
Adopting SLIs and SLOs for internal cloud platform

- Adopting SLIs and SLOs for internal cloud platform

- The What?

- The Why?

- The How?
- Step -1: Start with understanding your user.
- Step -2: Use simple English
- Step -3: Define Capabilities of your service.
- Step -4: Abstract SLIs assuming perfect metrics are existing.
- Step -5: List down any dependencies
- Step -6: Define SLOs
- Step -7: Iterate and Tune

- Further reading (in no particular order ) — 

The What?

As part of our tech goals for the last four months, we aimed to establish SLOs/SLIs for our
internal compute platform that uses Amazon EKS for the backend. We call it Infinity for the
reason that it scales automatically with respect to the incoming traffic without limitations so our
users don’t have to care about the resources allocation. Infinity runs 100s of different microservice
applications for our product engineering teams. It enables our builders to run their applications
reliably and securely at scale, without worrying about the complexities of cloud infrastructure
setup of AWS. As a platform engineering team, our main focus is to increase developer
productivity and improve the developer experience. Applications/services deployed to Infinity get
default configuration out of the box. For example, efficient traffic load balancing, human
readable DNS records, centralized log events, application monitoring, tracing and many more.

If you are unfamiliar with the concept of SLO/SLI/SLAs here is a brief overview of how they are
defined:

SLIs SLOs SLAs

Service Level indicators
represent the measurement
to determine the availability of
the
systems/service/application

Service Level Objectives
informed by SLIs are the
goals we set for how much
target availability we expect
of a
system/service/application

Service Level Agreement are
the legal contracts that we
promise to our user that
explains what happens if the
system doesn’t meet its
target SLO

X should be true.. Y times.. Or else..



The Why?

At Scout24, one of our core engineering values is having reliable systems that promises our
users (internal product engineering teams) to have trust in the products provided by the
application-platform team. Adopting SLIs and SLOs for all application-platform products and
making it transparent to our builders shows our commitments to build reliable products without
sacrificing the developing velocity and is an indicative of the product's health. Making these
promises available to our users also helps in reducing the cognitive overload on platform teams
whether to focus on a feature request(development) or work on operation stability of the system.
Aannndddd, it's cool too :)

About application-platform.

We, at Scout24, provide useful and usable products and guidance around internal
tooling like compute platform, CI/CD, observability, persistence, storage, traffic, and
resource management that enables Scout24 product engineering teams to
efficiently build, deploy, and run secure & reliable applications at scale.

Tech stack and languages we use — AWS, EKS, CDK, Jenkins, Aurora Postgres and MySQL,
Datadog, Kibana, Typescript, Golang, python,

If this excites you to work for us, please have a look at our open positions here and apply right
away!

When we started on this journey of defining the service levels for our internal users, it was a bit
of an effort on the ‘how-to’ part as we couldn’t find any help in the market who could guide us in
defining SLOs for internal compute platform. Questions like what does a service mean for our
users? How much availability can we strive for? How to derive the availability of systems that we
are dependent on were challenging?

Infinity runs ~700 microservice applications for more than 50 teams (at the time of writing this
blog) and is the recommended compute solution at Scout24. As mentioned earlier, Scout24’s
best practices are baked inside infinity and our product engineering team’s leverage those out of
the box. For example, best practices of standard way of stage naming, monitoring dashboards,
alerting, SLO dashboards, and ways of logging at Scout24. With all the batteries included,
Infinity becomes a business ‘critical’ service which in case of any incident will have major
customer impact and potential loss of business revenue for Scout24. Hence, it is imperative for
application-platform team to keep infinity’s operations flawless and promise our users with
highest safety and reliability.

https://www.scout24.com/en/career/jobs?q=&location=&department=Engineering&company=


The How?

We started with a simple recipe laid out by our observability team in defining right SLIs and
SLOs.

Here is the link to the template that you can use to run a small workshop with your team (Put a
link to the miro board as a template to define SLI/SLO)

Step -1: Start with understanding your user. What do they use your service for? What matters
most to them? What kind of guarantees do they expect? Decide clearly who the “users” are for
your service. These are the people whose happiness you are optimizing.

Some examples for Infinity in this case would be, ease of deployments, any updates to the
service should not bring any downtime. In terms of guarantees we think our users expect the
ability to deploy a service in x minutes, their service is running on a stable and secure platform(a
good night sleep and no alarms for on-call), service has logs to check when an incident
happens and so on.

It is highly recommended that your users also participate in this workshop when you are defining
what your “service” means to your users.



Step -2: Use plain/simple English to define what your service is for your user, skip the technical
details.

Step -3: Define Capabilities of your service. These are the abilities that your service is capable
of doing for your user. Consider, what are different ways/activities your users interact with your
service/system to get their job done. For infinity(our internal compute platform), these
capabilities would be defined as, ability to create/update a service, a user is able to deploy their
applications without errors, different services running on infinity are able to connect to each
other, the services deployed are secure and free from risk of attacks from internet, service is
able to scale up and down based on the incoming traffic.

Step -4: Abstract SLIs assuming perfect metrics are existing. In order to get a good start on
defining the SLI, you can formulate your capabilities under following categories -

1. Request/Response.
● Availability : the proportion of valid requests served successfully
● Latency: the proportion of valid requests served faster than a threshold
● Quality: the proportion of valid requests served without degrading service quality

2. Data processing

● Coverage: the proportion of valid data processed successfully
● Freshness: the proportion of valid data updated more recently than a threshold
● Correctness: the proportion of valid data producing correct output

3. Storage



● Durability: the proportion of written data that can be successfully re-read

From Infinity’s capabilities and the expectations from users, we concluded that only ‘availability’
and ‘latency’ for request/response types SLOs could be abstracted.

