
*** COMMUNITY DOC ***
Multi-Cluster Works API
Authors: jqiu@redhat.com
Updated: 08/17/2020

Objective
Introduce a common API to distribute workload to multiple clusters.

Background
The general idea originates from vllry’s blog post and prototype, that we group a set of k8s API
resources to be applied to one or multiple clusters together as a concept of “work” or “workload”

As the starting point, we want to have an API that describes “work” as a list of resources
deployed to one single cluster. It could be simple enough that it does not relate to cluster
registration mechanisms or any workload scheduling on multiple clusters.

Motivation

There are already several different techniques to distribute workload on multiple kubernetes
clusters:

Kubefed v1
Kubefed v1 has an architecture that resources needs to be applied on an federated-apiserver
and then the controller will push the corresponding resources onto the certain clusters. There
are only limited types of resources that are supported since the controller for each resource has
to be reimplemented. To select clusters that a resource should be applied to, a cluster selector
annotation needs to be added into the resource.

Kubefed v2
Similar to the architecture of Kubefed v1, kubefed v2 has a controller to watch the federated
resources and pushes resources to the specified cluster. However, kubefed v2 leverages CRD
instead of an additional federation-apiserver. And each resource type needs a mapped

mailto:jqiu@redhat.com
https://timewitch.net/post/2020-03-31-multicluster-workloads/
https://github.com/vllry/cluster-reconciler

federated type for the federation controller to consume. A federated resource type is basically
the original resource spec plus the placement field. Kubefedctl can be used to easily convert a
resource type to its related federated resource type.

Gitops
Gitops is to use git as the single source of truth for resource manifests which can be
pushed/pulled to certain clusters by a controller. The version control and git workflow can be
leveraged to better control the content of the resource manifests.

Common abstractions
All these techniques has some common patterns for the function to deploy workload resource
manifests to one or multiple clusters

1.​ A single source of truth which could be git, cloud storage, kube-apiserver or rpc server.
2.​ A control loop to apply resources manifests from a single source of truth to a cluster,

return apply results and track resource status.
3.​ A way to decide which clusters the resource manifests should apply to. The blog post

has identified some critical placement criteria
a.​ Specific levels of redundancy.
b.​ Specific kinds of geographic/topological placement or spread.
c.​ Specific resource availability.

In addition, the control loop will also face the problem of garbage collecting resources when
there is no intent to deploy them on a cluster

All of the above motivates the notion of work api which:

1.​ Allow developers to easily integrate with other sources of truth, e.g. git, another
kube-apiserver. And the control loop of work api could provide a generic way to apply
resource manifests to a certain cluster.

2.​ Easy to integrate with other placement primitives.
3.​ Track which clusters a particular workload is deployed to
4.​ Track the deployed resource on a cluster so the control loop could garbage collect these

resources.

Terminology

●​ Work Hub: A place that work API resides. It could be a k8s cluster playing the role as the
management plane for other k8s clusters. Or it could also be an RPC server or a cloud
API depending on the detailed implementation. Users create work API resources on the
work hub. In the rest of the doc, we assume the implementation of work hub is based on
k8s cluster for simplicity.

https://timewitch.net/post/2020-03-31-multicluster-workloads/

●​ Managed Cluster: A k8s cluster managed by the work hub. The resources defined in the
work API are applied on the managed cluster.
It was also referred to “Spoke” or “Spoke Cluster”, though we use “Managed Cluster” in
this document. We should make an agreement on the terminology.

●​ Work Controller: a controller that reconciles the work object on hub, and applies
resources defined in work to the managed cluster.

Use Cases

Deploy a workload to another cluster
I have 3 clusters. One is the work hub, the other two are managed clusters. I want to declare the
workload (deployment/configmap/service etc) on the work hub, and ensure the workload will be
deployed on the desired managed cluster. I want to ensure that when I update the workload
declaration, the real deployed workload on the managed cluster reflects the update.

Track the status of workload in another cluster
After I have declared the workload on the work hub, I want to track whether the workload has
been successfully deployed on the managed cluster, and the workload is running normally.

Overview
We propose a new CRD called Work to represent a list of api resources to be deployed on a
cluster. Work is created on the work hub, and resides in the namespace that the work controller
is authorized to access. Creation of a Work on the work hub indicates that resources defined in
Work will be applied on a certain managed cluster. Update of a Work will trigger the resource
update on the managed cluster, and deletion of a Work will recycle the resources on the
managed cluster.

