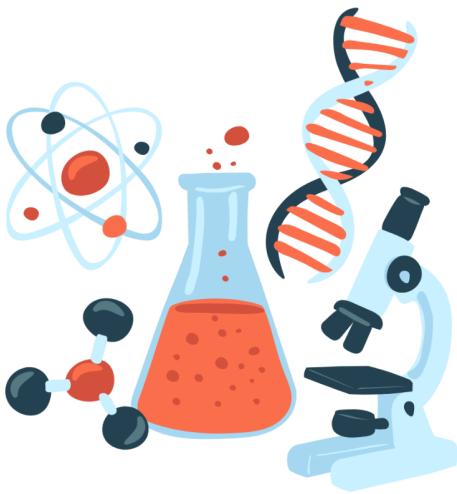


CVES Student Science Fair 2026

Dear students and guardians,

The CVES school-wide science fair judging for 2026 will take place during school. This guide should help answer questions for deadlines, requirements, and ideas. If you have additional questions, please reach out to cvesptsapresident@gmal.com.


After all projects are judged, they will be on display in the MPR at our Family STEM Night on Friday, April 3, 2026. The entire family is welcome to attend STEM night to view projects and participate in STEM activities.

Thank you for supporting your student's science learning!

The CVES PTSA

Contents

Project Selection.....	2
Parts of a Project.....	2
Title.....	2
Question.....	2
Purpose.....	2
Hypothesis.....	2
Materials.....	3
Diagram.....	3
Procedure.....	4
Data.....	5
Conclusion.....	5
Discussion.....	6
Making a Display Board.....	6
Judging.....	7
Prizes and Displays.....	7
WA State Science and Engineering Fair.....	8

Project Selection

Students can prepare an individual or group project to present to judges. Projects need to be completed at home.

Look for project ideas at

<http://www.sciencebuddies.org/>

Parts of a Project

Title

Your title should be something catchy that has to do with your project. For example: if you are doing a project on electricity, your title could be “Making Sparks”, or if it is on batteries, it could be “All Powered Up”.

Remember all words are important in a title, so don’t forget your capitals.

Question

This is where you should ask, “What do I want to know?” and will help you when writing your purpose. Be sure that the question is testable!

Example Question (written in the form of a question and **must be testable**):

Which color do babies prefer most?

Purpose

This is the “who cares?” section. In other words, why are you doing this project? What are you trying to find out? Why might this project be interesting to you or others?

Example Purpose (written in the form of a statement):

The purpose of this experiment was to find out which color babies prefer. The information from this experiment might be helpful for people who design toys and clothes for babies.

The purpose of this experiment _____ . The information from this experiment might be helpful for _____ .

Hypothesis

The hypothesis is an educated guess that tries to answer a question or solve a problem that you are trying to find out more about. The hypothesis is done after you do your research about the topic and **before you do any experimenting. Remember: If you already know the answer, you shouldn't be doing this project!** Your hypothesis is an **I thinkbecause....** statement.

"The important thing in science is not so much to obtain new facts as to discover new ways of thinking about them." ~William Lawrence Bragg

Example Hypothesis

I **think** babies will prefer the color blue **because** my little sister has all blue toys and really likes to play with them.

I **think** _____ **because** _____.

Materials

For this section, list out what you used in your experiment (this should be the same list as the one found in the “Materials and Equipment” section of your project). The more specific you are the better. Don’t just write “plants”, write “Three string bean plants.” Also, don’t forget to include measurements. Rather than listing “milk”, list “1/2 cup milk.” You can think of this section as a recipe that someone else can follow if he/she wants to do your experiment too.

Example Materials List

Poor Materials List	Good Materials List
<ul style="list-style-type: none">• Water• Watch• Ruler• Dirt	<ul style="list-style-type: none">• 20 Liters of Water• Stopwatch with second hand• Metric ruler with millimeters listed• 3 cubic meters of potting soil

Material List
<ul style="list-style-type: none">•••••••••

Diagram

A diagram of the investigation set-up with labeled variables, amounts, times, #s of, etc. can be as simple as a stick figure drawing or as sophisticated as actual photos. You must include a description of the variables.

