

Title: Towards Automatic Vectorization of Architectural Floor Plans

Abstract: This research delves into the significant challenge of converting detailed architectural
raster floor plan images into simplified, precise digital maps through the application of
state-of-the-art computer vision and deep learning techniques, coupled with advanced image
processing strategies. It specifically targets the shortcomings of prevalent wall extraction
algorithms that often fail to deliver clear and accurate representations suitable for various
practical uses. The core of the study is an innovative methodology that harnesses the
capabilities of neural network models, enhanced by the implementation of Hough transforms,
morphological operations, and feature extraction, to improve the transformation process
markedly. A series of rigorous experiments were conducted to refine and validate the proposed
methodology, focusing on the iterative enhancement of the clarity and precision of the resultant
digital maps. The outcomes demonstrate a leap forward in the quality of the digital maps
generated from architectural floor plans, with the integrated approach yielding significantly
better-defined and more accurate maps than traditional methods. This advancement has
profound implications for fields requiring precise spatial representations, such as urban
planning, emergency response planning, real estate, and interior design, as well as for creating
navigational aids that enhance the autonomy and mobility of the visually impaired. By improving
the fidelity of digital map translations, this research contributes to the body of knowledge in
computer vision, providing a scalable solution for automated map generation. The findings also
open avenues for subsequent research to further refine the conversion process and explore
new applications in various industries that depend on detailed spatial data.

I. Introduction

A. Background and Significance

The advent of digital technology has ushered in a new era of architectural design and
representation. With the growing complexity of architectural plans, there is an increasing need
to translate these intricate designs into accessible and manageable formats. Raster images of
architectural floor plans, while rich in detail, present challenges in terms of clarity and usability,
particularly when they need to be integrated into various digital applications. These raster
images, which represent visual data as a grid of individually colored pixels, are ideal for detailed
and complex imagery but can be problematic due to their fixed resolution, which limits scaling
and editing capabilities without loss of quality.

Figure 1: Sample of a raster image which represents visual data as a grid of individually colored
pixels [22]

Figure 2: This image shows the UCSC Science and Engineering Library floor plan, a raster input
image [24]

The ability to convert these raster images into vectorized formats is of paramount importance as
it allows for scalable, precise, and easily manipulable representations of architectural spaces.
Vector graphics, which represent images using paths rather than pixels, are ubiquitous in
industrial designs [5], including graphic designs [11], 2D interfaces [12], and floor plans [13].

Traditional methods of vectorization, while foundational, have proven inadequate in dealing with
the diversity and complexity found in modern floor plans. Wall extraction algorithms, a crucial
step in this process, have been prone to inaccuracies, leading to a gap in the efficiency and
reliability of the vectorized output. These gaps not only hinder the practical applications of floor
plans but also limit their use in advanced simulations and analytical models that professionals in
urban planning, real estate, and interior design rely upon.

The significance of this research lies in its potential to revolutionize the way architectural floor
plans are processed and interpreted. By leveraging the latest advancements in computer vision
and deep learning, the study proposes a sophisticated approach to address these longstanding
issues. The development of an integrated system that employs noise removal, optical character
recognition (OCR), and a series of advanced vectorization techniques represents a leap forward
in the field. It stands to significantly enhance the digital manipulation of floor plans, providing a
level of detail and accuracy that was previously unattainable.

B. Purpose of the Study

The primary purpose of this study is to develop an effective and reliable method for converting
raster images of architectural floor plans into vectorized digital maps. This conversion is crucial
for several reasons: it enhances the clarity and utility of the plans, facilitates their integration into
various digital platforms and applications, and enables precise scaling and manipulation of the
spatial data they contain.

Figure 3: This image shows the input raster image (in black) overlaid with the extracted walls (in
blue).

Despite the advancements in computer-aided design (CAD) and geographic information
systems (GIS), the transition from raster to vector formats remains a challenge due to the noise
inherent in scanned images, the complexity of architectural drawings, and the presence of
non-geometric elements such as textual annotations. To overcome these hurdles, the study
aims to create a sophisticated toolchain that incorporates a series of image processing
techniques for noise removal, an innovative convolutional neural network (CNN) based
algorithm [1] for accurate feature recognition, and advanced vectorization procedures.

The objective of the research is to streamline the process by automating the vectorization of
floor plans, thereby reducing the time and effort traditionally required for manual conversion.
This automation is expected to lead to a more standardized and efficient production of digital
maps, ultimately facilitating a wide array of applications in real estate, urban planning, and
beyond.

