

2024년09월02일 (월, 1/4일차)

●​ 0. 강의 소개
○​ (1) 강의 일정

■​

■​

■​

■​
○​ (2) 시간관련.

■​ 45분 수업, 15분 휴식
■​ 점심시간 11:30~13시
■​ 종료시간 16:20~30분 사이
■​ => 대신, 9시 정각에 시작, 매시간 정각에 시작.

○​ (3) 설문조사
■​ 임베디드 C 기초 이해도 설문

●​ https://forms.gle/cKRfCEsM7JqzixvG8
■​ 임베디드 시스템 SW-HW 프로그래밍 이해도 설문

●​ https://forms.gle/5hS3dR4iY1rKV8A9A

https://forms.gle/cKRfCEsM7JqzixvG8
https://forms.gle/5hS3dR4iY1rKV8A9A

■​ 임베디드 리눅스 활용정도
●​ https://forms.gle/tjAsUGf2XoNHE92NA
●​

●​ 1. 임베디드 시스템/소프트웨어 개론
○​ (1) 임베디드란?

■​ Firmware의 의미
●​ Software가 반도체 (flash)에 한번 다운로드

(programming)되고 나면
○​ 더이상 지워지지 않고 단단하게 남아 있다는 의미.

●​ => 하지만, 지워질수 있음 (retention 특성)
○​ 반드시 firmware. erase이슈를 대비하여 self

check해주어야 함.
■​ Embedded의 의미

●​
●​ 1. main cpu (프로세서)
●​ 2. 메모리 Embedded (이게 가장 중요한 block임)

○​ 썼다 지웠다 할 수 있는 Data Memory (SRAM)
○​ 한번 쓰면 안지워지는 Code Memory (Flash)
○​ => 크기, 스피드, 대역폭, 신뢰성 특성. -> 시스템
특성을 좌우함.

●​ 3. Digital 회로 (HW)
○​ timer, gpio
○​ spi, uart, i2c, can, lin

●​ 4. Analog회로 (CKT)
○​ power
○​ ADC
○​ DAC

●​ => 아날로그회로, 디지털회로, 메모리를 하나로 집적 +
소프트웨어

○​ => 칩 내부에 flash메모리에 적재되면, firmware가
된다.

○​ => System on chip -> Software on chip/systems
■​ OS는 사용자 Application과 하드웨어장치를 decoupling함.

●​ 사용자 코드 개발할 당시 장치에 대한 명시적인 코드 구현이
필요없고, 코드에서 포함되어선 안된다

https://forms.gle/tjAsUGf2XoNHE92NA

○​
○​ OS는 사용자에게는 cpu와 메모리 자원 가상화를 제공

(멀티 프로세스), 그리고 내장 하드웨어 장치 접근위한
추상화를 제공

■​ (디바이스 드라이버를 별도로 설치함으로써
특정 칩을 지원하는 기능을 포함한 커널이 되어
기능이 확장되는 효과.)

■​ (주변장치 가상화까진 안됨, 이건
하이퍼바이져에서 구현함)

●​ 리눅스 OS로 제어시스템 구현시 커널 동작 이해 필요한 이유.
○​ Application이 직접 장치를 제어하는게 아니라
○​ O/S가 대신 장치에 접근해서 제어하므로.
○​ 내 프로그램의 특성에 의해 전체 동작이 결정되지
않으므로

○​ O/S 커널의 동작에 대한 이해를 바탕으로 원하는 성능
특성이 나오도록 Kernel-Aware 사용자 코드를 잘
작성해야 함. (주로 멀티 프로세스, 멀티 쓰레드
스케쥴링 연동동작시)

○​
○​ (2) 임베디드 코드 실행을 위한 내장 HW support

■​ 프로그램에 접근하는 방식 (주소 접근방식의 차이)에 의해 임베디드
MCU기반 제어시스템과 임베디드 OS(리눅스)기반 제어 시스템간
차이가 존재 (MMU와 캐쉬의 필요성)

■​ OS기반 시스템에서는.. 아래와 같다.

■​
■​ 1. 컴파일/링킹 단계에서 물리 영역이 아닌 가상 주소 영역을
대상으로 프로그램 이미지 생성.

●​ 런타임에 프로그램을 링킹해서 메모리에 동적배치하고 그
위치를 O/S에 알리면, OS는 다시 MMU내장하드웨어를
제어해줌.

●​ 실제 프로그램을 실행할때는 물리 메모리의 주소 영역에
배치될 것이므로 가상 주소로부터 실제 그 주소로 접근하기
위한 주소 변환기 필요 (MMU필요성)

■​ 2. flash메모리 접근이 아니라, 캐쉬로 먼저 불러들이고 간접 접근
방식

●​ 물리 flash memory -> ram 매핑을 캐쉬 컨트롤러가
하드웨어적으로 함. (캐쉬매핑)

●​ OS구동이 되려면 flash와 cpu속도 갭을 극복해야 함
(캐쉬필요성.)

●​ 캐쉬 hit/miss에 의해 제어 특성이 nondeterministic한 특성을
보임

●​ => 일관된 특성을 보이도록 커널과 잘 결합된 사용자
프로그램을 개발해야 함.