If there are multiple managed clusters, multiple work controllers will be running that monitor the
work API in same or different namespaces in the work hub. It is possible that multiple work
controllers watch Works in one namespace on a work hub and deploy the resources on multiple
clusters. It is also possible that multiple work controllers watch Works in different namespaces
on the work hub, so a Work created in one namespace triggers the resource deployment on a
certain cluster. An example of architecture diagram is as following:

Resources in the work
The resources in kube could be classified to several categories:

1.​ Workload related resources: deployments/statefulset, configmaps, ns-scoped custom
resources etc.

2.​ Clusterwide configuration resources: apiservices, CRDs, storageclasses
3.​ Credentials: secrets

Work api should be mainly used for workload related resources.
Secrets should not be declared in work apis, other techniques (e.g. vault) should be considered
as a more secure way to transmit secrets among clusters.

Push/Pull Model
There have been discussions in the community on whether the workload distribution in
multicluster should use a push or pull model.

Push model means that a controller on the hub watches APIs defining workload and “PUSH” the
resource manifest to the managed cluster. There are some limitations in the push model:

●​ It requires apiserver of each managed cluster must be accessed by the work hub where
the controller is running. This could be a hard requirement since some managed clusters
may hide behind firewalls and do not have a public accessible IP. Exposing apiserver of
all the managed clusters also enlarges the surface to be attacked.

●​ It requires credentials of managed clusters with sufficient permission to be put on the
work hub. The credential has to be passed in an out of band secure way.

●​ Having a centralized controller to distribute workload to many clusters could have
scalability limitations.

Pull model means that an agent running in the managed cluster watches APIs defined on hub,
fetches them and applies locally on the managed cluster. Compared to the push model, the API
exposure surface is reduced since only apiserver of the work hub needs to be publicly
accessible. The credential for the agent to talk to the work hub can have very limited permission
only on certain APIs.
Work API itself is not constrained to be used only on push or pull mode. The work controller
could reside in a managed cluster that “PULLS” the API and applies locally on the managed
cluster. It could also reside in the work hub that watches the Wok API and “PUSHES” the
workload to the managed cluster.

Working with higher primitive
Work represents a workload to be deployed in a target namespace on a single managed
cluster. Which cluster the work is to be deployed and how the Work is scheduled to a certain
cluster is not defined in the Work api. A higher primitive could be used to generate Work based
on a scheduling decision and place the workload on a managed cluster. The higher primitive
must coordinate with clusterset together to decide which clusters the Work should place to.

Let’s assume a scenario that a user would like to place a work including deployment and service
in namespace foo to a clusterset containing cluster G and cluster R. Two possible flows could
be used by leveraging Work

Flow 1:

1.​ User creates higher primitive in namespace foo in work hub, which indicate the user
intends to place the workload in target namespace foo of all clusters in the clusterset
(cluster R and cluster G)

2.​ Controller of higher primitive identifies the clusters in cluster R and cluster G
3.​ Controller of higher primitive creates Work on the work hub, in the namespace cluster-G

and cluster-R.
4.​ Work controller in cluster-G who only watches the ns cluster-G on work hub gets the

work, and deploy the resources in the work to namespace foo in cluster-G.

Flow 2:

1.​ User creates higher primitive in namespace foo in work hub, which indicate the user
intends to place the workload in target namespace foo of all clusters in the clusterset
(cluster R and cluster G)

2.​ Controller of higher primitive identifies the clusters in cluster R and cluster G.
3.​ Controller of higher primitive creates two Work on the work hub, in the namespace foo

with cluster labels.
4.​ Work controller on the managed cluster uses a label selector to select the Work applied

on this cluster.