Additionally, the study intends to advance the understanding and capabilities of OCR in the
context of architectural floor plans by customizing its application to recognize and remove text

without compromising the integrity of the underlying spatial data. This aspect is critical as textual
noise can significantly hinder the accuracy of feature detection and vectorization.

Finally, the study aspires to explore the efficacy of multiple techniques—including bitwise
masks, corner detection, contour finding, skeletonization, and Hough transforms—in conjunction
with each other. By systematically analyzing and combining these techniques, the research
aims to propose a composite methodology that outperforms existing algorithms in both precision
and efficiency.

Through achieving these objectives, the study will not only contribute a novel approach to the
field of architectural image processing but will also serve as a foundation for future research,
potentially leading to further advancements and new applications of computer vision and
machine learning in the analysis and interpretation of architectural and spatial data.

C. Thesis Statement

This thesis posits that the integration of advanced image processing techniques, coupled with
the application of a specialized convolutional neural network algorithm and a comprehensive
vectorization process, can significantly enhance the conversion of architectural raster floor plans
into vectorized digital maps. By addressing the limitations inherent in current vectorization
methodologies—specifically, the noise interference and the imprecision of geometric feature
extractions—the proposed approach aims to deliver a substantial improvement in the clarity,
accuracy, and usability of the digitized floor plans. The research contends that such an
integrated system can transform the landscape of architectural design, urban planning, and
related fields by providing a reliable, efficient, and scalable solution for digital map generation,
thereby expanding the scope and depth of spatial analysis and its subsequent applications.

D. Scope and Delimitation of Research

The scope of this research is deliberately focused on the development and validation of an
automated system for the vectorization of architectural floor plans. It encompasses the
investigation and application of noise removal techniques tailored to the context of raster
images, the adaptation and optimization of a convolutional neural network algorithm known as
DeepFloorPlan, and the implementation of a comprehensive suite of image processing and
vectorization techniques.

Delimitations of the study are established to maintain a tight research focus and feasible project
boundaries. The research will concentrate specifically on the vectorization of 2D floor plans and
will not extend to 3D models or elevation drawings. The types of floor plans to be considered will
be restricted to residential and commercial buildings, excluding specialized structures like
industrial complexes, which often require a different set of parameters and considerations.

In terms of image processing, while the study will address common forms of noise found in
raster images, such as speckles and smudges due to scanning, it will not cover the correction of

distortions due to perspective or warping of paper plans. The OCR aspect will aim to eliminate
textual noise from images but will not delve into the recognition and extraction of text for digital
documentation purposes.

The convolutional neural network will be tailored to identify and process architectural features
within floor plans, and the research will not include the development of new neural network
architectures but will rather focus on optimizing existing models for the task at hand.

Vectorization will involve several advanced techniques; however, the research will delimit its
scope to those that are well-suited to the 2D representation of architectural plans. Techniques
that are not commonly applied in the floor plan vectorization domain, or those that require an
excessive computational load disproportionate to their added value, will be excluded from this
study.

The final output of the research will be a set of digital maps in a vector format, and the study will
not extend to the integration of these maps into other systems or the exploration of their use in
real-time applications. The research aims to build a robust foundation upon which such
integrations and applications can be developed in future studies.

II. Literature Review

A. Current Methods in Architectural Floor Plan Vectorization

The vectorization of architectural floor plans is a complex domain that has seen considerable
transformation over the years. Historically, the process relied heavily on heuristic-based
methods that utilized low-level image processing techniques. These traditional methods often
incorporated thresholding, edge detection, and morphological operations to extract key features
from raster images of floor plans. Typically, these approaches aimed to identify essential
architectural primitives like walls, doors, and windows by detecting lines and shapes and
applying rules grounded in standard architectural drawing conventions [2].

However, the traditional techniques frequently struggled with handling complex or noisy images,
proving to be less effective with varying styles and qualities of architectural drawings.

In response to these challenges, the field has seen a paradigm shift towards incorporating more
sophisticated algorithms that leverage the advancements in artificial intelligence, particularly
through the application of deep learning technologies. A notable method by De introduces a
sophisticated approach that differentiates between thick and thin lines representing boundary
and interior walls, respectively [3]. This method improves upon traditional techniques by
incorporating morphological operations and geometric analysis, thereby enhancing the
efficiency and accuracy of vectorizing complex architectural drawings.

Further advancements in the field are exemplified by the work of Song et al., who developed a
specialized algorithm for vectorizing high-definition blueprints that contain intricate architectural

details. This innovative approach transcends simple line detection by integrating advanced
techniques, including semantic segmentation using deep learning, refinement through
generative adversarial networks (GANs), and heuristic-based simplifications. This methodology
not only captures finer details but also enhances the scalability of vectorization processes for
digital applications, making significant strides over traditional methods [4].