○​ (3) 임베디드 SW 실행방식 차이
■​ 1. single process

●​ function call형태로 코드가 보여도 결국은 single flow
실행특성을 보이는 single process동작임.

●​

■​ 2. single process + HW interrupt에 의한 callback 병행처리
(이러한 함수를 ISR이라고 하고 HW Task라고도 한다)

●​
■​ 3. single process + HW interrupt + SW interrupt 에 의한

callback 병행처리

●​
●​ SW적으로 RTOS에서 call하는 task를 SW task라고 함.
●​ RTOS 쪽에서 이야기하는 RT Task라고도 함.
●​ HW ISR및 SW Task모두 병행처리 방식으로 콜백됨

○​ 1. HW Task (ISR)은 interrupt controller에 의해
런타임에 분기 (우선순위, 발생시점에 따라)

■​ 하드웨어적 context switching
○​ 2. SW task (소위 task)는 내장 RTOS같은 소프트웨어
여러 policy에 따라 중요한 task순을 async.한 시점에
병행 호출함.

■​ RTOS내부에서 sw기반 context switching함.

■​ 4. OS기반 동적 프로그램 invoke

●​
●​ 컴파일/링킹 할때는 어차피 어느 물리 메모리 영역에 배치될지
모르므로 정적링킹은 의미가없음

●​ 32비트 주소라면 4G영역을 다 쓸수 있다고 가정하고 그
영역에 컴파일러가 자동으로 배치/컴파일/링킹.

●​ 이후에 물리 메모리에 로딩될때 빈땅을 찾고 그영역에
배치될수 있도록 프로그램 이미지를 동적 링킹

●​ 링킹결과로 결정된 주소를 바탕으로 OS및 내장 MMU에
위치정보를 기록.

●​ cpu는 무작정 가상메모리 대상으로 컴파일된 코드 이미지를
직접 실행. -> 코드 실행, 점프 위치는 컴파일할때 그 주소를
그대로 사용

●​ 메모리 접근을 할때 MMU회로가 그주소를 가로채서, 물리
주소 영역으로 변환함.

●​ MMU 주소 번역 매핑 테이블은 유한하므로 프로세스가
많아지만 O/S가 지속적으로 MMU변환테이블을
backup/restore해야 함 (==> 그 유명한 page fault 현상임)

●​ 2. 리눅스 환경설치
○​ (1) 저장소 개념 (github)

■​ 저장소 버전 컨트롤 개념에서 가장 중요한 것.

●​

●​
●​ 반드시, 작업하기 전에, 서버에 있는 내용으로 최신화 해야 함.

○​ 다른 동료가 작업후 커밋(푸쉬)를 하면 서버는 버전이
한개 올라가고 (더 최신화 됨)

○​ 내가 작업한것을 서버로 커밋 (푸시)하기 전에 다른
동료가 먼저 커밋하면, 그내용을 통합한뒤 나의 코드에
문제가 있는것은 내가 고쳐야 할 책임이 있다.

●​ 메일이나 알람이 오면, 반드시, 내용을 면밀히 파악하고
○​ 그 코드가 현재 내가 작업중인 코드와 conflict나는지
여부를 파악해야 한다.

○​ 서버 -> 내 컴퓨터 (로컬)로 update (또는 pull) 한 뒤
내가 작업중인 코드와 결합해서 동작해보면서 side
effect가 없는지 파악해야 한다.

■​ 차량별, 업체별(협력) 통합 개발시 처리 프로세스 정리
●​ 1. 파일 분리
●​ 2. 파일 내부 함수 분리
●​ 3. 컴파일된 이미지 링킹 단계 분리.

○​ => 분리된 로직들이 버젼컨트롤 시스템에서 유연하게
통합되도록 소프트웨어 아키텍처 설계가 필요함.

■​ 깃허브 가입 및 이메일 기록
●​ https://docs.google.com/spreadsheets/d/1ywRwsH2G2KSX2H

4MCebp0KUMAasIuj91QCndgxgEPSg/edit?usp=sharing
■​ 깃허브 저장소 링크

●​ https://github.com/AI-SoC/EMLINUX_20240902
○​ (2) 리눅스 설치 및 환경설정

■​ OS와 사용자 애플리케이션을 포함한 이미지 생성
■​ 1. Yocto

●​ OS와 애플리케이션을 크로스 컴파일러를 이용하여 완전한
빌드, 단독 실행 코드 이미지 생성하기 (MCU에서 F/W개발과
비슷함)

○​ 아직 타겟보드에서 실행가능한 네이트브 컴파일러를
포팅하지 못한 단계

○​ 필요한 패키지만 선별적으로 골라서 OS 에 탑재하고
싶을때.

https://docs.google.com/spreadsheets/d/1ywRwsH2G2KSX2H4MCebp0KUMAasIuj91QCndgxgEPSg/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1ywRwsH2G2KSX2H4MCebp0KUMAasIuj91QCndgxgEPSg/edit?usp=sharing
https://github.com/AI-SoC/EMLINUX_20240902

●​
■​ 2. 배포판

●​ OS 이미지 생성과, 사용자 애플리케이션 개발을분리
○​ 타겟 보드에서 실행가능한 네이티브 컴파일러 포팅이
선행되어야 함.