Proposed Design
To deploy a workload, user will create a Work on the work hub

// Work defines a list of resources to be deployed on the managed cluster
type Work struct {
 metav1.TypeMeta `json:",inline"`
 metav1.ObjectMeta `json:"metadata,omitempty"`

 Spec WorkSpec `json:"spec,omitempty"`
 Status WorkStatus `json:"status,omitempty"`
}

// WorkSpec defines the desired state of Work
type WorkSpec struct {
 // Workload represents the manifest workload to be deployed on managed cluster
 Workload WorkloadTemplate `json:"workload,omitempty"`
}

// WorkloadTemplate represents the manifest workload to be deployed on managed cluster
type WorkloadTemplate struct {

 // Manifests represents a list of kuberenetes resources to be deployed on the managed
cluster.
 // +optional
 Manifests []Manifest `json:"manifests,omitempty"`
}

// Manifest represents a resource to be deployed on managed cluster
type Manifest struct {
 runtime.RawExtension `json:",inline"`
}

// WorkStatus defines the observed state of Work

type WorkStatus struct {
 // Conditions contain the different condition statuses for this work.
 // Valid condition types are:
 // 1. Applied represents workload in Work is applied successfully on a managed cluster.
 // 2. Progressing represents workload in Work is being applied on a managed cluster.
 // 3. Available represents workload in Work exists on the managed cluster.
 // 4. Degraded represents the current state of workload does not match the desired
 // state for a certain period.
 Conditions []metav1.Condition `json:"conditions"`

 // ManifestConditions represents the conditions of each resource in work deployed on
 // managed cluster.
 // +optional
 ManifestConditions []ManifestCondition `json:"manifestConditions,omitempty"`
}

// ResourceIdentifier provides the identifiers needed to interact with any arbitrary object.
type ResourceIdentifier struct {
 // Ordinal represents an index in manifests list, so the condition can still be linked
 // to a manifest even though manifest cannot be parsed successfully.
 Ordinal int `json:"ordinal,omitempty"`

 // Group is the group of the resource.
 Group string `json:"group,omitempty"`

 // Version is the version of the resource.
 Version string `json:"version,omitempty"`

 // Kind is the kind of the resource.
 Kind string `json:"kind,omitempty"`

 // Resource is the resource type of the resource
 Resource string `json:"resource,omitempty"`

 // Namespace is the namespace of the resource, the resource is cluster scoped if the value

 // is empty
 Namespace string `json:"namespace,omitempty"`

 // Name is the name of the resource
 Name string `json:"name,omitempty"`
}

// ManifestCondition represents the conditions of the resources deployed on
// managed cluster
type ManifestCondition struct {
 // resourceId represents the identity of a resource linking to manifests in spec.
 // +required

 Identifier ResourceIdentifier `json:"identifier,omitempty"`

 // Conditions represents the conditions of this resource on the managed cluster
 // +required
 Conditions []metav1.StatusCondition `json:"conditions"`
}

apiVersion: multicluster.x-k8s.io/v1alpha1
kind: Work
metadata:
 name: work-sample
 namespace: cluster
spec:
 workload:
 manifests:
 - apiVersion: v1
 kind: ConfigMap
 metadata:
 name: cm
 namespace: default
 data:
 ui.properties: |
 color=purple

User creates a Work in the namespace on the hub that the work controller is authorized to
access. The work controller then accesses the managed cluster and applies the resources
defined in Work in its reconcile loop. Work controller also tracks the status of applied resources
by updating the manifest conditions in Work status.

Manifest Conditions
Manifest conditions represent the status conditions of a certain manifest to be applied on a
managed cluster. The structure of manifest conditions will include an identifier to link to the
resources defined in work.spec field, and a list of conditions showing the current status of the
resource applied. An example of manifest conditions as below that a configmap default/cm1 has
been applied on the managed cluster.

manifestConditions:
 - conditions:
 - lastTransitionTime: "2020-07-02T03:16:26Z"
 message: Apply manifest complete
 reason: AppliedManifestComplete
 status: "True"
 type: Applied
 identifier:
 group: ""
 kind: ConfigMap
 name: cm1
 namespace: default
 ordinal: 0
 resource: configmaps
 version: v1

Condition type in a manifest conditions

Applied indicates that the manifest with the identifier is applied successfully in the managed
cluster.
Degraded indicates that the manifest applied on the managed cluster does not match the
desired status. Example is the running replica in deployment does not fit the desired replica in
deployment spec.