Moreover, researchers such as Liu et al. have made significant contributions by improving
vectorization accuracy using convolutional neural networks (CNNs) and integer programming to
meticulously connect detected architectural features [2]. This development marks a significant
departure from earlier methods and offers improved precision and recall in the extraction of floor
plan features. Such advancements open new avenues for automating the processing of
architectural drawings, thereby facilitating more efficient digital archiving and editing.

Recent innovations also include the application of style transfer techniques for vectorization.
Isola et al. introduced the use of Conditional GANs for style transfer [14], effectively altering the
style of floorplans while preserving their structural information. This approach is particularly
beneficial for unifying the style of diverse floorplan drawings, which simplifies subsequent
vectorization and analysis tasks.

Another significant advancement is the introduction of the VectorFloorSeg system by Yang et
al., which employs a two-stream Graph Attention Network to improve the segmentation and
vectorization of roughcast floorplans. This method not only enhances the precision of the
vectorization process but also contributes to more structured and analyzable vector outputs [5].

The transition to more intelligent and adaptable vectorization systems signifies a major
advancement in the ability to handle a broader spectrum of complexities found in floor plans.
The integration of machine learning not only mitigates the limitations of traditional image
processing techniques but also significantly enhances the automation and refinement of the
vectorization process. This progress expands the practical applications of vectorized outputs in
architectural, engineering, and construction industries, promising more robust tools for
professionals in these fields.

B. Image Processing Techniques and Their Limitations

Image processing techniques play a crucial role in the vectorization of architectural floor plans,
but they are not without limitations. Traditional methods, which have been heavily reliant on
heuristic approaches, often struggle with the diversity and complexity of floor plan designs.
These traditional techniques typically employ a variety of strategies such as edge detection,
thresholding, and morphological operations to extract meaningful features from raster images.
While effective in certain scenarios, these methods can falter with images that contain noisy
data or intricate details, often leading to incomplete or inaccurate vectorization.

The challenges are further compounded by the diverse nature of architectural drawings. For
instance, floor plans can vary significantly in style, notation, and quality depending on the
source, which may include scanned paper plans or digitally created documents. Each type
presents unique challenges, such as variations in line thickness, superimposed text and
symbols, or faded lines in older documents. These factors often necessitate tailored approaches
for different types of images, limiting the scalability of traditional processing techniques.

Recent advancements in deep learning have provided new avenues for addressing these
limitations. For example, the integration of convolutional neural networks (CNNs) has been
shown to enhance feature recognition capabilities significantly. However, while these models
offer improved accuracy and adaptability, they require substantial computational resources and
extensive training data, which can be a barrier to implementation. Additionally, deep learning
models may still struggle with highly irregular patterns and non-standard layout designs often
found in customized or non-traditional architectural drawings.

Moreover, a novel approach proposed by Kim et al. explores the use of style transfer techniques
to preprocess floor plans into a unified style before vectorization [6]. This method shows
promise in handling complicated drawings characterized by overlapping graphics and irregular
notation, which are typical issues that confound standard image processing techniques. By
converting various formats of floor plans into a unified style using conditional generative
adversarial networks (cGANs), the vectorization process becomes more straightforward and
less susceptible to the common errors of traditional methods. However, this technique, while
innovative, still faces challenges in consistency across diverse architectural styles and must be
finely tuned to manage the subtleties of different building element representations.

In summary, while image processing techniques have evolved considerably, their effectiveness
is often curtailed by the inherent limitations of dealing with complex and diverse architectural
data. The ongoing development of machine learning models presents potential solutions but
also introduces new challenges in terms of data requirements and computational demands. As
these technologies continue to advance, further research is needed to fully harness their
capabilities and mitigate their limitations.

C. Advances in Convolutional Neural Networks for Image Analysis

Figure 4: Convolutional Neural Network Architecture [9]

Convolutional Neural Networks (CNNs) have emerged as a cornerstone in the field of deep
learning, particularly revolutionizing tasks in image analysis due to their unique architectural
features. These networks leverage layered convolutions, which are mathematical operations
that filter input data to extract increasingly complex features in hierarchical layers. This process
is pivotal in handling high-dimensional data like images, where traditional neural networks falter
due to the sheer volume of connections and parameters involved.

