Probability – Unit Review 1

The following problem set reviews sample space diagrams and tree diagrams as well as introducing probability in the context of Venn Diagrams and Two-Way Tables. * Answers to all problems are provided at the end *

Part 1: Sample Space Diagrams and Tree Diagrams

- 1 Miloš is taking two summer classes at the local college. One course is 'pass/fail' (those are the only two grades) while the other has a grading system of A, B, C, F (with F being the only failing grade). Assume that the probability of each course is equal.
 - a Write the sample space as a list and as a table.
 - b Use your diagrams to find the probability that:
 - Miloš passes both classes
 - ii Miloš passes exactly one class
 - iii Miloš fails both classes.
- 2 There are four main blood types: A, B, AB and O. These are paired with something called a Rhesus factor, which is either '+' or '-'. For example, your blood type could be B+.
 - a Write the sample space for the different blood types that are possible.

If all blood types are equally likely, what is the probability that you have:

- b type AB-blood
- c type O blood
- d a blood type other than A or B
- e a 'positive' blood type?
- 5 Ann has a bag containing 3 blue whistles, 4 red whistles and 1 green whistle.

Simon has a bag containing 2 blue whistles and 3 red whistles.

The whistles are identical except for the color.

Ann chooses a whistle at random from her bag and Simon chooses a whistle at random from his bag.

- a Draw a tree diagram to represent this information and write down the probability of each of the events on the branches of the tree diagram.
- b Calculate the probability that both Ann and Simon will choose a blue whistle.
- c Calculate the probability that the whistle chosen by Ann will be a different color to the one chosen by Simon.

3 At the school picnic, one of the coolers contains 12 cans of juice and 10 cans of soda. Rhona reaches into the cooler to grab a drink for herself and one for her friend Marco.

Draw a tree diagram and **calculate** the probability that:

- a she grabs two juices
- b she grabs two drinks that are the same
- c she grabs two drinks that are different
- d neither person gets a juice.
- 4 Olivia rolls two 6-sided dice at the same time.
 One die has three red sides and three black sides.
 The other die has the sides numbered from 1 to
 6. By means of a tree diagram, table of outcomes or otherwise:
 - Find how many different possible combinations she can roll.
 - b Calculate the probability that she will roll a red and an even number.
 - c Calculate the probability that she will roll a red or black and a 5.
 - d Calculate the probability that she will roll a number less than 2.
 - 7 A bag contains four calculators (C) and six protractors (P). One item is taken from the bag at random and not replaced. A second item is then taken at random.
 - a Complete the tree diagram by writing probabilities in the spaces provided.

- b Calculate the probability that one protractor and one calculator are taken from the bag.
- **8** Repeat **Q7**, but this time the item *is* replaced. **Calculate** how the probabilities change.

Part 2: Venn Diagrams and Probability

Sample Problem:

Practice Problems:

- 1 In a group of 40 people, 35 choose a main course, 10 choose a starter and 7 choose both.
 - a Draw a Venn diagram to represent this information.
 - b What is the probability that a person picked at random chooses a main course but no starter?
- **2** A group of 30 children are asked if they play lacrosse (*L*), basketball (*B*), volleyball (*V*) or none of these sports. The results are:
 - 3 children do not play any of these sports
 - 2 children play all three sports
 - · 6 play volleyball and basketball
 - 3 play lacrosse and basketball
 - 6 play lacrosse and volleyball
 - 16 play basketball
 - 12 play volleyball
 - a Draw a Venn diagram to display this information.
 - b Calculate the probability that a child selected at random:
 - i plays volleyball and basketball but not lacrosse
 - ii plays only lacrosse
 - iii plays only volleyball.

- 6 A recent study of 24 sodas revealed that 8 have high amounts of caffeine, 12 have high amounts of sugar and 6 have both.
 - Draw a Venn diagram to represent this information.

What is the probability that a soda picked at random from the group in the study:

- b is high in sugar but not in caffeine
- c is high in caffeine only
- d is not high in caffeine or sugar?
- 10 In a group of 50 people, 10 are healthy and the rest have either high blood pressure, high cholesterol or both; 23 people have high blood pressure and 28 have high cholesterol. Find the probability that a person selected at random:
 - a has high blood pressure
 - b has high blood pressure and high cholesterol
 - has high blood pressure or high-cholesterol
 - d has high cholesterol only.