Work Conditions
In addition to track status of each manifest with manifest condition, a work should have
summarized conditions based on manifest conditions. An example of work and manifest
conditions together as below:

conditions:
 - lastTransitionTime: "2020-07-02T03:16:26Z"
 message: Apply manifest work complete
 reason: AppliedManifestWorkComplete
 status: "True"
 type: Applied
 manifestConditions
 - conditions:
 - lastTransitionTime: "2020-07-02T03:16:26Z"
 message: Apply manifest complete
 reason: AppliedManifestComplete
 status: "True"
 type: Applied
 identifier:
 group: ""
 kind: ConfigMap
 name: cm1
 namespace: default
 ordinal: 0
 resource: configmaps
 version: v1

We can build a summarization logic to set work conditions from manifest conditions such as

1.​ If “Applied==true” for all manifest conditions, then set Applied=true for work condition
2.​ If “Degraded==false” for all manifest conditions, then set Degraded=false for work

condition

Edge Cases
This is an attempt to enumerate known edge cases, where naive attempts to reconcile would
not work as intended.

Work controller tries to revert the field which is updated by other
automation.

●​ Work controller tries to remove the service.spec.ClusterIP since it is not defined in the
Work spec.

●​ Work controller tries to remove the serviceaccount.secrets since it is not defined in the
Work spec.

●​ Work controller tries to update fields of APIs that are set by a defaulter.
●​ Work controller tries to revert replica of deployment when HPA scales up the deployment

Work controller tries to update an immutable field.
●​ Work controller tries to update secret.Type but failed since the field is immutable

Multiple work objects desire the same API resources.

Solutions for edge cases

Leverage server apply
Server-side apply tracks which actor has changed each field of the object. The reconciler should
be able to declare the owner of fields in the resources defined in work. Possible logic would be
like:

1.​ If the reconciler detects that itself is not a fieldManager of the resource on the managed
cluster, declares itself as fieldManager for any field of resource defined in the work with
force-conflict.

2.​ If the reconciler finds itself is already a fieldManager ot the resource, use server side
apply without force conflict. It is possible that the owner of some field on the resource
has been transferred to another fieldmanager, and conflict would happen. In this case,
reports the conflict in the work’s manifest condition

Explicit define reconcile actions in work
We could have a section in the work API to define what reconcile action should be done in each
field in the manifest defined in this work. We could add field specifiers for the following:

●​ Don’t remove: don’t remove a value absent in the desired state
●​ Don’t update: don’t reconcile 1 value with another

An example of such work with service, service account in its manifest would look like as below:

apiVersion: multicluster.x-k8s.io/v1alpha1
kind: Work
metadata:
 name: work-sample
 namespace: cluster
spec:
 workload:
 manifests:
 - apiVersion: v1
 kind: Service
 metadata:

https://kubernetes.io/blog/2020/04/01/kubernetes-1.18-feature-server-side-apply-beta-2/

 name: svc
 namespace: default
 spec:
 selector:
 app: demo
 ports:
 - protocol: TCP
 port: 80
 targetPort: 80
 - apiVersion: v1
 kind: ServiceAccount
 metadata:
 name: sa
 namespace: default
 workMeta:
 specialKeys:
 notRemove:
 - v1.service.spec.clusterIP
 - v1.serviceaccount.secrets

Special logic for known types
We could program special reconcile logic for known types such as service, secret.
serviceAccount.

References
[1] https://timewitch.net/post/2020-03-31-multicluster-workloads/
[2] https://github.com/vllry/cluster-reconciler
[3]
https://docs.google.com/document/d/1fpUQ-Bru1OUK_p4j6q58EHfi8E827dzLNSspgB6lHc4/edit

https://timewitch.net/post/2020-03-31-multicluster-workloads/
https://github.com/vllry/cluster-reconciler
https://docs.google.com/document/d/1fpUQ-Bru1OUK_p4j6q58EHfi8E827dzLNSspgB6lHc4/edit#
https://docs.google.com/document/d/1fpUQ-Bru1OUK_p4j6q58EHfi8E827dzLNSspgB6lHc4/edit#

	*** COMMUNITY DOC ***
	Multi-Cluster Works API
	Objective
	Background
	Motivation
	Kubefed v1
	Kubefed v2
	Gitops
	Common abstractions

	Terminology
	Use Cases
	Deploy a workload to another cluster
	Track the status of workload in another cluster

	Overview
	Resources in the work
	Push/Pull Model
	Working with higher primitive

	Proposed Design
	Manifest Conditions
	Condition type in a manifest conditions

	Work Conditions

	Edge Cases
	Work controller tries to revert the field which is updated by other automation.
	Work controller tries to update an immutable field.
	Multiple work objects desire the same API resources.

	Solutions for edge cases
	Leverage server apply
	Explicit define reconcile actions in work
	Special logic for known types

	References

