Parallel Computing Notebook FELIX LIU April 2017

Flipping Coins in Parallel

Model Website

Q: If each worker can flip one coin per time step, how many time steps does it take the serial worker to flip two coins?

A: 2

Q: How many time steps does it take two parallel workers to flip the two coins?

A:)

Q: Set the work size to 16. How many time steps does it take the serial worker to flip the coins?

A: 16

Q: How many time steps does it take the parallel workers to flip the coins?

A: 8

Q: Set the number of parallel workers to 4. How many time steps does it take the parallel workers to flip the coins now?

A: Y

Q: Set the number of parallel workers to 8. How many time steps does it take the parallel workers to flip the coins now?

A: 2

Q: From what you've seen, what is one reason why it would be a good idea to use parallel workers instead of a serial worker?

A: PARALLEL WORKERS TAKE LESS TIME TO COMPLETE THE SAME TASK COMPARED TO A SERIAL WORKER.

Q: Decrease the number of parallel workers to 2. Decrease the max time to 2. In 2 time steps, how many coins can be flipped by 2 parallel workers compared to one serial worker?

A: THE PARALLEL WORKERS FLIP 4 COINS WHILE THE SERIAL WORKER FLIPPED 2

Q: Increase the number of parallel workers to 4. In 2 time steps, how many coins can be flipped by 4 parallel workers compared to one serial worker?

A: THE PARALLEL WORKERS FLIP & COINS WHILE THE SERIAL WORKER FLIPPED Z.

Q: Increase the number of parallel workers to 8. In 2 time steps, how many coins can be flipped by 8 parallel workers compared to one serial worker?

A: THE PARALLEL WORKERS FLIP 16 WHILE THE SERIAL WORKER FLIPPED 2.

Q: From what you've seen, what is another reason why it would be a good idea to use parallel workers instead of a serial worker?

A: THEY COMPLETE MORE THAN A SERIAL WORKER IN THE SAME AMOUNT OF TIME.

Q: Increase the max time to 16 time steps. Decrease the number of parallel workers to

2. Decrease the max worker memory to 2 coins. If each worker can only hold 2 coins in memory, what is the maximum number of coins that can be flipped by 2 parallel workers compared to 1 serial worker?

A: PARALLEL : Y, SERIAL : Z

Q: Increase the number of parallel workers to 8. If each worker can only hold 2 coins in memory, what is the maximum number of coins that can be flipped by 8 parallel workers compared to 1 serial worker?

A: PARALLEL : 16, SERIAL: Z

Q: From what you've seen, what is another reason why it would be a good idea to use parallel workers instead of a serial worker?

A: PARALLEL WORKERS WILL HOLD MORE MEMORY THAN JUST ONE SERIAL WORKER

<u> Human Parallel Computer - Data Parallelism through Forest Fire Simulations</u>

My number:19

Total number of students:22

My probability: 19/22

Percentages: 100, 100, 100, 100, 99.65

Iteration counts: 17, 17, 17, 17, 17

Average percentage: 99.93%

Average # of iterations: 17

Q: What were some of the **tasks** we did in this exercise? What were they, and who did them?

A:). GETTING A STICKY NOTE WITH A NUMBER

- 2. FINDING NUMBER OF STUDENTS
- 3. CALCULATING PERCENTAGE
- 4. RUNNING MODEL 5 TIMES
- 5. RECORDING DATA
- 6. CALCULATING AVERAGES
- 7. RETURNING DATA TO AARON

Q: What kinds of **data** did we work with in this exercise?

A: WE WORKED WITH AVERAGES, PROBABILITY AND PERCENTAGES.

Q: In which steps was there **communication** or **message passing** during this exercise (mark these steps)?

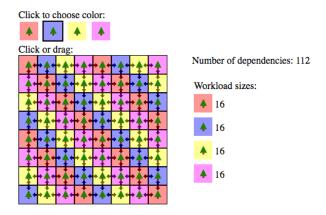
A: WE COMMUNICATED WHEN WE RECEIVED THE STICKY NOTES AND RETURNED THE STICKY NOTES. WE ALSO COMMUNICATED TO THE ACTUAL COMPUTER.

Q: In what ways could this exercise have been **optimized** so it could take less time?

A: EVERYONE COULD HAVE ENTERED IN THEIR OWN DATA IN A SHARED GRAPH.

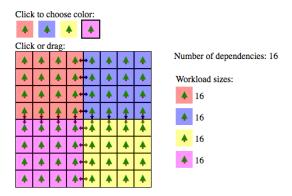
Q: How could we have run this exercise using two instructors instead of one?

A: ONE INSTRUCTOR COULD HAVE MANAGED ITERATIONS WHILE THE OTHER MANAGED THE PERCENTAGE BURNED.