Part 3: Two-Way Tables and Probability

Sample Problem:

From the two-way table of 150 students and the subjects they study:

	Science	Arts	Linguistics
Male	40	18	33
Female	15	20	24

- a Find the probability that a student chosen at random:
 - i is male
 - ii is either male or studies Science.
- **b** A female student is picked at random. Find the probability that she studies Arts.
- **a** i P(male) = $\frac{91}{150}$

91 male students. Total 150 students.

ii P(male or studies Science) = $\frac{106}{150} = \frac{53}{75}$

91 males, plus 15 females studying Science makes 106.

b P(female, studies Arts) = $\frac{20}{59}$

59 female students in total, of which 20 study Arts. Note that since it is given that a female student is being picked at random, the sample space is now 59, not 150.

Practice Problems:

1 The table shows customers' menu choices in a restaurant.

	Miso-glazed salmon	Chicken stir-fry	Lamb kibbeh
Male	9	12	8
Female	1	14	6

From this two-way table calculate:

- a the number of male diners in the restaurant
- b the number of diners who ordered chicken stir-fry
- c the probability that a randomly chosen dish was chicken stir-fry for a female diner.
- 2 a Complete a two-way table to represent this information on snowboarding groups. The students were categorized according to gender (M/F) and ability (advanced/intermediate/beginner).
 - · There were 60 students in total.
 - Half of them were male.
 - There were 16 male beginners.
 - There were 28 beginners in total.
 - · There were 12 advanced females.
 - · There were 10 intermediate students in total.
 - b A student is selected at random. Calculate the probability that this student is an advanced male snowboarder.

- 9 A typical teenager should consume approximately 2000 calories per day. A survey of 120 students, three-fifths of which were male, revealed the following:
 - 80 students ate more than the recommended amount.
 - Half of the girls ate less than the recommended amount.
 - Five-sixths of the boys ate more than the recommended amount.
 - The same number of boys as girls ate the recommended amount of calories.
 - Complete a two-way table to represent this information.

Calculate the probability that a student selected at random:

- b ate the recommended amount of calories
- is male and ate less than the recommended amount
- **d** ate more than the recommended amount given that they are female.

ANSWERS:

Part 1

1 a (P, A) (P, B) (P, C) (P, F) (F, A) (F, B) (F, C) (F, F)

ı		Α	В	C	F
ĺ	Р	P,A	P,B	P,C	P,F
ł	F	F,A	F,B	F,C	F,F

- **b** i $\frac{3}{8}$
- ii $\frac{1}{2}$
- 2 a A+, A-, B+, B-, AB+, AB-, O+, O-
- $c \frac{2}{8} = \frac{1}{4}$
- 3 Can 1

- a $\frac{2}{7}$
- **b** $\frac{37}{77}$
- d $\frac{15}{77}$

- **b** $\frac{1}{4}$

d $\frac{1}{6}$

b $\frac{3}{20}$ c $\frac{11}{20}$

- 1st item
 - **b** $\frac{8}{15}$
- **8 a** As above but second level probabilities are $\frac{4}{10}$, $\frac{6}{10}$, $\frac{4}{10}$, $\frac{6}{10}$
- **b** $\frac{12}{25}$ (down by $\frac{4}{75}$)

Part 2

b $\frac{28}{40} = \frac{7}{10}$

- **b** i $\frac{4}{30} = \frac{2}{15}$
- $ii \frac{5}{30} = \frac{1}{6}$
- 111 $\frac{2}{30} = \frac{1}{15}$

6 a

- c $\frac{2}{24} = \frac{1}{12}$
- 10 a $\frac{23}{50}$
- $\frac{11}{50}$ b
- $c \frac{40}{50} = \frac{4}{5}$

- W.50 0

Part 3

- 1 a 29
- **b** 26
- $c \frac{14}{50} = \frac{7}{25}$

d $\frac{10}{24} = \frac{5}{12}$

2 a

1		Α	1	В	Total
	М	10	4	16	30
	F	12	6	12	30
	Total	22	10	28	60

b $\frac{10}{60} = \frac{1}{6}$

a		More	Right	Less	
	М	60	4	8	72
	F	20	4	24	48
		80	8	32	120