CNNs are distinguished from traditional neural networks by their ability to enforce a local
connectivity pattern between neurons of adjacent layers, where each connection learns to
recognize a specific feature of the input [7]. For instance, in the context of image processing, the
first layer might learn to detect edges, while deeper layers might recognize more complex
shapes or specific objects [8]. This is achieved through the use of learnable filters or kernels
that, when applied across an image, generate feature maps that summarize the presence of
detected features from the input.

A significant advantage of CNNs is their use of shared weights in convolutional layers, which
drastically reduces the number of parameters, making deep learning models more feasible to
train. This parameter sharing also aids in generalizing learned features across different parts of
the image, embodying a form of translation invariance, which is crucial for tasks like image
classification and object detection.

Recent advancements in CNN architecture have further pushed the boundaries of this
technology. For example, innovations such as deep residual learning have allowed the
construction of networks that are much deeper than was previously possible, enhancing
learning capabilities without a corresponding increase in training complexity. This approach,
used in models like ResNet, introduces skip connections that allow gradients to flow through the
network directly, mitigating the vanishing gradient problem associated with training very deep
networks [8].

Furthermore, novel architectures and techniques continue to refine the efficacy and efficiency of
CNNs. The introduction of modules like Inception layers, which allow CNNs to choose from
among multiple filter sizes in each layer, provides a way to capture information at various scales
and complexities. This adaptability makes CNNs highly effective for a range of tasks from simple
image recognition to complex scenarios like scene understanding and medical image analysis.

In the realm of practical applications, CNNs have been pivotal in advancing computer vision,
enabling real-world applications such as facial recognition, autonomous vehicle navigation, and
automated medical diagnostics. The ability of CNNs to learn from vast amounts of unstructured
image data has opened up possibilities that were previously beyond the reach of machine
learning technologies.

In conclusion, the continuous evolution of CNN architectures and the integration of new
convolutional techniques are expanding the frontiers of what can be achieved with image
analysis, pushing forward the capabilities of artificial intelligence in interpreting and
understanding visual information. The ongoing research and development in this area suggest
that CNNs will remain at the forefront of AI technologies, driving innovations across various
sectors of industry and science.

The use of convolutional neural networks (CNNs) in the analysis and vectorization of
architectural floor plans represents a significant advancement in the field of computer vision.
CNNs have revolutionized how complex patterns and features are extracted from images,
providing more robust and accurate vectorization capabilities than traditional methods.

One notable advancement is demonstrated by Liu et al., who implemented CNNs to achieve
breakthroughs in corner detection and the connection inference of architectural elements. Their
system, designed for consumer-grade floorplan images, achieves over 90% precision and recall
by combining CNNs for detecting corners with binary integer programming for connecting these
detected features [2]. This approach highlights the potential for CNNs to significantly enhance
the vectorization process by improving the accuracy of feature detection and connection
inference.

In another development, Song et al. presented a novel vectorization algorithm specifically
designed for high-definition blueprints with intricate architectural details. Their method involves a
multi-stage process where CNNs play a crucial role in segmenting and refining the vectorization
of complex blueprint images. The initial step involves rough semantic segmentation using
off-the-shelf algorithms, followed by CNN-driven inference to identify missing smaller
architectural components and refine them using a generative adversarial network [4]. This
approach underscores the adaptability of CNNs to manage the unique challenges posed by
detailed architectural plans, ensuring detailed and precise vector outputs.

Moreover, Zeng et al. introduced a multi-task network that employs room-boundary-guided
attention mechanisms within a CNN framework to enhance floor plan recognition [1]. This
method demonstrates how CNNs can be specialized to focus on specific elements of a floor

plan, such as room boundaries, to improve the overall accuracy and efficiency of vectorization
processes.

These examples illustrate the significant role that CNNs have come to play in the vectorization
of architectural drawings. By leveraging deep learning techniques, researchers have been able
to address some of the traditional challenges associated with vectorization, such as the
accurate detection of fine details and the effective processing of complex images. The ongoing
advancements in CNN applications continue to push the boundaries of what can be achieved in
architectural image analysis, paving the way for more automated and precise vectorization
techniques.

D. The Role of OCR in Image Processing

Optical Character Recognition (OCR) plays a pivotal role in the field of image processing,
transforming the way text data is extracted and utilized across various applications throughout a
spectrum of industries [10]. OCR technology converts different types of text data, such as
handwritten, typewritten, or printed text, into machine-readable forms. This conversion is critical
for many applications, ranging from automated form processing to intelligent document
management systems.

The general function of OCR involves the detection, segmentation, and identification of
characters within images. This process begins with pre-processing steps such as noise
reduction, normalization, and binarization, where the image is converted into a binary image to
simplify the detection of text against the background. Advanced techniques use adaptive
thresholding methods to handle different lighting conditions and backgrounds, enhancing the
robustness of text detection.