○​ 이미 준비된 OS 배포판을 그대로 사용하므로 바로
사용가능하나 불필요한 패키지 많아서 무거움

●​
○​ (3) 리눅스 부팅 및 서버 접속

■​ 1. OS를 메모리에 적재 (부팅)

●​

■​ 2. 리눅스 보드에 터미널을 이용한 접근

●​
●​ 타겟보드에 ssh 데몬이 떠 있고 이후에 내부 쉘 프로그램을
구동하여 OS와 인터페이싱 한다.

●​
○​ (4) 리눅스 보드 인터넷 접속 설정

■​ PC의 인터넷 기능을 이용하여 외부 접속하도록 설정
●​ 즉 PC를 유선 공유기로 만들기.

■​
○​ (5) 원격 개발환경 구축

■​ 편집한 코드를 sftp등으로 타겟보드로 일일이 옮길 필요없게함.
■​ 마치 타겟보드의 자원 (파일시스템)이 로컬 컴퓨터에 매핑되는 효과

■​

■​
○​ (6) 저장소 clone (예제 다운)

■​
○​

●​ 3. 프로그램 빌드
○​ (1) volatile

■​ 특정 메모리 영역에 대해서 명시적으로 memory I/O를 하도록
강제하는것.

■​ 어떤 값이 있을 것이라고 예상되더라도, 불필요해보이지만 메모리
주소에 매핑된 하드웨어 장치에 직접 접근해서 읽어오도록 함

■​ => SW에 의해 어떤 값을 overwrite하지 않더라도 volatile하게
스스로 값이 바뀔 가능성이 있으므로, 직접 읽어보기 전까지는 어떤
값이라고 단정지을 수 없다. 따라서 반드시 해당 메모리 영역에 직접
접근해서 읽는 코드가 생성된다.

■​
○​ (2) static vs dynamic linking기반 image생성

■​ 1. static 실행 이미지 생성
●​ 모든 서브 루틴 함수를 single standalone 프로그램 이미지에
모두 적재.

●​ 컴파일 링킹되고나면, 더이상 하위 코드 object,lib 필요없음
●​ 컴파일/링킹단계에서 결정된 주소공간에 프로그램 이미지가
반드시 적재되어야 함

●​
■​ 2. dynamic 동적 적재 실행 이미지 생성

●​ 컴파일/링킹할때는 하위함수 라이브러리 불필요함
●​ 프로그램이 실행될때, 동적라이브러로 구현된 파일이 런타임
링킹되어 메모리에 적재됨.

●​
●​ 동적 링킹 원리를 잘 활용하면 런타임에 다양한 기능으로
확장,변경이 용이해짐 (OTA에서)

●​
○​

2024년09월03일 (화, 2/4일차)

●​ 1. OS 기반 SW실행원리
○​ (1) 분산제어

■​ 각 엣지 장치에 독립적인 F/W를 탑재
■​ 엣지간 연동을 하는 코드가 각 디바이스에 상호 탑재됨.

●​ 하나의 엣지가 추가되면 상호간 고려를 어느정도 해야 함.
■​ inner control loop과 계층적으로 중첩되면서, 복잡도가 올라갈수도
있음.

■​
○​ (2) 중앙제어

■​ big & little구조로 비대칭으로 아키텍처를 구성
■​ 제어 알고리즘, 신호처리등, 순수 로직과, 로레벨 제어 장치를 분리함.

●​ 업데이트가 필요한 것과, 거의 변화가 필요없는
통신/구동정도만 하는것으로 분리.

■​ 멀티 테스크/멀티 프로세스 관리 측면의 코드를 순수한
C알고리즘으로 분리해서 제어가능.

■​
○​ (3) 가상메모리 기반 SW 이미지 생성 및 실행

■​ 엣지 제어 장치의 처리 task가 유한하다면 아래처럼 정적 링킹해서
SW실행해도 무방함.

■​ 해당 서브루틴이 가끔 실행한다면 포함된 코드들은 사용이 거의되지
않고 메모리 땅만 차지함.

■​
■​ 런타임에

■​

○​ (4) single process + multi-tasks

■​
○​ (5) multi-process가 효과가 있는 이유

■​
○​ (6) multi-process + multi-threads(tasks)

■​

●​ 2. standard library
○​ (1) 장치를 파일로 추상화

■​ 파일을 대상으로 모든 알고리즘을 구현하도록 함으로써
■​ 장치에 의존적이지 않는 코드를 구현하도록 유도함.

■​
○​ (2) 각각 실행중인 프로세스와 장치를 파일 인터페이스로
분리

■​ 추상적인 파일을 대상으로 각 프로세스는 자기의 일들을 수행
●​ 예를 들어, 파일을 읽고 쓰는 행위에 의한 접근 위치를 각
프로세스마다 독립적으로 가지고 있을 수 있다.

■​ 처리대상이 되는 장치를 파일로 투명하게 바라볼수 있으므로, 그
장치가 실제어 어디에 매핑되어 있는지는 사용자 코드에서 고려할
필요없다.

●​ 예) 파일이 HDD몇번에 있는지 물리 주소를 고려하여 읽는
코드가 사용자 수준 코드에는 없음

●​ 예) 읽고 쓰는 대상이 HDD이던지, UART, I2C, CAN이던지
상관없이 읽고 쓰는 행위를 하는 코드는 똑같다.

