
HW 4: Making a Racket
due Tuesday, October 9 at 11:59pm

Overview
In this assignment, we’ll play with the Racket programming language.The
main goals of this work are to:

●​ Become familiar with DrRacket, the Integrated Development
Environment (IDE) for Racket.

●​ Gently practice writing Racket code, in preparation for a larger Racket
program next week.

●​ Make nice pictures.

Style and testing are important!
It is important to write code that is clear and that another person can easily understand. Be sure to
write a “header comment” before each function, as well as comments for any part of the code that
might not be immediately clear. You should also write tests (first!), where appropriate. You don’t
need to write tests for the first part of the assignment (it’s hard to write tests to determine whether
a picture is correct); but you must write tests for the second part of the assignment.

Note: We’ll see examples of functions, header comments, and tests during Thursday’s class.

Because we’ve just started learning Racket, we’ll be lenient on the style grade
this week: any reasonable attempt at clarity will receive credit. When grading,
we’ll also provide feedback on how to improve style, so that you get a sense of
what “good style” means in Racket, for future assignments.

Materials
When you’re ready to start, you’ll need Racket, which you can download or use
in the LAC or CS labs.

Racket tutorial
Open the Racket "Quick introduction" site, which is a fun guide through a
small piece of the language that uses images.

●​ Do steps 1–6, running the code as you go.

●​ Put all of your code in a file called pictures.rkt (include the function
definitions that the tutorial asks you to write in the definitions area).

http://download.racket-lang.org/
http://docs.racket-lang.org/quick/

●​ In the tutorial, click on the links, so you can practice reading the Racket
documentation

○​ For example, check out the function documentation for:

■​ circle

■​ hc-append

Drawing more pictures
In this part of the assignment, you’ll build on the tutorial to draw more
pictures. Put your code in the same file, i.e., pictures.rkt.

cboard
Using the provided checkerboard function as a guide, create a function named
cboard that takes three inputs: n, the number of pixels of the component
square of the resulting checkerboard, color1, a string representing the color of
the upper left square, and color2, a string representing the color of the lower
left square. The output should be an 8x8 checkerboard, using only squares of
the designated size, with the appropriate colors.

Be sure to have a header comment for your function! Remember that your
grade will be based upon providing clear comments.

Here is a screenshot of four examples:

hcomb
Write another function, named hcomb, whose inputs are the same as for

http://docs.racket-lang.org/pict/Basic_Pict_Constructors.html#%28def._%28%28lib._pict%2Fmain..rkt%29._circle%29%29
http://docs.racket-lang.org/pict/Pict_Combiners.html#%28def._%28%28lib._pict%2Fmain..rkt%29._hc-append%29%29

cboard, except that there is an additional color, called color3, that the
function accepts as its fourth argument. The hcomb function should create a
nine-by-nine grid of three-by-three patches of filled-in circles of the
appropriate colors and the appropriate size. One strategy is to start with a copy
of one of the existing functions and change things slowly to add the
functionality you want (this is sometimes called iterative development).

Again, add a header comment for your function. Your grade will be based in
part upon your providing clear comments.

Note: to create filled-in circles, use filled-ellipse, e.g.,

(colorize (filled-ellipse 10 10) “blue”)

Here are two examples:

Submit your artwork, too.
When you finish, please take a PNG screenshot (instructions:
www.take-a-screenshot.org/) that captures in the same shot at least one call to
cboard and one call to hcomb. Submit your screenshot as a file named
pictures.png.

What to turn in
Submit both of your files—pictures.rkt and pictures.png—to Gradescope
assignment called “HW4: pictures.rkt and pictures.png”. There is no
autograder for these files; we’ll manually grade them.

http://www.take-a-screenshot.org/

Collatz
In this part of the assignment, we’ll practice writing recursive functions in
Racket. Place your tests, comments, and code in the file collatz.rkt.

collatz
Write a Racket function named collatz, which takes one positive integer
argument. The Racket function should compute the following mathematical
function:

Warning: Racket's built-in integer-division function is quotient, not the / symbol. If you try ​
(/ 3 2) you will get the rational number three-halves, instead of the floating-point number 1.5 or
the integer 1. But (quotient 3 2) evaluates to 1, as expected with integer division. The "mod"
function in Racket is modulo, so that (modulo 12 7) evaluates to 5.

collatz-count
Write a recursive Racket function named collatz-count, which takes one
positive integer argument. The function should return the smallest number of
times that collatz (your previous function) must be called, when given an
input of N, to arrive at a value of 1.

For example, consider the expression (collatz 3). Let's use the symbol ==> to
mean "evaluates to." Then

(collatz (collatz (collatz (collatz (collatz (collatz (collatz 3))))))) ==> 1

so, (collatz-count 3) ==> 7, because there are seven applications of collatz
above.

Here are a few Racket tests, which you can use in your code:

; provided tests​
(check-equal? (collatz-count 26) 10)​
(check-equal? (collatz-count 27) 111)

These are relatively complicated test cases. Before writing code for
collatz-count, you should write at least two simple test cases, which will be
helpful for debugging. Include these tests in your file.

https://en.wikipedia.org/wiki/Collatz_conjecture

Important information for testing
Be sure to add the line

​ (require rackunit)

at the top of your collatz.rkt file. This enables the check-equal? tests to run.
This step is also necessary for your file to be accepted by the autograder.

Also, please make sure that you include the following two lines at the top of
your .rkt file, right below the line(require rackunit)that you added earlier:

(provide collatz)

(provide collatz-count)

This allows the autograder to have access to your functions when it is running
the tests. If you don’t add these lines, the autograder won’t run.

What to turn in
Submit your file collatz.rkt to Gradescope assignment called ​
“HW4: collatz.rkt”. Be sure your file contains the require and provide lines
described above. There is an autograder for these files that will some run tests
and show the results. We will manually grade the code’s style and tests.

Where to go from here
If you’re interested in these topics, here are a few ways to explore them deeper. These
items aren’t part of the assignment and aren’t meant to interfere with your other
work. They’re just here for fun, and you can refer back to them later, whenever you
have some free time and want to think more about the themes of the assignment.

If you’re interested in reading more about functional programming, you may
enjoy these articles:

●​ Excellent quora post by Professor Jean Yang (with a shoutout to Racket)
●​ Why Functional Programming Matters by John Hughes (the article from class)

https://www.quora.com/Functional-Programming/What-are-the-best-languages-for-getting-into-functional-programming-and-why-I%E2%80%99m-looking-for-a-language-with-clear-syntax-active-community-involvement-and-good-documentation#answer_4678034
http://jeanyang.com/
https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf

	HW 4: Making a Racket
	Overview
	Style and testing are important!

	Materials
	Racket tutorial
	Drawing more pictures
	cboard
	hcomb
	Submit your artwork, too.
	What to turn in

	Collatz
	collatz
	collatz-count
	Important information for testing
	What to turn in

	Where to go from here