After pre-processing, character segmentation is performed, which isolates individual characters
or groups of characters. This segmentation is crucial for the subsequent step of character
recognition, where each segment is compared against a database of known characters using
pattern recognition algorithms such as neural networks or support vector machines. Modern
OCR systems employ deep learning techniques, particularly convolutional neural networks, to
improve recognition accuracy even further.

OCR technology has been particularly transformative in sectors that require the digitization of
large volumes of documents, such as the legal, banking, and healthcare industries. In legal
applications, OCR helps manage case files by converting volumes of printed legal documents
into searchable digital formats, thereby speeding up case review processes and reducing
physical storage requirements. In banking, OCR facilitates the processing of cheques and
financial documents, automating data entry tasks that were traditionally performed manually,
thus increasing efficiency and reducing error rates.

Moreover, in healthcare, OCR technology is used to digitize patient records and prescriptions,
integrating them into electronic health records systems. This digitization supports better data
management, improves the accessibility of information for medical staff, and enhances patient
care by providing quick access to patient histories.

In the context of architectural floor plans, OCR is employed to remove non-geometric elements
such as texts and annotations from the images before they undergo further processing for
vectorization. This removal is crucial as it ensures that the vectorization process focuses purely
on architectural elements like walls and doors without the interference of text, which might be
misinterpreted as architectural details.

The advancements in OCR technologies have expanded its application scope, facilitating the
extraction and digital transformation of textual content from images across various fields. This
not only enhances data accessibility and utility but also significantly improves the efficiency of
information management systems.

III. Methodology

A. Data Collection and Source

The foundation of this research hinges on the comprehensive collection and careful selection of
architectural floor plans. For this study, I am utilizing publicly available floor plans from the
University of California, Santa Cruz (UC Santa Cruz). These documents provide a detailed
representation of various campus buildings, including academic facilities, residential structures,
and administrative offices. The choice of UC Santa Cruz as a data source is strategic, offering a
diverse array of building layouts and designs that are essential for a robust analysis.

These floor plans are sourced directly from the UC Santa Cruz’s official websites, where they
are made available for public access. This transparency not only facilitates academic and
research purposes but also ensures that the data used in this study is up-to-date and
representative of real-world architectural practices. Each floor plan is provided in a
high-resolution raster format, which presents both a challenge and an opportunity for the
vectorization process.

The collection process involved systematically downloading these floor plans, ensuring each file
was correctly labeled with the building’s name and its specific use within the campus. This
meticulous approach to data collection is crucial for maintaining the integrity and organization of
the research dataset, which in turn supports the subsequent stages of image processing and
vectorization.

By utilizing these publicly accessible documents, this research adheres to legal and ethical
standards, avoiding any issues related to copyright or restricted access. Moreover, the wide

variety of floor plans available from a single, cohesive source allows for a controlled study of
vectorization techniques across different architectural styles and functional requirements of
campus buildings. This methodological choice not only enriches the research but also enhances
its applicability to educational campus planning and management.

B. Preprocessing of Raster Floor Plan Images

The preprocessing of raster floor plan images is a critical step in preparing the data for effective
vectorization. This phase involves several techniques aimed at enhancing the quality of the
images and ensuring that only relevant architectural features are retained for analysis.

1. OCR Implementation with Keras for Text Removal

The preprocessing phase of raster floor plan images plays a critical role in the successful
vectorization of architectural details. A key challenge in this process is the removal of text
labels, which, although essential for human readers, are often a source of noise that can disrupt
automated analysis. To address this, we employ the pre-trained Optical Character Recognition
(OCR) model provided by `keras_ocr`, which is specially designed to detect and decode text
within images effectively.

In our methodology, the first step involves setting up an OCR pipeline using `keras_ocr`. This
pipeline is configured to utilize a deep learning model that has been trained to recognize textual
content within a wide variety of images. The model's robustness makes it particularly suitable for
dealing with the complex backgrounds and varied text styles found in architectural floor plans.

Once the pipeline is in place, each floor plan image is processed through this system. The
model scans the entire image, identifying regions where text is present. For each detected text
region, the model provides bounding box coordinates, which precisely define the location and
extent of text within the image. These bounding boxes are crucial as they determine the areas
that need to be addressed in the subsequent steps of the preprocessing phase.

After text detection, the next step is to create a mask for the text areas identified by the OCR
model. This mask is applied over the original image to cover all detected text regions. With the
mask in place, we then apply an inpainting technique, which is a method used to reconstruct the
areas obscured by the mask. Inpainting works by using information from the surrounding pixels
to fill in the masked areas, effectively removing the text while preserving the continuity of the
architectural elements in the image.