Q: In what ways did we simulate a parallel computer in this exercise?

A: ALL STUDENTS EACH RAN THE MODEL WITH DIFFERENT SPECIFICATIONS INSTEAD OF ONE PERSON RUNNING THE DATA POINTS IN A SERIES.

Domain Decomposition


Model Website

Domain Decomposition for Forest Fire Model

MAXIMUM NUMBER OF DEPENDENCIES

Domain Decomposition for Forest Fire Model

FOREST DIVIDED INTO FOUR EQUAL PIECES FOR EACH COLOR

Q: If we assumed each color is assigned to a researcher in a real forest, and each researcher is studying how a fire spreads through the forest, why do we call them **dependencies**? Why do we call them **workload sizes**?

A: THEY ARE CALLED DEPENDENCIES BECAUSE A UNIT HAS TO DEPEND ON OTHERS FOR INFORMATION. THEY ARE CALLED WORKLOAD SIZES BECAUSE THEY ONLY HAVE SO MUCH MEMORY THEY CAN USE.

Q: If we assumed each color is assigned to a computer running a simulation for that part of the forest, why do we call them **dependencies**? Why do we call them **workload** sizes?

A: THEY ARE CALLED DEPENDENCIES BECAUSE A RESEARCHER HAS TO DEPEND ON OTHERS FOR INFORMATION. THEY ARE CALLED WORKLOAD SIZES BECAUSE THEY ONLY HAVE SO MUCH MEMORY THEY CAN USE.

Q: Why would we want to minimize the dependencies?

A: WE WOULD WANT TO MINIMIZE THE DEPENDENCIES BECAUSE THAT WOULD REDUCE COMMUNICATIONS.

Q: What are some reasons we might want to give more work to one of the colors/researchers/computers?

A: If one worker works better or faster than the others, it would be a good idea to give them more work

Parallel Recipes

My serial recipe: How To Google Something

Materials:

- 1. WEB BROWSER
- 2 COMPUTER
- 3. KEYBOARD
- 4. MOUSE

Instructions:

- 1. PRESS POWER BUTTON ON COMPUTER TO TURN ON
- 2. Put your hand on the mouse and move the cursor over a google chrome, safari, or firefox icon.
- 3. CLICK THE BUTTON ON THE LEFT SIDE OF THE MOUSE
- 4. ONCE A NEW WINDOW IS OPEN, MOVE THE CURSOR OVER THE LONG BAR ON THE TOP OF THE WINDOW
- 5. CLICK THE BUTTON ON THE LEFT SIDE OF THE MOUSE
- 6. TYPE "WWW.GOOGLE.COM" WITH THE KEYBOARD
- 7. PRESS THE KEY THAT SAYS "RETURN" ON YOUR KEYBOARD
- 8. There should be a long box in the center of the screen under the word "Google"
- 9. MOVE CURSOR ON THE BOX AND CLICK
- 10. USE THE KEYBOARD TO TYPE IN WHAT YOU WANT TO GOOGLE.
- 11. PRESS THE BUTTON ON THE KEYBOARD THAT SAYS "RETURN"

Dependencies:

• YOUR COMPUTER HAS TO BE ON IN ORDER TO OPEN A WEB BROWSER.

My parallel recipe

Materials:

- 1. WEB BROWSER
- 2 COMPUTER
- 3. KEYBOARD
- 4. MOUSE

Instructions:

- 1. BILLY PRESSES POWER BUTTON ON COMPUTER TO TURN ON
- 2. BILLY TELLS JIMBO WHEN IT HAS FINISHED POWERING ON AND JIMBO PUTS HIS HAND ON THE MOUSE AND MOVE THE CURSOR OVER A GOOGLE CHROME, SAFARI, OR FIREFOX ICON AND CLICKS
- 3. BILLY TELLS JIMBO WHEN THE WINDOW IS OPEN, AND JIMBO MOVES HIS CURSOR OVER THE TOP BAR ON THE WINDOW
- 4. FLASH TYPES IN WWW.GOOGLE.COM WITH THE KEYBOARD
- 5. FLASH PRESSES THE RETURN BUTTON
- 6. BILLY TELLS JIMBO WHEN THE SCREEN IS LOADED AND JIMBO CLICKS THE SEARCH BOX
- 7. JIMBO TELLS FLASH WHEN HE FINISHES CLICKING AND FLASH TYPES IN WHAT THEY WANT TO SEARCH
- 8. FLASH PRESSES ENTER

Q: In what ways was your **parallel** recipe different than your **serial** (non-parallel) recipe?

A: IN MY PARALLEL RECIPE, THERE NEEDED TO BE A LOT OF COMMUNICATION BETWEEN MEMBERS IN ORDER for success. Each member had different roles and had to work together to accomplish the task.

