

wvlet-sql: Integrating SQL and Scala for Data Analytics

Taro L. Saito

Initial Design Doc: Feb 17th, 2017

GOALS

Provide a standard of SQL value objects for Scala in order to:

●​ Reuse sbt-sql generated model classes
●​ Allow nesting SQL queries in sbt-sql

BACKGROUND
sbt-sql https://github.com/xerial/sbt-sql helps creating model classes from SQL, but adding
conditions to SQL is not so easy. For example, if we need to refine the original query:

select * from users

by adding a condition id = 1, we need to add a template parameter like

select * from users where id = ${user_id:Long}

Even though the result schema shape is the same, we need to prepare two SQL files and two
SQL model classes in sbt-sql.

On the other hand, if we fully resort to Scala collection, we cannot push down the condition to
SQL side:

Users​
​ .select // Seq[user] collect 10,000 user objects from JDBC query result​
​ .filter(_.id == 1) // Seq[user] 1 record

If we run the whole steps in a single SQL, it will finish quickly. So instead of using Seq[user], we
should use operator objects, which are monad to wrap the actual computations:

 Users.select // SQLOp[user]​
 .filter(_.id == 1) // FilterOp(SQLOp[user], _.id == 1)

SQLOp and FilterOp are just operator objects and does not hold the results, so we can optimize
this sequence of operators as a single SQLOp:

 SQLOp(“select * from (select * from users where id = 1)”)

https://github.com/xerial/sbt-sql

DESIGN

●​ Define WvSeq[A] and SQLOp[A] operator
●​ Convert SQLOp[A] to an SQL statement
●​ Translate WvSeq[A].filter(_.(column name) (pred) (value)) to SQLOp[A]

○​ Use Scala Macros to analyze the predicate expression
○​ SQLOp[A] should not change the output type. This is for embedding it to another

SQL that requests type A input.
●​ Add WvSeq output type support to sbt-sql
●​ Nesting SQL

○​ SQL: select * from ${a:A} a join ${b:B} b on a.id = b.id
○​ code: SQL.select(a = A.select.filter(_.id == 1), b =

B.select.filter(_.country==”US”))
○​ Result:

■​ Return SQLOp(“select * from (select * from a where id = 1) a join (select *
from b where country = ‘US’) b on a.id = b.id”) , which can be executed
through JDBC.

■​ If the filtering operation is too complex, we should detect it as
compilation error (cannot generate SQL for this expression, etc.)

ALTERNATIVES AND WHY NOT?

In Scala, there are many libraries for accessing DBs. Slick, Quill, Doobie and ScalikeJDBC are
these examples. An important question to decide `which to use?` is whether we are building
database applications or analyzing data with SQL? wvlet-sql is targeting the latter; data
analysis code in which we need to explore large data sets. The schema of the database might
be quite huge (e.g., hundreds of columns) and in order to build correct SQL queries, we need
check the actual data set and schemas.

Slick

Maybe too complex to use. And found several pain points in generated SQL:
http://fr.slideshare.net/normation/doobie-feedbacks-from-the-trenches-scalaio-2016#15

Quill

Quill https://github.com/getquill/quill is Scala macro based SQL generator, which is similar to the
idea of wvlet-sql.

●​ This Scala expression parsing code would be useful for wvlet-sql
https://github.com/getquill/quill/blob/master/quill-core/src/main/scala/io/getquill/quotation/
Parsing.scala

http://fr.slideshare.net/normation/doobie-feedbacks-from-the-trenches-scalaio-2016#15
https://github.com/getquill/quill
https://github.com/getquill/quill/blob/master/quill-core/src/main/scala/io/getquill/quotation/Parsing.scala
https://github.com/getquill/quill/blob/master/quill-core/src/main/scala/io/getquill/quotation/Parsing.scala

Quill’s design aims to compile-time SQL generation, which means we cannot automate
creating model classes before the compilation. And as long as we know the result schema type
in compile-time, generating the SQL syntax at compile-time is not necessary.

And also use of lift for making SQL as a function is less natural:
def users(id: Long) = quote {​

 query[User].filter(u => u.id == lift(id))​

}

Doobie

Doobie https://github.com/tpolecat/doobie and its design
http://tpolecat.github.io/presentations/doobie1.html#8
If we need to build SQL in a functional way, it would be useful, but this is not the goal of
wvlet-sql.

Spark SQL and Dataset API
SQL syntax is Spark SQL specific. We cannot use Presto UDFs.

CONTACT

●​ Taro L. Saito (GitHub @xerial, e-mail: leo@xerial.org)

https://github.com/tpolecat/doobie
http://tpolecat.github.io/presentations/doobie1.html#8
https://gibhut.com/xerial
mailto:leo@xerial.org

	wvlet-sql: Integrating SQL and Scala for Data Analytics
	GOALS
	Provide a standard of SQL value objects for Scala in order to:
	●​Reuse sbt-sql generated model classes
	●​Allow nesting SQL queries in sbt-sql

	BACKGROUND
	DESIGN
	ALTERNATIVES AND WHY NOT?
	Slick
	Quill
	Doobie
	Spark SQL and Dataset API

	CONTACT