The inpainting process is delicate as it must ensure that the filled areas blend seamlessly with
the rest of the image, without leaving any traces of the original text or creating visual artifacts
that could interfere with the accuracy of the vectorization process. The success of this step is

critical as it produces a cleaned image that retains all necessary architectural details but without
any of the disruptive textual information.

Finally, the processed image, now cleared of text, is saved and prepared for the next stages of
vectorization. This clean version of the floor plan is far more suitable for automated analysis, as
it allows the vectorization algorithms to focus purely on architectural features without the
interference of extraneous text. By using the `keras_ocr` model for text removal, we streamline
the preprocessing of floor plans, ensuring high-quality inputs for our vectorization process,
which in turn enhances both the efficiency and accuracy of our architectural analyses.

2. Low-Level Image Processing Technique for Wall Filtering

In the development phase of a vectorization technique, I experimented with a low-level image
processing approach designed to enhance the clarity of walls in architectural floor plans. This
method incorporated multiple OpenCV image processing techniques to refine the representation
of walls, differentiating them more clearly from other elements within the images. Although this
approach was ultimately not included in the final vectorization pipeline, it provides valuable
insights into the complexity of image processing required for architectural drawings.

The process began with Otsu’s thresholding, a technique that converts a grayscale image into a
binary image by determining an optimal threshold value. This threshold value is chosen to
minimize the intra-class variance of the black and white pixels, effectively highlighting
architectural features like walls, which typically appear as darker lines against a lighter
background.

Following the thresholding, the technique employed noise removal through morphological
operations, specifically using an opening operation composed of an erosion followed by dilation
with a 3x3 kernel. The erosion helps remove small-scale noise by eroding away the boundaries
of foreground regions, which include the walls, thereby eliminating isolated noise points.
Subsequently, dilation is applied to smooth and restore the edges of the wall features, ensuring
that the erosion does not overly diminish their presence. This sequence of opening—applying
erosion followed by dilation—is performed twice to effectively reduce noise while preserving the
integrity of larger structural elements like walls.

To further refine the visibility of walls, additional dilations were performed. This step thickens the
walls in the binary image, enhancing their prominence and ensuring they are distinct from minor
artifacts or non-structural lines that might remain post-noise reduction.

Additionally, a distance transform was utilized, which calculates the minimum distance from
each foreground pixel to the nearest background pixel. By applying a threshold to this
distance-transformed image, the method identifies regions most likely to be walls (sure
foreground) and distinguishes them from less certain areas. This segmentation is crucial for
reinforcing the definition of walls and ensuring that the vectorization process captures these
critical architectural elements accurately.

This low-level image processing technique, though not included in the final approach, helped us
understand the challenges and potential solutions in processing complex architectural drawings,
informing further development of more sophisticated methods like DeepFloorPlan for effective
floor plan vectorization.

C. Application of the DeepFloorPlan Algorithm

The DeepFloorPlan algorithm significantly enhances the precision of architectural floor plan
vectorization, outperforming traditional low-level image processing techniques through its use of
advanced deep learning strategies. Grounded in the robust methodologies from the study "Deep
Floor Plan Recognition using a Multi-task Network with Room-boundary-Guided Attention,"
DeepFloorPlan employs a convolutional neural network (CNN) to adeptly recognize and
delineate various architectural elements. [1] This deep learning approach is superior in handling
the complexities inherent in diverse architectural drawings, which often elude simpler,
rule-based processing methods. The CNN effectively learns from a vast dataset of images,
allowing it to adapt to and accurately process a wide array of floor plan designs and
complexities. Moreover, DeepFloorPlan integrates a room-boundary-guided attention
mechanism, which significantly enhances its ability to focus on and accurately segment crucial
architectural features, an aspect where traditional methods generally falter. This capability
ensures a higher level of precision and adaptability in processing floor plans, marking a
substantial improvement over the conventional image processing approaches.

Figure 5: DeepFloorPlan Architecture [1]

1. Description of Convolutional Neural Network-based DeepFloorPlan

DeepFloorPlan is a multi-task CNN that focuses on recognizing and differentiating between
various elements of a floor plan, such as walls, doors, and different types of rooms. It employs a
room-boundary-guided attention mechanism, which enhances the accuracy of room type
prediction by focusing on the spatial relationships and boundaries within the floor plan. This

mechanism allows the network to handle complex layouts with varying wall thicknesses and
non-rectangular shapes more effectively than traditional image processing methods.

