Appendix A

```
TITLE: Van der Linden (2007) model, B-GLIRT formulation
DATA:
FILE IS data.dat;
VARIABLE:
NAMES ARE y1-y10 t1-t10;
USEVARIABLES ARE y1-y10 t1-t10;
CATEGORICAL ARE y1-y10;
ANALYSIS:
ALGORITHM=INTEGRATION;
ALGORITHM=ODLL;
MODEL:
abil by y1-y10*;
                                                ! link responses to ability factor
speed by t1-t10* (phi1-phi10);
                                                ! link response times to speed factor
abil by t1-t10* (load1-load10);
                                                ! link response times to the ability factor, we
                                               ! constrain these below
abil with speed@0;
                                                ! no covariance between the factors
[y1$1-y10$1] (bi1-bi10);
                                        ! item difficulties
[t1-t10] (icept1-icept10);
                                                ! time intensity parameters
abil@1;
                                                ! fix the variance of the ability factor to 1
                                                ! define the variance of the speed factor which is
speed* (varT);
                                               ! constraint below
MODEL CONSTRAINT:
NEW(rho);
                                                ! introduce a new parameter rho (which is rho_1 on
                                               ! Equation 9)
                                                ! constraining the variance of the speed factor to put
varT = 1- rho*rho;
                                               ! the parameters on the same scale as the
                                               ! hierarchical model
load1=-rho*phi1;
                                                ! specifying f(\theta_n; \boldsymbol{\rho}) for each item
load2=-rho*phi2;
load3=-rho*phi3;
load4=-rho*phi4;
load5=-rho*phi5;
load6=-rho*phi6;
load7=-rho*phi7;
load8=-rho*phi8;
load9=-rho*phi9;
load10=-rho*phi10;
```

Appendix B

TITLE: Thissen (1983) model DATA: FILE IS data.dat; **VARIABLE:** NAMES ARE y1-y10 t1-t10; USEVARIABLES ARE y1-y10 t1-t10; CATEGORICAL ARE y1-y10; **ANALYSIS:** ALGORITHM=INTEGRATION; ALGORITHM=ODLL; MODEL: abil by y1-y10* (ai1-ai10); ! link responses to ability factor speed by t1-t10*; ! link response times to speed factor abil by t1-t10* (load1-load10); ! link response times to the ability factor, we ! constrain these below ! no covariance between the factors abil with speed@0; [y1\$1-y10\$1] (bi1-bi10); ! item difficulties [t1-t10] (icept1-icept10); ! time intensity parameters abil@1; ! fix the variance of the speed and ability factors speed@1; ! to equal 1 MODEL CONSTRAINT: NEW(rho); ! introduce a new parameter rho (which is rho_1 on ! Equation 12) load1=-rho*ai1; ! specifying $f(\theta_o; \boldsymbol{\rho})$ for each item load2=-rho*ai2; load3=-rho*ai3; load4=-rho*ai4; load5=-rho*ai5; load6=-rho*ai6; load7=-rho*ai7; load8=-rho*ai8; load9=-rho*ai9; load10=-rho*ai10;

Appendix C

TITLE: The IRTtree model DATA: FILE IS data.dat;	
VARIABLE: NAMES ARE y1-y10 t1-t10; CATEGORICAL ARE y1-y10;	
ANALYSIS: type=RANDOM;	
MODEL:	
abil by y1-y10*;	! link responses to ability factor
speed by t1-t10*;	! link response times to speed factor
abil by t1-t10* (d);	! link response times to the ability factor, this ! is rho_1 in Equation 13
speed with abil@0;	! no covariance between the factors
abil@1; speed@1;	! fix the variance of the speed and ability factors ! to equal 1
quad abil xwith speed;	! define the interaction between speed and ability
t1 on quad (c); t2 on quad (c); t3 on quad (c); t4 on quad (c); t5 on quad (c); t6 on quad (c); t7 on quad (c); t8 on quad (c); t9 on quad (c);	! the interaction effect for each item, this will result ! in rho_2 in Equation 13