Q: In what ways was your parallel recipe the same as your serial (non-parallel) recipe?

A: BOTH HAD THE SAME END PRODUCT AND FOLLOWED A LINEAR PATH.

Q: In what ways was your parallel recipe more efficient? In what ways was it less efficient?

A: NO. IT WAS LESS EFFICIENT BECAUSE THERE NEEDED TO BE CLEAR COMMUNICATION BETWEEN MEMBERS.

Q: Did anything need to change about the resources/materials/ingredients/tools in your recipe when you went from serial to parallel?

A: NO

Q: In what ways do you think this activity relates to computing and parallel computing?

A:IT ANALYZES THE DIFFERENCES BETWEEN SERIAL COMPUTING AND PARALLEL

COMPUTING IN COMPLETING A TASK.

Going Shopping

SOLUTIONS:

- 1. EACH PERSON GOES INTO THE SUPERMARKET AND BUYS THEIR OWN LUNCH
- 2 AARON GOES IN AND BUYS LUNCH FOR EVERYBODY
- 3. ONE PERSON BUYS DIFFERENT INGREDIENTS TO MAKE A SANDWICH
- 4. ORDER FOOD
- 5. TAKE EACH KID BACK TO THEIR HOUSE TO RETRIEVE THE FORGOTTEN LUNCHES

WHAT IFS:

- 1. YOU ONLY HAD 100 DOLLARS TO SPEND
- 2 THERE WERE ALLERGIES
- 3. THERE ARE TOO MANY STUDENTS TO FIT IN THE VAN
- Y. THE VAN DOESN'T WORK
- 5. NOBODY CAN DRIVE
- 6. GET ARRESTED FOR SPEEDING
- 7. SUPERMARKET IS CLOSED
- 8. THE KIDS UNITE AND PLAN A COUP D'ETAT AGAINST JIM AND AARON

Q: Where is there inherent parallelism in your solutions?

A: STEP 3: EACH PERSON HAS A SPECIFIC THING TO BUY. THEY THEN USE THE INGREDIENTS TO MAKE A SANDWICH

STEP 1: EACH PERSON BUYS THEIR OWN LUNCH

Q: Where are there **dependencies** between tasks in your solution?

A: THERE COULD BE ALLERGIES OR THE SUPERMARKET COULD BE CLOSED.

Q: Where is there **communication** in your solution?

A: THE KIDS COULD COMMUNICATE WHAT THEY WANTED TO EAT TO AARON OR JIM.

Parallelism in Nature

Model link: https://www.agentcubesonline.com/project/\6\18\1

Data: POPULATION IN STORES, TIMESTEPS

Tasks: MOVING AROUND, ENTERING, EXITING

Parallelizable data: NONE

Parallelizable tasks: AGENTS CAN MOVE AROUND AT THE SAME TIME.

Q: What patterns do you notice in the types of data and tasks that can be parallel?

A: THEY ARE THINGS THAT CAN HAPPEN AT THE SAME TIME IN ONE TIMESTEP.

Q: What patterns do you notice in the types of data and tasks that cannot be parallel?

A: ONLY ONE ACTION CAN HAPPEN IN ONE TIMESTEP.

Careers in High Performance Computing

Career: Software Developer

How HPC can be used in that career: A supercomputer needs well developed and designed software for it to work

Sources:

http://www.cray.com/blog/the-software-imperative-in-high-performance-computing/

The World's "Fastest" Supercomputers

Q: When was the most recent Top500 list published?

A: NOVEMBER 2016

Q: What is the name of the fastest supercomputer in the world according to the most recent list?

A: SUNWAY TAINULIGHT - SUNWAY MPP, SUNWAY SWZ6010 Z60C 1.45GHZ, SUNWAY NRCPC

Q: Where is that supercomputer located?

A: WUXI, CHINA

Q: How many cores does it have?

A: 10,649,600

Q: How much peak performance (RPEAK) does it have?

A: 125,435.9

Q: How many of the Top500 sites in the top 10 are located in the United States?

A: 5

Q: If the **Blue Waters** supercomputer was capable of a **peak performance** of **13,000 TFLOP/S** when it came on-line in 2012, where would it be listed in the November 2012 list?

A: 3PD

Q: Why doesn't Blue Waters appear on that list?

A: THEY CHOSE TO NOT BE INCLUDED AND OPTED OUT ON APPEARING ON THE LIST. THEY DID NOT THINK THE LIST MEASURED A SUPERCOMPUTER'S POWER IN THE BEST WAY.

RUNNING LINPACK IS ONLY ONE SMALL TASK A SUPERCOMPUTER CAN BE USED FOR..

Source: https://www.hpcwire.com/2012/11/16/blue_waters_opts_out_of_top500/

Q: What are cores?