A significant feature of DeepFloorPlan is its ability to process images by segmenting them into
meaningful categories. For instance, in its typical operation, it segments rooms by type, coloring
different room types with different colors. However, for the purposes of vectorization where such
differentiation is unnecessary, we modify the output to render walls in black and all other
elements in white. This simplification focuses the vectorization process on the structural
elements of the floor plan, which are crucial for accurate digital representation.

Figure 6: UCSC Engineering 2 Floor 2 floor plan image [23]

Figure 7: A tile

Figure 8: The tile from Figure 7 after being processed by DeepFloorPlan

Figure 9: After all tiles are reassembled

2. Implementation of Tiling Algorithm for Processing Large Images

Given the constraints of neural networks in handling large images directly due to computational
limits and the loss of resolution when scaling images down, we implement a tiling algorithm.
This algorithm divides the original large floor plan images into smaller, manageable tiles, each of
which can be individually processed by the DeepFloorPlan algorithm without the loss of detail
that would occur from resizing the entire image.

The tiling process involves segmenting the image into squares of a fixed size (e.g., 256x256
pixels), processing each tile independently through DeepFloorPlan, and then reassembling the
processed tiles to form the complete image. This method ensures that each portion of the floor
plan is analyzed with the highest possible accuracy and detail, maintaining the integrity of the
walls and boundaries throughout the image.

To handle the potential issue of discontinuities between tiles, particularly at the boundaries
where architectural features might be split across tiles, special care is taken in the reassembly
process. We ensure that the reassembly maintains the continuity of architectural features,
aligning segments perfectly to reconstruct the original layout accurately.

The integration of the DeepFloorPlan algorithm with the tiling strategy enables us to effectively
process floor plans of any size, overcoming the typical limitations associated with CNNs
regarding input dimensions. This approach not only enhances the precision of the vectorization
process but also scales efficiently to handle large datasets of architectural drawings.

D. Post-processing Techniques for Vectorization

While none of the post-processing techniques were ultimately utilized in the final vectorization
approach for this project, exploring such methods provides valuable insights into potential
applications for extracting additional information from floor plans.

Techniques like Harris Corner Detection and the Shi-Tomasi Corner Detection Method are
critical in computer vision for identifying features within an image that are pivotal for various
analysis tasks.

1. Harris Corner Detection Technique

The Harris Corner Detection technique, developed by Chris Harris and Mike Stephens in 1988,
is a widely used method for identifying corners and edges in an image. [15] This method relies
on the principle that corners are characterized by significant changes in intensity in all
directions. The Harris Corner Detector computes a corner response function for each
pixel in the image, which measures the change in intensity for a displacement of in all
directions:

where is the window function, is the shifted intensity, and is the
intensity.

To maximize this function for corner detection, the Harris Corner Detector applies Taylor
Expansion to the equation and uses mathematical steps to derive the final equation:

where:

Here, and are image derivatives in x and y directions respectively, which can be easily
found using cv.Sobel().

After this, they create a score, basically an equation, which determines if a window can contain
a corner or not:

where , , and and are the eigenvalues of . The
magnitudes of these eigenvalues decide whether a region is a corner, an edge, or flat.

https://www.codecogs.com/eqnedit.php?latex=E(u%2C%20v)#0
https://www.codecogs.com/eqnedit.php?latex=(u%2C%20v)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Bequation*%7D%20E(u%2C%20v)%20%3D%20%5Csum_%7Bx%2Cy%7D%20w(x%2C%20y)%20%5Cleft%5B%20I(x%20%2B%20u%2C%20y%20%2B%20v)%20-%20I(x%2C%20y)%20%5Cright%5D%5E2%20%5Cend%7Bequation*%7D#0
https://www.codecogs.com/eqnedit.php?latex=w(x%2C%20y)#0
https://www.codecogs.com/eqnedit.php?latex=I(x%20%2B%20u%2C%20y%20%2B%20v)#0
https://www.codecogs.com/eqnedit.php?latex=I(x%2C%20y)#0
https://www.codecogs.com/eqnedit.php?latex=E(u%2C%20v)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Bequation*%7D%20E(u%2C%20v)%20%5Capprox%20%5Bu%20%5Cquad%20v%5D%20M%20%5Cbegin%7Bbmatrix%7D%20u%20%5C%20v%20%5Cend%7Bbmatrix%7D%20%5Cend%7Bequation*%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Bequation*%7D%20M%20%3D%20%5Csum_%7Bx%2Cy%7D%20w(x%2C%20y)%20%5Cbegin%7Bbmatrix%7D%20I_x%20I_x%20%26%20I_x%20I_y%20%5C%20I_x%20I_y%20%26%20I_y%20I_y%20%5Cend%7Bbmatrix%7D%20%5Cend%7Bequation*%7D#0
https://www.codecogs.com/eqnedit.php?latex=I_x#0
https://www.codecogs.com/eqnedit.php?latex=I_y#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Bequation*%7D%20R%20%3D%20%5Cdet(M)%20-%20k(%5Coperatorname%7Btrace%7D(M))%5E2%20%5Cend%7Bequation*%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cdet(M)%20%3D%20%5Clambda_1%20%5Clambda_2#0
https://www.codecogs.com/eqnedit.php?latex=%5Coperatorname%7Btrace%7D(M)%20%3D%20%5Clambda_1%20%2B%20%5Clambda_2#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda_1#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda_2#0
https://www.codecogs.com/eqnedit.php?latex=M#0