Appendix D

```
TITLE: B-GLIRT Distance-Difficulty model for dichotomous data
DATA:
FILE IS data.dat;
VARIABLE:
                NAMES ARE y1-y10 t1-t10;
CATEGORICAL ARE y1-y10;
ANALYSIS:
ALGORITHM=ODLL;
ALGORITHM=INTEGRATION;
type=RANDOM;
MODEL:
abil by y1-y10*1 (a1-a10);
                                                 ! link responses to ability factor
speed by t1-t10*;
                                                 ! link response times to speed factor
abil by t1-t10 (cross1-cross10);
                                                 ! link response times to the ability factor, we
                                                 ! constrain these below
                                         ! item difficulties
[y1$1-y10$1] (bi1-bi10);
[t1-t10] (icept1-icept10);
                                                 ! time intensity parameters
                                                 ! fix the variance of the speed and ability factors
abil@1;
speed@1;
                                                 ! to equal 1
speed with abil@0;
                                                 ! no covariance between the factors
                                                 ! define the squared ability factor, \theta^2
f2sq | abil xwith abil;
t1 on f2sq (qload1);
                                                 ! the \theta^2 effect for each item, this will be constrained
                                                !below
t2 on f2sq (gload2);
t3 on f2sq (gload3);
t4 on f2sq (qload4);
t5 on f2sq (qload5);
t6 on f2sq (qload6);
t7 on f2sq (qload7);
t8 on f2sq (qload8);
t9 on f2sq (qload9);
t10 on f2sq (qload10);
MODEL CONSTRAINT:
new(rho);
                                                 ! define the cross-relation parameter
cross1 = -2*rho*a1*bi1;
                                                 ! this will give rho_1^star from Equation 17 subject
cross2 = -2*rho*a2*bi2;
                                                 ! Equation 15 as we have dichotomous data.
cross3 = -2*rho*a3*bi3;
                                         ! In addition, we use -2 instead of 2 as Mplus uses
cross4 = -2*rho*a4*bi4;
                                         ! the parameterization \alpha\theta-\beta instead of \alpha\theta+\beta
cross5 = -2*rho*a5*bi5;
cross6 = -2*rho*a6*bi6;
```

Appendix E

TITLE: B-GLIRT Distance-Difficulty model for Likert scale data DATA: FILE IS data.dat; **VARIABLE:** NAMES ARE y1-y10 t1-t10; CATEGORICAL ARE y1-y10; **ANALYSIS:** ALGORITHM=ODLL; ALGORITHM=INTEGRATION; type=RANDOM; MODEL: ability by y1-y10*1 (a1-a10); ! link responses to ability factor speed by t1-t10*; ! link response times to speed factor ability by t1-t10 (cross1-cross10); ! link response times to the ability factor, we ! constrain these below ! label the middle two threshold parameters [y1\$2-y1\$3] (b1_2-b1_3); [y2\$2-y2\$3] (b2_2-b2_3); ! to enable constraining them below [y3\$2-y3\$3] (b3_2-b3_3); [y4\$2-y4\$3] (b4_2-b4_3); [y5\$2-y5\$3] (b5 2-b5 3); [y6\$2-y6\$3] (b6_2-b6_3); [y7\$2-y7\$3] (b7_2-b7_3); [y8\$2-y8\$3] (b8_2-b8_3); [y9\$2-y9\$3] (b9_2-b9_3); [y10\$2-y10\$3] (b10_2-b10_3); [t1-t10] (icept1-icept10); ! the time intensity parameters ability@1; ! fix the variance of the speed and ability factors ! to equal 1 speed@1; speed with abil@0; ! no covariance between the factors ! define the squared ability factor, θ^2 f2sq | abil xwith abil; t1 on f2sq (qload1); ! the θ^2 effect for each item, this will be constrained !below t2 on f2sq (qload2); t3 on f2sq (qload3); t4 on f2sq (gload4); t5 on f2sq (qload5); t6 on f2sq (qload6); t7 on f2sq (qload7); t8 on f2sq (qload8); t9 on f2sq (qload9);

```
t10 on f2sq (qload10);
MODEL CONSTRAINT:
new(rho);
                                              ! define the cross-relation parameter
cross1 = 2*rho*a1*((b1_2+b1_3)/2);
                                              ! this will give rho_1^star from Equation 17
cross2 = 2*rho*a2*((b2_2+b2_3)/2);
                                              ! subject to Equation 18 as we have polytomous
cross3 = 2*rho*a3*((b3_2+b3_3)/2);
                                              ! items
cross4 = 2*rho*a4*((b4_2+b4_3)/2);
cross5 = 2*rho*a5*((b5_2+b5_3)/2);
cross6 = 2*rho*a6*((b6_2+b6_3)/2);
cross7 = 2*rho*a7*((b7_2+b7_3)/2);
cross8 = 2*rho*a8*((b8_2+b8_3)/2);
cross9 = 2*rho*a9*((b9_2+b9_3)/2);
cross10 = 2*rho*a10*((b10_2+b10_3)/2);
qload1 = rho * a1^2;
                                              ! this will give rho_2^star from Equation 17
qload2 = rho * a2^2;
qload3 = rho * a3^2;
qload4 = rho * a4^2;
qload5 = rho * a5^2;
qload6 = rho * a6^2;
qload7 = rho * a7^2;
qload8 = rho * a8^2;
qload9 = rho * a9^2;
qload10 = rho * a10^2;
```