■​
○​ (3) 볼록 단위로 파일 접근, 바이너리 데이타로 관리

■​ txt로 ascii로 관리하지 않고, 바이너리로 블록단위로 관리하면
편리한 이유

●​ 각 필드마다 고정된 구획을 나누어서 데이타를 읽고/쓰므로.

●​ 특정 위치에 값을 교체 삭제, 추가 등이 용이하다
■​ 만약 텍스토로 값을 쓰고 읽는다면

●​ 데이타간 경계를 파싱해서 찾고 교체할려고 하면 교체 값의
크기에 따라 다른 영역의 데이타까지 다시 rewrite해야한다.

■​

■​
○​ (4) 장치 접근 (R/W)에서 속도 차이에 대한 고려 불필요

■​ 장치에서 읽을때 프로세스 실행 빈도/주기가 길어서, 자주 cpu타임을
할당받지 못하면, 장치에서 읽어서 버퍼에 쌓이는속도가 빠르다면 ??

●​ 자동으로 O/S callback에서 지연을 시켜주어서 버퍼 오버런이
방지됨

●​ MCU F/W코딩할때는 항상 버퍼 오버런/언더런 방지를 위해
flag채크를 해야 하는데, 임베디드 리눅스에선 불필요함.

■​ 장치로 데이타를 쓸때도 마찬가지
●​ 완전하게 버퍼에 채워진 값이 장치로 나가기 전까지는 사용자
영역으로 콜백이 되지 않음.’ 자연스럽게 싱크가 맞아짐.

■​

●​ 3. system call을 이용한 OS를 통한 HW접근
○​ (1) 반드시 system call을 통한, OS내부에 정의된 콜백을
통해서만 내장 하드웨어제 접근 가능함

■​
○​ (2) 실행중인 커널에 어떠한 요청을 하는 핵심원리

■​ 1. 온칩 레지스터/스택을 경유한 argument passing
■​ 2. trap을 통한 SW인터럽트 발생
■​ 3. sw 인터럽트 백터 개념의 콜백.

■​

●​ 4. concurrent SW 실행원리 (멀티 프로세스, 멀티 쓰레드)
○​ (1) SW 실행흐름 차이

■​
○​ (2) PC (program counter)의 이동을 통한 병행 SW실행

■​ macro하게 보면 process간 실행 위치가 이동
■​ micro하게 보면 thread간 실행 위치 이동함

■​
○​ (3) 어떻게 실행중인 프로그램 내부에 특정함수를 호출할 수
있을까 ??

■​ SW 인터럽트 발생시
■​ CPU는 약속된 위치에 있는 값 (콜백될 함수의 주소가 부팅할때
저장되어 있음)을 읽어서

■​ PC에 overwrite함으로써 자연스럽게 커널내부의 특정함수로 점프함
(시스템 콜이 되는 원리)

■​

●​ 5. 파일시스템
○​ (1) 파일시스템의 필요성

■​ 파일 크기는 서로 다르고, 삭제, 삽입, 심지어 크기가 변하는 환경에서
■​ 주어진 연속적인 저장공간의 집합을 효율적으로 사용할려면.
■​ 포인터의 자료구조 집합으로 구현해야 함.

■​
○​ (2) 저장된 파일과 그것을 사용하는 process를 독립적으로
관리

■​ 여러개의 process도 동시에 특정 파일에 접근할 수 있도록. 파일을
open하면 그정보를 커널 내부에서 로딩.

■​ 접근 위치도 각 프로세스마다 따로따로 관리함.

■​

●​ 6. 파일(모든 장치)에 대한 공유영역 관리.
○​ (1) race condition 및 lock의 필요성.

■​
○​ (2) 파일뿐만 아니라 모든 장치에 대해 일관적인 공유문제
처리가능

■​ 앞으로 내장 하드웨어 장치도 모두 디바이스 드라이버를 구현해서
파일로 추상화하므로

■​ 장치에 접근하는 다양한 프로세스들의 동시 접근에 의한 공유문제도
동일한 lock 시스템 콜을 통해 관리가 가능해짐.

■​ 파일 전체(장치전체) 또는 장치의 일부영역만 lock할수 있음

■​
○​ (3) lock.영역에 접근시 wait polling 하지 않음.

■​
■​ 1. 어떤 프로세스가 open 시스템 콜을 통해 장치에 접근했는데

lock이 되어 있다면.
■​ 2. 커널은 해당 프로세스를 별도 테이블에 기록함. (먼저 온 순서대로)

●​ 프로세스는, lock풀릴때까지 polling하지 않음,sleep상태로 감.
●​ 즉 커널은 lock 대기중인 프로세스를 라운드로빈 방식으로
번갈아가면서 cpu타임을 할당할 대상에서 빼버림.

■​ 3. 해당영역이 lock이 풀리면 그때 커널이 확인후, 가장 먼저 이
영역에 접근하기로 예약한 프로세스를 wake up시켜줌

●​ 깨어난 프로세스는. 즉각 해당 파일을 lock을 해서 소유권
취득함.