- **Controlled Variable:** things that are kept the same to make the test fair. If they were not the same the test could be influenced.
- **Manipulated Variable:** the one thing that was changed on purpose used for comparison during the investigation.
- **Responding Variable:** the data that is being recorded, or what you are finding.

Variables Example

Controlled (stays constant)	Manipulated (the one thing that changes)	Responding (Responds to what is being manipulated or changed)
<ul style="list-style-type: none">● Same size pieces of colored paper● Same highchair to hold baby	<ul style="list-style-type: none">● Color of paper	<ul style="list-style-type: none">● Time the baby looks at the paper

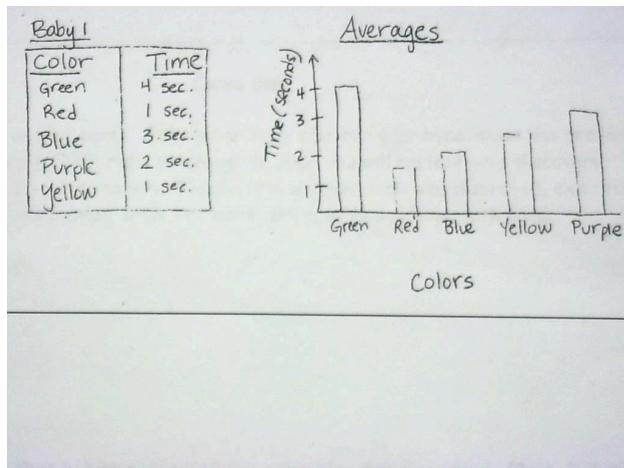
Another Example of a Diagram with the Variables listed.

Procedure

In this section, you will list out everything you do in your experiment. Yes, everything! Another person should be able to do exactly what you did, step by step. Make sure that

you write it as though you're telling someone else how to do the experiment. For example, **don't write**, "I **added** 2 teaspoons of salt to the water." **Instead, write**, "Add 2 teaspoons of salt to the water." Again, think of it like a recipe.

Example Procedure


- Put baby in highchair
- Hold up one piece of construction paper
- Time how long the baby looks at it, and record time in log
- Repeat for all five colors
- Repeat steps 1-4 for remaining babies

List out the steps/procedure in your own words.

Data

This section should include any tables, other data, or pictures that you drew or took while conducting the experiment. If you are using pictures, you need to make sure to include a caption explaining what each picture shows.

Examples of Data

Conclusion

Your conclusion should have **three parts**.

- **First**, say whether your hypothesis was proven or disproven. Your results are never right or wrong!
- **Second**, you will restate your discovery.
- **Third**, you will use data to back up your discovery (think of this like a supporting detail). Proof that supports your discovery.

Sample Conclusion

(Part 1) My hypothesis that babies preferred the color blue was disproven. **(Part 2)** I found out that babies prefer green. **(Part 3)** Babies looked at the green paper the longest, 4 seconds!

(Part 1) My hypothesis _____
was proven/disproven. **(Part 2)** I found _____
_____. **(Part 3 write a supporting detail to your second part)** _____.

AS AN EXTENSION, not a requirement, you may include:

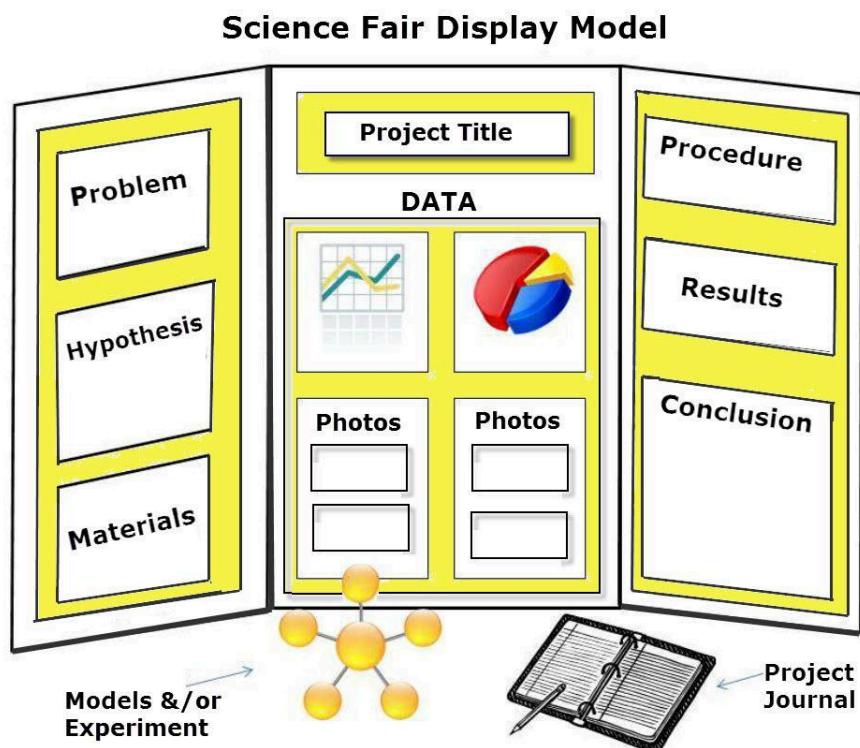
Discussion

In this section, use what you discovered to answer questions like the following or others you may have.

1. Apply what was discovered to make predictions about real world situations.
2. Take away part of the system or change something in the system and predict what would happen and use your data to support your answer.
3. Design a new investigation that is similar but with a different manipulated variable
4. Discuss why or why not your reasoning was proven or disproven
5. Discuss experimental design flaws and changes that could be made

Sample Discussion

In my experiment, one design flaw might have been that I showed all the babies the green paper first. By the time I got to the blue, they might not have been interested anymore. If I were to do the experiment again, I would make sure I changed the order in which I showed the colors. Next, if I were to do a different experiment, I would want to find out whether babies prefer their toys to be all one color or many different colors!


Making a Display Board

Your display board is where you get to show off your experiment and what you learned! Remember to think about the order in which you did your project when planning out how to arrange your board; don't paste the results on your board first before the hypothesis. Also, consider what will make your display attractive! Here are some ideas that might help: use colored mats behind your report sections to make them stand out; add photographs or illustrations of your experiment; enlarge your data tables and/or graphs so they are easier to read. Remember that lots of people will be looking at what you did, so make it something you will be proud of!

Make sure your name, grade and teacher's name are on the back of your display board.

There's a spot on the registration form to request a tri-fold board. Or you can purchase your own.

Example of a Tri-fold Poster board

Judging

You will present to the judges at school during the day. You can tell them the summary of your project and they will ask you a few questions. There will be at least 2 judges for each project.

Judges will score projects on:

- Originality of the questions
- Hypothesis
- Procedures and organization

- If your experiment was performed enough times (at least 2) or your sample size was large enough.
- Your analysis is clearly presented.
- The conclusion makes sense.
- Your presentation, both your display board and verbal presentation and answering questions.

Prizes and Displays

Frist through fourth place will be awarded by grade level. Ribbons will be added to display boards for the Family STEM Night. At the end of STEM Night you can take your project board home with you. If you are unable to make STEM Night, your board can go home the next day at school.

WA State Science and Engineering Fair

The Washington State Science and Engineering Fair is March 27, & 28, 2026. Anyone can register a project for the state fair, it is not affiliated with Cascade View or Snoqualmie Valley School District, but is still a chance to show off your hard work!

For more information on the Washington State Science & Engineering Fair, please visit

<https://wssef.org/>