 
skills to those tasks. 

3.2​ COGNITIVE TASK ANALYSIS 

Cognitive task analysis (CTA) is the breakdown of a task 
into the various cognitive skills required to perform it27. 
CTA has many26 functions, but we will focus here on its 
ability to help assign team members to roles. To do this, 
team members must undergo a skills assessment, then 
be paired by matching the skills they perform best in the 
group with the task requirements derived from the CTA. 
In their paper, Brenner et al.28 focused on human teams, 
but we posit that the same can be done with human and 

AI mixed teams. 

As Fitts’ List indicates, AI senses only particular stimuli, 
and humans are better at working with low-probability 
events. As such, a skills analysis does not need to be 
conducted to differentiate the AI agents from one 
another. Instead, AI developers design skills to achieve 
specific purposes so those purposes would be ascribed 
with the AI assigned accordingly. 

For humans, there are numerous methods of assessing 
skills, including aptitude testing, practical exercises, 
educational reports, and self-reports. Forming ideal 
teams by differentiating humans from one another and 
assigning by sub-task can draw from any of these sources. 

We merely need to use Fitts’ List to differentiate humans 
from AI. Suppose the CTA indicates that computational 
skills are required to analyze vast information, perform 
multiple tasks simultaneously, complete repetitive tasks 
accurately or precisely, and avoid distraction or stress. In 
that case, AI should be assigned to those sub-tasks. For 
humans, any sub-tasks requiring generalization, dealing 
with anomalies, higher-order cognition (e.g., 
decision-making, problem-solving), creativity, or flexible 
and creative thinking need to be assigned to humans. 
From this, it is clear that humans and AI cover the broad 
gamut of skills required for almost any problem scenario 
in a complex environment. 

For example, Cassenti and Kaplan29 describe the division 
of labor for decision-making under uncertainty. They 
argue that AI should focus on the information-processing 
requirements that lead to situational awareness and 
summarize this data for human consumption. The human 
must act as the decision maker to use the reduced data 
to derive relevancy to the decision and select the 
outcome. In their review of the human-agent teaming 
literature, Chen and Barnes30, agree that in human-agent 
teaming, agents should keep human teammates updated 
on situational awareness and not diminish human 
decision authority. Although this is one example, we posit 
that using cognitive task analysis and Fitts’ list (adjusted 
with advances in AI) ought to provide other general 
principles for the practical construction of human-agent 
teams for optimal outcomes. 

3.3​ LOA: DETERMINING A TASK’S BALANCING POINT 

As mentioned in the introduction, the LOA of a 
human-AI-teaming task is the ideal proportion of 
automated to human activity during task completion. 
Generally, it is best to avoid situations where humans do 
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too much work (Level 1) because humans may view AI as 
inadequately useful in reducing cognitive burden31. 
Similarly, when automation is doing too much of the task 
(Level 5 or 7, depending on the LOA model), human 
teammates may develop the feeling that they have lost 
control of the task and distrust the automation32 (i.e., 
engagement as discussed above). This latter situation can 
be particularly harmful when leaders feel undermined by 
AI33. Cassenti, Roy, Hawkins, and Thomson34 varied LOA 
empirically and validated that configurations at the 
extreme ends of LOA resulted in worse performance and 
lower trust in automation for a cyber-security task. 

Settling on the notion that middle LOA values are optimal 
merely rules out the extremes of LOA. Even in a five-level 
LOA model30, three additional levels could still be used 
(e.g., Levels 2, 3, and 4). To determine which middle level 
is best, a researcher has two methods for deriving an 
answer. First, one could use CTA to calculate the balance 
of skills required for the task by analyzing the task and 
determining what percentage of skills are needed on 
both sides of Fitts’ List, then assign human and AI team 
members accordingly. The other method requires time, 
planning, and resources if the answer does not already 
exist in the literature to run human-subjects experiments 
testing LOA. Cassenti et al.34 recommend this approach 
when possible because empirical data is grounded in 
reality as opposed to LOA, which is theoretical. 

3.4​ IDEAL TASK SEGMENTATION 

The ideal assignment of human and AI teammates is not 
just deriving and creating the best LOA and assigning 
sub-tasks for best performance outcomes. Subjective 
factors are at least equally important as performance. If 
human teammates do not trust AI teammates, then they 
will not rely on them and aim to undermine the AI’s 
contributions. Similarly, humans find working with AI 
difficult if subjective usability ratings are low. Human 
teammates may give up on the AI if that sentiment goes 
too high. Li and Lee35 recommend ensuring that AI agents 
project a sense of working altruistically (i.e., contributing 
to shared goals). It is beyond the scope of this paper to 
expound on this too much, but those who wish to use 
this paper as guidance should attend to subjective 
factors. After all, a human teammate can diminish or 
eliminate AI participation in task completion no matter 
how well the AI performs its sub-tasks. 

4​ CONCLUSION 

4.1​ APPLYING ECONOMICS TO TEAMING 

The collaboration between humans and AI has become a 
key area of research in recent years as AI technologies 
advance and become more prevalent in various domains. 
Several studies suggest that to achieve maximally 
beneficial outcomes, humans and AI must work together 
and complement each other's strengths and weaknesses. 

Fitts’ List remains a solid foundation, but as AI progresses 
and encroaches on territory once thought to be human 
domain, it will be necessary to look beyond absolute 
advantage to use comparative advantage to dynamically 
allocate tasks. An economic model such as comparative 
advantage provides a tool for analyzing the trade-offs 
between human and artificial agents for various 
qualitative factors, and then multi-objective Pareto 
optimality can be used to combine those factors to 
determine the task allocation to agent. Determining 
overall team composition may require another layer of 
multi-objective Pareto optimization across potential team 
members considering other factors such as availability 
and resource-loading. 

Using Fitts’ List and CTA allows role assignment based on 
expertise, thus offering a practical solution for 
specialization of labor, one of the fundamental topics of 
the first treatise on economics, Adam Smith’s Wealth of 
Nations 36. Although the absolute division between 
human and machine labor represented in Fitts’ list will 
erode over time, the use of comparative advantage as an 
analytical tool, combined with CTA, will provide a 
framework for future dynamic and variable task 
allocation. 

4.2​ BENEFITS OF OUR APPROACH 

An economic approach derives as much as possible from 
limited resources and thus uses up fewer resources. 
Instead of using research and development dollars 
(including AI developers’ time) to advance AI that can do 
what humans do, why not save that money and plug 
human teammates into the equation instead? If humans 
struggle to keep up with information-processing 
requirements, why not have AI teammates do those parts 
and leave the humans to what Fitts’ List indicates we do 
better? 

Recently, AI development has made impressive leaps in 
capabilities (see37,38,39). Despite these advances, AI 
incursions into the human side of Fitts’ List are still 
woefully behind respective human skills. We still need 
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humans and AI to work together, and with this paper, we 
offer guidelines for structuring those teams. We hope 
this will benefit us as we need humans and AI to work 
together. We have not reached the singularity40 yet, and 
it is likely still a long time from now when it will happen. 
Until then, this guide may put forward the most 
economically sound path for our future. 
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