2024년09월04일 (수, 3/4일차)

●​ 1. 프로세스(자식) 생성 .
○​ (1) fork() 시스템콜을 통한 프로세스 생성

■​ 부모 프로세스의 메모리 공간의 값(상태값)을 모두 자식으로 복제함.
■​ 따라서 자식 프로세스의 실행위치도 fork()다음이 됨, fork()다음
줄부터 프로그램이 시작됨 (fork이전까지 흘러오면서 생긴 메모리
값도 그대로 유지)

●​
■​ fork() 함수는 자식 프로세스의 ID를 반환함.

●​ 따라서 부모 프로세스는 자식 프로세스 ID를 리턴받는 반면
●​ 자식프로세스는 태어나자마자 내 자식이 없으므로 당연히

ID값은 0이 됨.
■​ 그래서 아래처럼 코딩하면. 내가 자식인지 부모인지 파악할 수 있음.

●​
○​ (2) 부모 프로세스와 자식프로세스는 concurrent하게 코드
진행됨

■​

●​ 2. 프로세스(새로운) 생성 .
○​ (1) 자신을 새로운 프로세스로 대체함.

■​

○​ (2) fork()와 exec()를 결합해서 프로세스 생성.
■​ fork()를 통해 자식 프로세스를 위한 메모리 공간, 프로세스 리스트를
생성하고

■​ 부모의 인생이 아닌 자신만의 인생을 살아가게 해줌.
■​ 부모는 여전히 자신의 인생을 살아감.

■​
○​ (3) 프로세스의 실행결과를 다른 프로세스로 전달.

■​ 장치를 파일로 바라보는 것처럼
■​ 입출력(데이타)도 파일 스트림으로 추상화한다.
■​ 따라서 프로그램의 실행결과를 printf등으로 출력하고

●​ 이때 출력이 어떤 대상으로 전달할지를 고려해서 프로그램에
녹이지 않음

■​ 실제 printf로 출력된 데이타가 어디로 전달될지를 바깥에서 파일
스트림 redirect로 조정.

■​
○​ fd 대상은 화면, uart, 장치등 다양하게 변경가능.

●​ 3. 멀티 프로세스를 동시에 실행시키는 원리.
○​ (1) 사용자 프로세스와 커널프로세스

■​ 사용자 프로세스간 번갈아가면서 cpu 시간을 할당받는다.
■​ 커널도 주기적으로 cpu타임을 할당받아서, 사용자 프로세스를 cpu에
배정함 (스케쥴링)

■​ 하나의 사용자 프로세스 내부에서도 커널 시스템 콜을 통해
커널모드로 동작한다.

■​
○​ (2) 프로세스의 상태변환.

■​ 다음상태로, 변화하며, 실행상태일때 프로세스는 cpu에 배정된다

■​
■​ 실행대기(가능)상태

●​ 프로세스가 여전히 할일이 남았고,
●​ 멈추지 않고 계속해서 cpu타임을 할당받는게 유리한데,
●​ 각 프로세스간 균등한 서비스 타임을 할당해주기 위해,
●​ 강제로, 멈추고 다른 프로세스를 cpu에 할당하기 위해 잠시
실행대기상태로 전환시킴 (강제로 밀려나는것)

■​ 슬립상태
●​ 외부 장치 I/O등을 기다리기때문에 더이상 cpu가 할일은 없기
때문에

●​ 스스로 슬립상태로 전환되는것이 맞음.
●​ 그래서 그래서 커널이 관리할 프로세스, 즉 cpu 타임을 할당할
프로세스의 숫자를 줄임.

●​ 슬립상태에 있다가 I/O준비를 완료하면, 이벤트가 발생하고
이때 다시 실행대기상태 큐에 들어감. (반대 방향으로 직접
실행상태로 가지 못함)

■​

●​ 4. 멀티프로세스를 위한 가상메모리
○​ 멀티프로세스가 실현되기 위해서는 가상메모리 개념이 지원되어야 한다

○​ (1) 가상메모리가 지원되지 않으면

■​
○​ (2) 가상메모리 영역에 컴파일/링킹된 코드 이미지가 그대로
실행되는 원리

■​ 모든 프로그램은 가상메모리영역을 대상으로 컴파일/링킹되어
파일에 저장한 상태임.

■​ 따라서 cpu가 이 프로그램을 읽어서 디코딩해보아도 접근할
메모리(주소) 영역 (변수가 배치된 주소 및 함수 시작주소)도 여전히
원래 가상메모리 영역 그대로 이다.

■​ 하지만 이 프로그램을 실제 물리메모리(DRAM)에 동적
배치되었으므로 프로그램이 물리 메모리에 배치된 위치를 별도의
테이블에 기록해두고 이 테이블을 이용해서 가상메모리 접근시 가상
주소를 실제 물리 메모리 주소로 변환해주면된다.;

●​

○​ (3) 가상메모리의 효과
■​ 이 개념을 통해 모든 프로그램은 각자 가상메모리 영역 (32비트
주소영역이면, 0~4G 전체)을 모두 사용할수 있고 컴파일/링킹되어
프로그램 이미지가 생성됨.

■​ 프로그램이 실행되어 DRAM에 동적배치되어 프로세스가 생성될때 각
프로세스마다 주소영역 변환 테이블 (페이지 테이블)을
생성/업데이트 한다.

