

About

Full Name Tanish Khare

Email Tanish Khare

Discord Handle @bakaotaku

Homepage/Website https://bakaotaku.dev/

Blog https://blog.bakaotaku.dev/

Github Tanish2002

Twitter https://twitter.com/baka_otaku2002

Time Zone Indian Standard Time (IST)

Resume Tanish_Khare_RESUME.pdf

University Info

University SRM University

Program B.Tech - CSE

Year 4

Expected Graduation 2024 (July)

mailto:tanishkhare@gmail.com
https://drive.google.com/file/d/1YpV_9dWpkjJ7qMu5Ia0eAKWQeuNIbddA/view?usp=sharing
https://bakaotaku.dev/
https://blog.bakaotaku.dev/
https://github.com/Tanish2002
https://twitter.com/baka_otaku2002

Motivation & Past Experience

1.​Have you worked on or contributed to a FOSS
project before? Can you attach repo links or
relevant PRs?
Indeed, I have made contributions to several Free and Open Source Software
(FOSS) projects. My contributions have mainly been on projects that I use
regularly and wanted particular features or where I ran into technical problems.
I have contributed in the following ways (aside from contributions to API Dash):

●​ Nixvim: A nix framework to configure neovim using the nix programming
language.

○​ plugins/catppuccin: add colorscheme + test
○​ add: added statix, deadnix, nixpkgs_fmt to null-ls sources
○​ feat: register mapping with no actions in which-key when enabled
○​ perform some statix linting and fixes
○​ plugins/toggleterm: init + test
○​ change type of pylsp_mypy.overrides

●​ Hyprland: A dynamic tiling Wayland compositor based on wlroots
○​ Add files for nix build

●​ Nixpkgs: Nix Packages collection & NixOS
○​ Imagemagick: add curl dependency

●​ Robbb: The main bot for the r/unixporn discord server!
○​ Add reason to ban reply message
○​ Modify nix Files
○​ send a different DM when ban reason contains "ice"
○​ reply when mentioned

2.​What is your project/achievement you are most
proud of? Why?
In my career, I've had a blast working on all kinds of projects. One of my
favorites was working on an app called SafeHer during the SMART India
Hackathon with my five awesome teammates. My responsibilities included
working on the backend development, in addition to contributing to frontend
development by assisting my teammates. We won the institutional level, but we
didn't quite make it to the regional level. Still, SafeHer is something I'm super
proud of.

https://github.com/nix-community/nixvim/pull/360
https://github.com/nix-community/nixvim/pull/372
https://github.com/nix-community/nixvim/pull/373
https://github.com/nix-community/nixvim/pull/376
https://github.com/nix-community/nixvim/pull/424
https://github.com/nix-community/nixvim/pull/833
https://github.com/hyprwm/Hyprland/pull/66
https://github.com/NixOS/nixpkgs/pull/161878
https://github.com/unixporn/robbb/pull/426
https://github.com/unixporn/robbb/pull/425
https://github.com/unixporn/robbb/pull/78
https://github.com/unixporn/robbb/pull/73

SafeHer is a mobile application focussed on the security and wellness of female
students on college campuses. It's got all sorts of features to keep them safe
and connected.
Here's the lowdown on the tech we used:

●​ React Native (Expo): The app's foundation
●​ Zustand: The state management library
●​ Python (FastAPI): The backend server
●​ Websockets: Real-time communication for chatrooms
●​ PostgreSQL: The database
●​ PineCone: For the chatbot

Features:
●​ Incident Reporting: Female students can report safety incidents, such as

harassment or emergencies, using the SOS button on the app. When an
incident is reported, the app collects incident details and the user's
real-time location.

●​ Emergency Contacts: Users can add up to five trusted friends or teachers
as emergency contacts within the app. When an incident is reported,
selected emergency contacts receive instant notifications.

●​ Real-Time Location Sharing: The app shares the user's real-time location
with emergency contacts, ensuring a swift response in case of an
emergency.

●​ Community Chat: For each reported incident, the app creates an
incident-specific chat room. Students can join the chat to provide support,
share information, and offer assistance to those affected.

●​ High-Risk Area Awareness: The app utilizes incident data to identify and
highlight campus areas with security concerns. A map feature shows
high-risk areas, raising awareness among users.

●​ FAQ Chatbot: The app includes a chatbot that answers frequently asked
questions related to safety. Users can quickly access information and
guidance on various safety topics.

See More: SafeHer

3.​What problems or challenges motivate you the most
to solve them?
Solving problems that involve automating repetitive or time-consuming tasks
gets my blood pumping. As a "lazy developer" (in the best way possible), I'm
always on the lookout for ways to streamline my workflow and make my life
easier. I believe that automation is a game-changer when it comes to efficiency

https://github.com/orgs/Context-Not-Found/repositories

and productivity, and I'm always excited to explore new ways to put it into
practice.

