
ELEC 3004 – Systems: Signals & Controls
Matlab - What does that even look like?

As you’ve learnt, signals can be odd or even, periodic or non-periodic. Most of the time you can tell

straight away what the signal will look like and hence what its characteristics are. Sometimes, however,

you may see a function that you cannot readily identify without a lot of intuition or a good piece of

software to graph it with.

First, some basics:

% Set the time – t = start:step_size:finish

% The smaller your step_size the more continuous the function will look when it’s plotted

t = 0:0.01:2*pi; % this makes a vector that is (2*pi – 0)/0.01 elements long.

% Pick a simple function, e.g. cos(t). The output is a vector the same length as t.

f = cos(t);

% Make a pretty picture!

plot(t, f);

Now for some slightly more complex functions. Say you have where .. If both and 𝑒𝑠𝑡 𝑠 = σ + 𝑗ω σ 𝑗ω

are not equal to zero, you will need to plot an exponential and cosine multiplied together, i.e. 𝑒σ𝑡𝑐𝑜𝑠(ω𝑡)
.You can do this with the following command:

% Using the same t vector as before

sig = -3; omega = 2; % you can put things on the same line if you separate them with a semi-colon

% the dot here is very important, it allows element-wise multiplication since exp and cos make

% separate vectors. Without it, Matlab throws an error.

g = exp(sig*t) .* cos(omega*t);

plot(t, g);

What if you’d like to compare the outcome of having positive and negative sigma, ? That’s where σ
subplot comes in handy.

% Subplot takes the form: subplot(numOfRows, numOfCol, currentPos), e.g. subplot(1,2,1) makes

% two plots side by side and subplot(2,1,1) makes two plots stacked on top of each other. Try the

% following:

subplot(1,2,1);

ezplot(‘exp(-t)*cos(5*t)’); % note: you don’t need the dot because ezplot takes a string and

% interprets the variables (t in this case) for you – no need to set up a vector of time values!

subplot(1,2,2);

ezplot(‘exp(t)*cos(5*t)’); % added the 5*t to make it extra jiggly!

This is the result! Notice how the function with a negative sigma value is the one that is stable?

Lastly, you may want to plot a discrete function. Essentially, every plot in Matlab is discrete (since it is a

digital program) but the ‘sampling rate’ (step size between time values) is so high that the functions look

continuous. So in that sense, to make a function that looks more like a discrete function, you set your

own step size to be a bit larger than usual and use the command ‘stem()’.

% A ‘sampled’ cosine wave

n = 0:0.2:2*pi;

f = cos(n);

stem(n, f);

You can plot several of these together on one plot using the command ‘hold on’, like this:

% Add this bit to the end of the code snippet above for a discrete cosine wave

hold on;

f2 = sin(n);

stem(n, f2, ‘r-‘); % to make a red sine wave

The result is this! Now that you can combine waves on the same graph, you can use this method for

graphing the superposition of two linear signals!