■​ 페이지 크기를 잘게 쪼개면, 아래 오른쪽 처럼 메모리의 작은
가용영역 조차 매핑해서 재사용할 수 있다.

●​
○​ (4) 온디멘드 페이징

■​

○​ (5) 스왑

■​

■​

●​ 5. 공유 메모리를 통한 프로세스간 통신
○​ 프로세스가 다른 프로세스에 직접 접근하는 것은 리눅스 철학에 위배됨.
○​ 공용 공간 (탕비실 같은곳) 만들고 약속된 이 곳에 값을 쓰고 상대방은 여기서
값을 읽어가도록 함

○​

○​

●​ 6. 장치(파일)을 내부 메모리 영역에 매핑
○​ 파일(장치)내부의 물리 주소 영역을 내 프로세스 내부 가상메모리 공간에
매핑

■​ 다른 프로세스의 주소공간은 내게 보이지 않지만, mmap을 이용하여
파일(장치 드라이버)로 추상화된 하드웨어 영역을 현재 내 프로세스
내부의 가상메모리 주소 공간에 매핑할 수 있음

■​
○​ 파일 (장치)를 mmap을 통해 프로세스 내부 가상메모리영역에 배치하면

■​ 이제부터 장치에 접근 하기 위해 가상메모리에 배치된 변수에
접근하면됨.

■​

●​ 7. 파이프
○​ (1) 파이프의 필요성

■​ 프로그램의 출력이 어디로 갈지 고려하지 않고 무작정 출력만 내도록
구현

■​ 입력을 받는 프로그램도 어디서오는지 고려할 필요없이 입력
스트림으로부터 데이타 들어온다고 가정하고 구현

■​ 출력 스트림이 어디로 흘러갈지 제어하는것은 파이프를 통해 실현함
■​ 즉 파이프를 출력을 내는 프로세스와 입력을 받는 프로세스에
연결하면됨.

■​ 출력 스트림이 흘러가서 입력을 받아들이는 프로세스까지의 흐름을
파이프가 제어하게 됨

■​

○​ (2) 부모프로세스와 자식프로세스를 파이프로 연결

■​

■​
○​ (3) 이름있는 파이프를 이용하여 독립적인 파이프를 생성

■​ 파일 형태로 존재하는 파이프임 (사용자가 자유롭게 생성할 수 있음)
●​ 이름을 가지는 파이프를 하나 생성
●​ 1. 프로세스는 이 특정 파이프에 연결해서 값을 보내고
●​ 2. 또다른 프로세스는 특정 파이프에 꼽아서 값을 받을수 있게
됨.

●​ => 프로세스는 단순히 출력을 내보내기만하고 어디로 갈지는
파이프에 의해 결정됨.

●​ => 프로세는 누군가 보내는 데이타를 읽기하만 하도록
코딩하고, 어느 파이프에 꼽아서 읽을지만 결정하면됨.

■​ 특정 파이프에 값을 write 프로세스
●​ 특정 파이프를 열고 그 파이프를 대상으로 값을 전달함.

●​
■​ 특정 파이프에 연결하여, 값을 읽어들임

●​

2024년09월05일 (목, 4/4일차)

●​ 1. 부트로더, OS부팅과정.
○​ (1) 3단계 부팅의 필요성

■​ https://drive.google.com/file/d/1L5bPXVnAr-0v8DEPSXJFtb9abm_ZJ
w5u/view?usp=sharing

https://drive.google.com/file/d/1L5bPXVnAr-0v8DEPSXJFtb9abm_ZJw5u/view?usp=sharing
https://drive.google.com/file/d/1L5bPXVnAr-0v8DEPSXJFtb9abm_ZJw5u/view?usp=sharing

■​
○​ (2) Custom OS로 부팅하는 방법

■​ 1. 이미 컴파일된 바이너리 이미지 다운 (첫번째 방법, 업체에서
제공해줄경우)

●​ 1) U-Boot, 커널, 파일시스템, 각종 프로그램을 하나로
빌드해둔 이미지 다운로드

●​ 2) 다운로드한 파일을 SD카드나 eMMC에 flash write하기
○​ 전용 툴을 사용해야 함,
○​ 특정 약속된 메모리 영역에 써야 하기때문,
○​ AP칩 벤더의 부트롬이 약속된 영역에 접근해서 코드를
읽어서 실행하기 때문임

■​ 2. 소스를 받아서 빌드 (두번째 방법)
●​ 1) 호스트 컴퓨터에서 실행가능한 크로스컴파일러 설치
●​ 2) u-boot소스, 커널소스, 디바이스 드라이버 소스를 직접
받아서 빌드

○​ 빌드하는 것은 호스트 컴퓨터에서 크로스 컴파일 해야
함.

○​ 선택적으로 패키지 정해서 컴파일/빌드해서 OS이미지
만드는 과정을 편라하게 자동화 해주는것이 yocto임

●​
■​ 3. flash 메모리 파티션 잡고, rom write하기

●​
■​ 4. 특정 OS를 로딩하도록 uboot 환경설정

●​ 어느 영역에 배치된 OS를 실행할지 지정
●​ 부팅중에 매번 입력해도 되지만, 환경변수를 잡고 저장해두면
편하다

●​
■​ 5. 선택적 부팅

●​
■​

●​ 2. 하드웨어 장치에 직접 접근 (memory mapped I/O)
○​ (1) 장치 Address map을 통한 접근 (MCU F/W 코딩 스타일)

■​ 스펙 문서 읽고 주소확인
■​ 포인터를 통해 해당 영역에 접근
■​ 개별 비트를 비트연산을 수행해서, 값을 변경/읽기.