One of the automation projects I've successfully implemented is managing my
home multimedia setup. I've set up a home server that hosts a Jellyfin media
library. The system is fully automated to gather releases from preconfigured
sources, ensuring that whenever I search for a movie or series on my mobile
phone, it gets downloaded and made ready for viewing. The interface is
user-friendly, making it accessible even for my parents.

I carry the same ambitions for API Dash and believe some areas can be
automated which I will discuss further in the proposals section.

4.​Will you be working on GSoC full-time? If not, what
will you be studying or working on while working on
the project?
Sure, I am committed to working on API Dash until the end of the GSOC timeline
and beyond! But I wanted to let you know that I'm currently looking into
internships/jobs since I'm in my final year. If I find one, I'll be able to work on
the projects on the weekends otherwise I’m available all week.

Overall I plan to become a regular contributor who isn’t here just for GSoC.

5.​Do you mind regularly syncing up with the project
mentors?
Certainly not! I strongly believe regular sync-ups are essential to ensure that I
am working in the correct direction.

6.​What interests you the most about API Dash?
I got to know about API Dash through Google Summer of Code (GSOC), and I've
grown to like it after using it for a while. Coming from a backend-focused
background, an API testing tool is essential for me.

I've tried various tools like Postman, Insomnia, and Hoppscotch, each with its
pros and cons. What I appreciate about API Dash is its simple and intuitive UI.

Other options like Postman have a cluttered UI that's hard to look at, even with
the dark theme that's still grayish and just not great.

Another thing I love about API Dash is its built-in support for rendering different
types of data. It recognizes various MIME types like PDF and audio, allowing
users to view them directly within the client. Meanwhile, other clients typically
just spew out confusing binary gibberish.

7.​Can you mention some areas where the project can
be improved?
End-User Improvements

●​ Missing technologies: Websockets, Socket.IO, RPC
●​ Keyboard accessibility for opening panes, running requests, etc.
●​ Variables for setting up different environments

Developer/Maintainer Improvements

●​ CI Pipelines for testing.
●​ Pre-commit hooks.
●​ Improved documentation on a dedicated website (e.g. docs.apidash.dev)

Project Proposal #1
Title: Realtime API Testing Support - WebSocket, SSE, MQTT

Abstract
Testing protocols such as WebSocket, MQTT (Message Queuing Telemetry Transport),
and SSE (Server-Sent Events) are essential for ensuring reliability, scalability, and
security in real-time communication systems. These protocols are used in various
domains for multiple purposes, including web applications and IoT (Internet of Things)
devices. Various API clients, such as Postman and Insomnia, provide usable support for
Real-time API Testing. The goal of our project is to design the architecture of the core
library and understand the specifications necessary to implement support for testing,
visualization, and possible integration code generation of Real-time APIs in API Dash.

Right now, we can only support REST-style requests, like GET, POST, DELETE, etc. We're
using the "http" package to make these requests. For managing state in memory, we're
using Riverpod, and for managing state on the local disk, we're using Hive. We're also
planning to set up a similar configuration for WebSockets, Server-Sent Events (SSE),
and Message Queuing Telemetry Transport (MQTT) using libraries like "dart:io,"
"mqtt_client," and "sse." The primary goal of this project is to make sure that the
request models for these protocols are compatible with Riverpod and Hive.

Detailed Description
Currently, we’re utilizing the http package for making REST-type requests. We’ve also
created a RequestModel class which represents a REST request.

The main parts of the REST Request Model are these:

Variable Description

HTTPVerb method ●​ HTTP method of the request
●​ Can be GET, POST, DELETE,

etc

url URL of the API endpoint

name Name of the request shown in side
pannel

https://api.dart.dev/stable/3.3.0/dart-io/dart-io-library.html
https://pub.dev/packages/mqtt_client
https://pub.dev/packages/sse

description Description of the request.

requestHeaders List of Headers with name-value
pairs

requestParams List of Query Parameters with
name-value pairs

isHeaderEnabledList List of booleans representing
enabled Headers

isParamEnabledList List of booleans representing
enabled Params

requestBodyContentType ●​ Type of request
●​ Can be plain-text

●​ Can be json

requestBody Actual request body contents

requestFormDataList List of Form Items with name,
value and type.

responseStatus ●​ Response of the sent request
shown in UI.

●​ Can be 200, 400, 500, etc

I plan to create a similar request model separate from the original one in a new file
websocket_request_model.dart
An example request model for a WebSocket type request would look like this:

Variable Description

url URL of the API endpoint

name Name of the request shown in side
pannel

description Description of the request.

requestParams List of Query Parameters with
name-value pairs

isParamEnabledList List of booleans representing

enabled Parameters

messages ●​ List of messages that were
sent

●​ Will be a custom model
●​ This model will have 2

properties.
●​ String message_content

representing the actual
message contents

●​ Enum sender for determining
who sent the message, server
or user.

responseStatus ●​ This will be simple enum
representing the state of
request. It can be
Connected, Disconnected or
Failed.