Our abstracted SLIs for Availability and Latency are defined as follows -

Availability — 

1. ratio of healthy containers (which are being able to service traffic)to the desired
containers(needed by the application, determined by the autoscaling group). This
provides a good snapshot of availability of a service/application running on infinity, i.e.
are services up and able to serve traffic.

Metrics used are

a= kubernetes_state.deployment.replicas_desired per cluster as sum, and b=
aws.applicationelb.healthy_host_count per cluster as sum.

resulting equation = a / b *100 yielded the desired result.

2. ratio of successful cloudformation(cfn) response to valid cloudformation(cfn) requests. Our
users only create services using AWS cloudformation custom::resource. We can determine
failing cloudformation requests by the status of the cloudformation stack and what error
message is generated. This helps us differentiate between errors caused by Infinity and errors
caused by AWS.

At Scout24, we use datadog as our monitoring tool and alert for non AWS metrics. All metrics
mentioned in this blog are datadog metrics. For sake of simplicity, the jargon in the following
metrics are simplified. For example, “infinity” is renamed from “i6y” as the actual metric we push
from infinity(our compute platform) to datadog.

If you use other monitoring tools, your metrics might look different.

Metrics used are -

a= infinity.cloudformation_response.count and sum it for all EKS clusters and
response_type:success

b= infinity.cloudformation_response.count and sum it for all EKS clusters and
response_type:user_error

c =infinity.cloudformation_request.count and sum it for all EKS clusters and valid:true

resulting equation = [(a + b)/c x 100] yielded the desired result.

Latency — 

https://kubernetes.io/docs/concepts/containers/_print/
https://kubernetes.io/docs/concepts/containers/_print/
https://kubernetes.io/docs/concepts/containers/_print/
https://docs.aws.amazon.com/eks/latest/userguide/autoscaling.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html


1. Proportion of services created and updated successfully. In order to learn about service
latency, we separated the deploymentDuration during each operation: creation, updating,
and deleting a service.

Metrics used are -

a= sum:infinity.cfn-interface-service_latency from{resource_status:ready, !service_name:inf*}
and sum by aws_account_name

b =sum:infinity.cfn-interface service_latency from {!service_name:inf*} and sum by
aws_account_name

resulting equation = [(a / b) * 100] yielded the desired result.

Step -5: List down any dependencies your service/application/system is dependent on

Start by listing each of your dependencies and their SLOs. If one of your dependencies has a
certain SLO, you can’t guarantee anything higher than that without building fault tolerance to
handle failures in that dependency. In our case, our only dependency was AWS’ availability and
at the time of writing, we couldn’t abstract the guarantees from them. In such a case, where
your dependency doesn’t have any SLO, our suggestion is to track and monitor that
dependency availability yourself and what you expect from it. This will help you understand how
available it is.

Before, we show you how the final metrics look like, a note on how the SLOs are generated and
where the metrics are stored.

In Scout24, we utilize something called service catalog, a centralized inventory of metadata and
information about services and products. It provides easy access to information related to who
owns what inside Scout24 by centralizing and standardizing information about the different
services and organizations. Once you define the metrics and how to calculate, we put the
calculation metrics inside a yaml file which is stored in our service-catalog which then automatically
creates a SLO dashboard out of the box as shown below.



Step -6: Define SLOs

SLOs as stated earlier are the objective that you promise to your user about your service.
Hence, the whole team needs to agree on these objectives before committing to the users. We
also suggest not using the target based on current performance because in that case it might
lead you to have a service that needs constant reliability work just to keep within its target. We
observed the target objective for ~3 months to get the baseline.

It’s better to start with a lower target and increase it later than to loosen it later when
you find the target is unattainable.

Our final SLOs defined and published looks like this -

(I will put a Gist from github instead of this screenshot when publishing in medium)

At Scout24, we use datadog as our monitoring tool and alerts for non AWS metrics. All metrics
mentioned above are datadog metrics. If you use other monitoring tools, your metrics might look
different.

Step -7: Iterate and Tune

The first definition of the SLIs and SLOs aren’t set in stone. They are meant to create a
feedback loop with your users and monitor the health of your applications. They are a reliability
commitment long term goals that are indicative of where you should invest your resources.

In case you breach your SLOs first time after defining, go back to the drawing board and see
where you missed what and iterate over. ;)

If you have any feedback or questions, feel free to reach out to us or write to us here. Follow us
for more updates as we will be posting more exciting things we do at application-platform.

Happy SLOing and stay tuned!



Further reading (in no particular order ) — 

SLO workshop—
https://www.usenix.org/sites/default/files/conference/protected-files/srecon18emea_slides_fong-j
ones.pdf

SLO overview from New
relic — https://newrelic.com/blog/best-practices/best-practices-for-setting-slos-and-slis-for-moder
n-complex-systems

Implementing SLOs by Google — https://sre.google/workbook/implementing-slos/

A guide to service level objectives
-https://www.circonus.com/2018/07/a-guide-to-service-level-objectives/

https://www.usenix.org/sites/default/files/conference/protected-files/srecon18emea_slides_fong-jones.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/srecon18emea_slides_fong-jones.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/srecon18emea_slides_fong-jones.pdf
https://newrelic.com/blog/best-practices/best-practices-for-setting-slos-and-slis-for-modern-complex-systems
https://newrelic.com/blog/best-practices/best-practices-for-setting-slos-and-slis-for-modern-complex-systems
https://sre.google/workbook/implementing-slos/
https://www.circonus.com/2018/07/a-guide-to-service-level-objectives/