■​
○​ (2) 메모리 매핑의 필요성

■​ 프로세스 내부에서 접근하는 주소영역은 모두 가상메모리 영역임
■​ 즉 칩 스펙 문서를 읽어보니 GPIO의 물리 주소가 0xFB000000일
경우 프로세스 내부에서 *(0xFB000000)를 통해 접근하더라도
GPIO에 접근할 수 없음.

■​ 따라서, 하드웨어 메모리 맵 영역을 사용자 프로세스 내부로 매핑한
뒤에 접근한뒤 접근가능해짐

■​

○​ (3) 하드웨어 주소공간을 나의 가상메모리 내부
주소공간에서 접근

■​
■​

●​ 3. 디바이스 드라이버를 이용한 장치 접근
○​ (1) 커널 모듈의 개념, 필요성;

■​ 새로운 장치를 인식하여 동작시키려면 커널을 확장해야 한다.
●​ 커널을 리빌드 하는것은 아무 복잡하다.
●​ 장치에 접근하여 제어하는 코드를 동적 라이브러리로
만들어서 커널에 동적 삽입을 할수 있다면 마치 커널이
확장되는 효과를 누릴수 있다.

●​

○​ (2) 커널 모듈 빌드 및 실행.

■​
■​ 빌드

●​ make all
●​ *.c로부터 *.ko를 생성.

■​ 커널에 삽입
●​ sudo rmmod led_test_kernel
●​ sudo insmod led_test_kernel.ko

■​ 장치드라이버 생성
●​ sudo rm -rf /dev/led_test
●​ sudo mknod /dev/led_test c 246 0
●​ sudo chmod 666 /dev/led_test

○​ (3) 디바이스 드라이버 이용한 장치 접근.
■​ ./main 1
■​ ./main 0
■​ LED 온오프 확인.

●​ 시험문제
○​ 1 프로그램 생성과 동시에 열리는 표준 입출력이 아닌것은

■​ stdin stdout, stderr 외에 먼가가 정답이 된다.
○​ 2 파일에 접근하기 위해 최초로 파일을 열어서, 파일 구조체로 포인터를
얻기 위한 표준함수는

■​ fopen
○​ 3 하드웨어 장치에 접근하기위한 저수준의 함수... 커널이 제공....

■​ system call
○​ 4 프로그램 실행시, 점프할 함수를 내 프로그램에 동적으로 결합

■​ 동적 링킹
○​ 5. 리눅스에 다룰수 잇는 모든 장치를(하드웨어를) 열기 위한 함수로,
파일 디스크립터를 반환하는 함수

■​ open()
○​ 6. 하나의 파일의 특정영역을 복수의 프로세스가 접근할때 I/O 잠금

■​ flock()
○​ 7. 운영체제와 나 사이에 인터페이싱해주는... 프로그램을 커널위에
올려주는. 프로세스 생성.. (fork(), exec())

■​ 쉘. shell
○​ 8. 파일의 소유자는 아니지만, 실행할때 잠시 소유자의 권한을 획득

■​ set user id (effective id)
○​ 9. fork()를 이용해서 자식을 생성하는 과정에 대해 틀린것.

■​ 자식프로세느는 부모프로세스를 완전히 복제
■​ 자식프로세스는 프로그램의 처음부터 시작. (X)
■​ 부모프로세스의 fork()의 리턴값은 0이 아니다.
■​ 부모프로세스는, 자식프로세스가 끝날때까지 기다리지 않고
바로 실행을 이어감.

○​ 10. 하드웨어 자원의 특정 영역을 메모리의 한 영역으로 매핑해서, 마치
메모리에 읽고 쓰는 방식으로 자원에 접근하게 해주는 함수

■​ lseek
■​ dup
■​ mmap
■​ read
■​

●​책 추천
○​ 임베디드 프로그래밍 C코드 최적화
○​ 깐깐하게 배우는 C
○​ 전공자를 위한 C 언어 프로그래밍
○​ 자료구조와 함께 배우는 알고리즘 입문
○​ 다시 시작하는 프로그래밍
○​ Embedded Recipes
○​ Debug Hacks 디버그를 극대화하는 테크닉 & 툴
○​ 리눅스 바이너리 마스터
○​ 원리부터 실무까지 ARM 프로그래밍
○​ 임베디드 엔지니어 교과서
○​ 임베디드 메모리 최적화 기법
○​ 프로그래머가 몰랐던 멀티코어 cpu 이야기