A: A CORE IS THE BASIC COMPUTATIONAL UNIT OF A CPU.

Q: What does **TFLOP/S** stand for?

A: TRILLION FLOATING POINT OPERATIONS PER SECOND.

Q: What does **Linpack** measure?

A: MEASURE OF A SYSTEM'S FLOATING POINT COMPUTING POWER

Q: What would be some different ways to rank supercomputers?

A: YOU CAN RANK THEM BY POWER, PERFORMANCE PER CORE, OR RMAX.

LittleFe

Where the name comes from: Fe is comes from iron. Big iron is a slang term for supercomputing so littleFe means small iron because it's there's bigger computers. Components:

- 6 motherboards
- 2 cores per CPU
- 1 hard drive
- Ethernet network
- RAM (memory)
- Every motherboard has a certain amount of memory
- Power supply
- Case
- cooling

Blue Waters demo

YouTube video

Q: What are the advantages to using a remote supercomputer as compared to a local supercomputer like LittleFe?

A: You can visualize things. It is a much powerful computer as well. You don't have to travel. Anyone can use Blue Waters.

Q: What are the disadvantages?

A: It isn't portable and is extremely time consuming and costly to build a supercomputer. You also need an account to use it.

Parallel Computing: Terminology and Examples

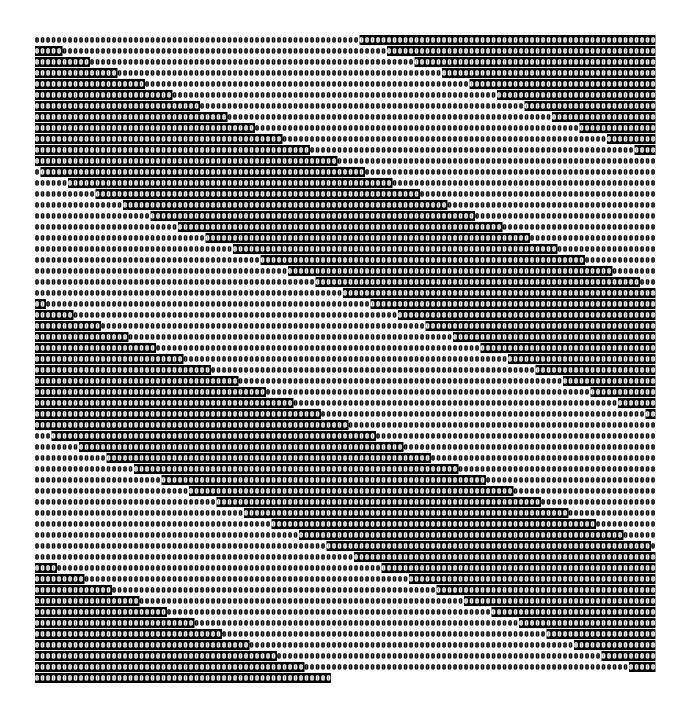
Slides

Shopping for Your Own Supercomputer

- PART: Motherboard (12)
- COST: \$59.99 per motherboard (Total: 719.88)
- LINK: https://www.newegg.com/Product/Product.aspx?Item=N82E16813128565
- PART: Memory
- COST: 34.99
- LINK: https://www.newegg.com/Product/Product.aspx?Item=N82E16820231277&cm_re=memory_ddr3-_-20-231-277-_-Product
- PART: Hard Drive

- COST 16.99
- LINK: https://www.newegg.com/Product/Product.aspx?Item=9SIA5AD4HV9323
- PART: Ethernet Cables (12)
- COST: 3.88 per cable (Total: 46.56)
- LINK: https://www.newegg.com/Product/Product.aspx?Item=N82E16812189016&cm-re=ethernet-cable--12-189-016--Product
- PART: ROUTER
- COST: 35.49
- LINK: https://www.newegg.com/Product/Product.aspx?Item=N82E16833124190&cm re=router- -33-124-190- -Product
- FAN
- COST: 39
- LINK: https://www.newegg.com/Product/Product.aspx?item=N82E16835103052
- CPU
- \$85
- LINK:

https://www.newegg.com/Product/Product.aspx?Item=N82E16819113286&ignorebbr=1


TOTAL: \$977.91

Q: What are the most important parts of a supercomputer?

A: MOTHERBOARD, CPU

Q: What assumptions did you make when you did your shopping? Which of these assumptions were false?

A: I ASSUMED THAT THE BEST RATED ITEMS THAT WERE ALSO RELATIVELY CHEAP WERE THE BEST BUY. I FEEL LIKE THIS ASSUMPTION IS TRUE BECAUSE IF CUSTOMERS ARE BOTH SATISFIED WITH THE PRODUCT AND CAN BUY IT AT A LESSER PRICE, THEN IT'S A REALLY GOOD BUY.