●​ By default this will be
disconnected.

 Headers are absent here since they aren’t possible in Websockets.

Similar request models need to be created for SSE and MQTT.

I will then also create the necessary services. Like the current http_service using
packages like "dart:io," "mqtt_client," and "sse."

Finally, I want to document everything from time to time so it's easier for new
developers to learn how to implement a new protocol for new API types in the future
such as GRPC (which isn’t present at this time).

I have a clear idea for backend implementation with all the working bits.

For the Frontend I’ll be using Material UI with our current theme and following the
diagram shared by Ankit.

https://stackoverflow.com/a/4361358
https://github.com/foss42/apidash/blob/d7887246276a454c4a6f86f01e23e0eda0e6f7ba/lib/services/http_service.dart
https://api.dart.dev/stable/3.3.0/dart-io/dart-io-library.html
https://pub.dev/packages/mqtt_client
https://pub.dev/packages/sse

The actual implementation for WebSocket wouldn’t have Headers when connected
since that isn’t possible in Websockets.

https://stackoverflow.com/a/4361358

In Contrast, this is what Insomnia looks like:

For the request Body, it supports JSON and plain text which should be easy to
implement due to already present editor widgets.

It also has a Search Box in the responses panel, This can be handy for users trying to
filter out a large amount of messages. This can be implemented if needed.

MQTT and SSE have similar external workings as they share an endpoint and a request
body. The responses are streamed from the server. However, they have different
internal workings. Therefore, the UI implementation for each protocol would not differ
much.

I would also look into the possibility of implementing support for Socket.io which is built
on top of WebSockets and has neat features like auto reconnection, and polling when
upgrading to WebSocket fails.

In conclusion, this project will make a significant contribution to the comprehensive API
ecosystem by delivering novel protocols to end users of API Dash. Additionally, it will
serve as an invaluable resource for developers seeking to incorporate additional
protocols into API Dash or simply gain an understanding of the underlying mechanisms
of these protocols.

http://socket.io

Timeline

Weeks Dates Description

Week 1 May 27 - June 2 ●​ Planning the project with the mentors
●​ Discussing project deliverables with

mentors.
●​ Discuss the request models for each of the

protocols.
●​ Discuss the new constants that need to be

created in the consts.dart file

Week 2 June 3 - June 9 ●​ Start working on the WebSocket
implementation

●​ Create a WebSocket Manager class to
handle the connections, messages, and
failures.

●​ Write tests for this service.

Week 3 June 10 - June 16 ●​ Create a Request Model for WebSocket
Request.

●​ Integrate it with Hive and Riverpod
●​ Write tests for the Request Model

Week 4 June 17 - June 23 ●​ Start working on SSE Implementation
●​ Create an SSE Manager class that will

handle connections, messages, and failures
●​ Write tests for this service

Week 5 June 24 - June 30 ●​ Create a Request Model for WebSocket
Request.

●​ Integrate it with Hive and Riverpod
●​ Write tests for the Request Model

Week 6 July 1 - July 7 ●​ Start working on MQTT
●​ Create a MQTT Manager Class to handle

connections, messages, and failures.
●​ Write tests for this service

MID

TERM

EVALUATION

Week 7 July 12 - July 19 ●​ Start working on the front end.
●​ Create a Protocol Dropdown Button. Issue

#307

https://github.com/foss42/apidash/issues/307
https://github.com/foss42/apidash/issues/307

●​ Test the button for all different protocols

Week 8 July 19 - July 26 ●​ Start creating common widgets.
●​ Write Widgets that can be reused.
●​ Since all 3 protocols would have a similar

request body we can create a common
widget.

Week 9 July 26 - Aug 2 ●​ Keep creating common widgets
●​ A response widget would be created to

show the list of messages with an indicator
for the sender.

Week 10 Aug 3 - Aug 9 ●​ Modify the Side Panel to show the type of
request using Icons.

●​ Write tests for all created widgets.

Week 11 Aug 10 - Aug 16 ●​ Integrate all widgets for all different
protocols in screens.

●​ Test out the integrated final version
●​ Fix any bugs UI or backend-related.

Week 12 Aug 17 - Aug 23 ●​ Mark the PR ready for review.
●​ Apply any changes as required/asked.
●​ Possibly write some foundation for

CodeGen at least for websockets.
●​ Maintenance and Plan for future

developments.

	
	
	About
	University Info
	Motivation & Past Experience
	1.​Have you worked on or contributed to a FOSS project before? Can you attach repo links or relevant PRs?
	2.​What is your project/achievement you are most proud of? Why?
	3.​What problems or challenges motivate you the most to solve them?
	4.​Will you be working on GSoC full-time? If not, what will you be studying or working on while working on the project?
	5.​Do you mind regularly syncing up with the project mentors?
	6.​What interests you the most about API Dash?
	7.​Can you mention some areas where the project can be improved?

	Project Proposal #1
	Abstract
	Detailed Description
	
	Timeline

	