●​

	2024년09월02일 (월, 1/4일차)
	●​0. 강의 소개
	○​(1) 강의 일정
	○​(2) 시간관련.
	○​(3) 설문조사

	●​1. 임베디드 시스템/소프트웨어 개론
	○​(1) 임베디드란?
	○​(2) 임베디드 코드 실행을 위한 내장 HW support
	○​(3) 임베디드 SW 실행방식 차이
	■​1. single process
	■​2. single process + HW interrupt에 의한 callback 병행처리 (이러한 함수를 ISR이라고 하고 HW Task라고도 한다)
	■​3. single process + HW interrupt + SW interrupt 에 의한 callback 병행처리
	■​4. OS기반 동적 프로그램 invoke

	●​2. 리눅스 환경설치
	○​(1) 저장소 개념 (github)
	○​(2) 리눅스 설치 및 환경설정
	■​1. Yocto
	■​2. 배포판

	○​(3) 리눅스 부팅 및 서버 접속
	■​1. OS를 메모리에 적재 (부팅)
	■​2. 리눅스 보드에 터미널을 이용한 접근

	○​(4) 리눅스 보드 인터넷 접속 설정
	○​(5) 원격 개발환경 구축
	○​(6) 저장소 clone (예제 다운)

	●​3. 프로그램 빌드
	○​(1) volatile
	○​(2) static vs dynamic linking기반 image생성
	■​1. static 실행 이미지 생성
	■​2. dynamic 동적 적재 실행 이미지 생성

	2024년09월03일 (화, 2/4일차)
	●​1. OS 기반 SW실행원리
	○​(1) 분산제어
	○​(2) 중앙제어
	○​(3) 가상메모리 기반 SW 이미지 생성 및 실행
	○​(4) single process + multi-tasks
	○​(5) multi-process가 효과가 있는 이유
	○​(6) multi-process + multi-threads(tasks)

	●​2. standard library
	○​(1) 장치를 파일로 추상화
	○​(2) 각각 실행중인 프로세스와 장치를 파일 인터페이스로 분리
	○​(3) 볼록 단위로 파일 접근, 바이너리 데이타로 관리
	○​(4) 장치 접근 (R/W)에서 속도 차이에 대한 고려 불필요

	●​3. system call을 이용한 OS를 통한 HW접근
	○​(1) 반드시 system call을 통한, OS내부에 정의된 콜백을 통해서만 내장 하드웨어제 접근 가능함
	○​(2) 실행중인 커널에 어떠한 요청을 하는 핵심원리

	●​4. concurrent SW 실행원리 (멀티 프로세스, 멀티 쓰레드)
	○​(1) SW 실행흐름 차이
	○​(2) PC (program counter)의 이동을 통한 병행 SW실행
	○​(3) 어떻게 실행중인 프로그램 내부에 특정함수를 호출할 수 있을까 ??

	●​5. 파일시스템
	○​(1) 파일시스템의 필요성
	○​(2) 저장된 파일과 그것을 사용하는 process를 독립적으로 관리

	●​6. 파일(모든 장치)에 대한 공유영역 관리.
	○​(1) race condition 및 lock의 필요성.
	○​(2) 파일뿐만 아니라 모든 장치에 대해 일관적인 공유문제 처리가능
	○​(3) lock.영역에 접근시 wait polling 하지 않음.

	2024년09월04일 (수, 3/4일차)
	●​1. 프로세스(자식) 생성 .
	○​(1) fork() 시스템콜을 통한 프로세스 생성
	○​(2) 부모 프로세스와 자식프로세스는 concurrent하게 코드 진행됨

	●​2. 프로세스(새로운) 생성 .
	○​(1) 자신을 새로운 프로세스로 대체함.
	○​(2) fork()와 exec()를 결합해서 프로세스 생성.
	○​(3) 프로세스의 실행결과를 다른 프로세스로 전달.

	●​3. 멀티 프로세스를 동시에 실행시키는 원리.
	○​(1) 사용자 프로세스와 커널프로세스
	○​(2) 프로세스의 상태변환.

	●​4. 멀티프로세스를 위한 가상메모리
	○​(1) 가상메모리가 지원되지 않으면
	○​(2) 가상메모리 영역에 컴파일/링킹된 코드 이미지가 그대로 실행되는 원리
	○​(3) 가상메모리의 효과
	○​(4) 온디멘드 페이징
	○​(5) 스왑

	●​5. 공유 메모리를 통한 프로세스간 통신
	●​6. 장치(파일)을 내부 메모리 영역에 매핑
	●​7. 파이프
	○​(1) 파이프의 필요성
	○​(2) 부모프로세스와 자식프로세스를 파이프로 연결
	○​(3) 이름있는 파이프를 이용하여 독립적인 파이프를 생성

	2024년09월05일 (목, 4/4일차)
	●​1. 부트로더, OS부팅과정.
	○​(1) 3단계 부팅의 필요성
	○​(2) Custom OS로 부팅하는 방법

	●​2. 하드웨어 장치에 직접 접근 (memory mapped I/O)
	○​(1) 장치 Address map을 통한 접근 (MCU F/W 코딩 스타일)
	○​(2) 메모리 매핑의 필요성
	○​(3) 하드웨어 주소공간을 나의 가상메모리 내부 주소공간에서 접근

	●​3. 디바이스 드라이버를 이용한 장치 접근
	○​(1) 커널 모듈의 개념, 필요성;
	○​(2) 커널 모듈 빌드 및 실행.
	○​(3) 디바이스 드라이버 이용한 장치 접근.

	●​책 추천