Figure 10: Harris Corner Detection region categorization based on magnitude of eigenvalues
[18]

The Harris Corner Detector is robust to rotation and illumination changes but may struggle with
scale invariance. It is computationally efficient and has been widely used in various computer
vision applications, such as object tracking, image registration, and 3D reconstruction.

Figure 11: Harris Corner Detection applied to floor plan image

2. Shi-Tomasi Corner Detection Method

Later in 1994, J. Shi and C. Tomasi made a small modification to the Harris Corner Detector in
their paper "Good Features to Track," which shows better results compared to the Harris Corner
Detector. [16] The scoring function in the Harris Corner Detector was given by:

Instead of this, Shi-Tomasi proposed:

If is greater than a threshold value, it is considered as a corner. If we plot it in space
as we did in the Harris Corner Detector, we get an image where only when and are above
a minimum value, , it is considered as a corner (green region of the below image).

Figure 12: Depiction of the thresholding principle used in the Shi-Tomasi corner detection
method, visualized in the eigenvalue space. The green area represents the region where both
eigenvalues (λ1 and λ2) exceed a minimum threshold (λmin), identifying a strong corner. The
orange and gray areas show where one or neither of the eigenvalues surpass the threshold,
thus not qualifying as corners. [19]

The Shi-Tomasi Corner Detection Method shares similar properties with the Harris method, such
as rotation and illumination invariance. It is also computationally efficient and has been used in
various computer vision tasks, including feature tracking and image matching.
In the context of floor plan vectorization, corner detection techniques like Harris and Shi-Tomasi
can be valuable for identifying key points and features within the floor plan image. These
corners can serve as reference points for further analysis, such as room segmentation, wall
detection, or symbol recognition. However, the specific application of these techniques would
depend on the characteristics of the floor plan images and the desired level of detail in the
vectorized output.

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Bequation*%7D%20R%20%3D%20%5Clambda_1%5Clambda_2%20-%20k(%5Clambda_1%20%2B%20%5Clambda_2)%5E2%20%5Cend%7Bequation*%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Bequation*%7D%20R%20%3D%20%5Cmin(%5Clambda_1%2C%20%5Clambda_2)%20%5Cend%7Bequation*%7D#0
https://www.codecogs.com/eqnedit.php?latex=R#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda_1%20-%20%5Clambda_2#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda_1#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda_2#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda_%7B%5Cmin%7D#0

Figure 13: Shi-Tomasi Corner Detection applied to floor plan image

3. Bitwise Masks for Junction and Centroid Detection

In the realm of digital image processing for floor plan analysis, identifying the structure of
spaces often necessitates discerning the lines and intersections that represent walls, doors, and
other defining architectural features. A critical step in this process involves the extraction of
horizontal and vertical lines which, in architectural drawings, typically delineate the boundaries
of rooms and corridors.

We use kernels designed to target specific shapes. For horizontal lines, a horizontal structuring
element, elongated across the x-axis, helps to highlight and preserve lines that run left-to-right.
Conversely, a vertical structuring element, extended along the y-axis, is used to emphasize lines
that stretch top-to-bottom. These operations serve to clean the image of noise, ensuring that the
horizontal and vertical elements stand out clearly.

In addition to horizontal and vertical lines, diagonal lines can also hold significant structural
information. Custom-shaped kernels, akin to diagonal matrices, are crafted to target these lines.
One kernel is oriented for one diagonal direction, and by flipping this kernel horizontally, we can
create a second one for the opposite diagonal.

Once these directional lines are defined, the next objective is to identify junctions—points where
two lines intersect, often corresponding to corners of rooms or intersections within a network of
hallways. This is achieved through bitwise operations that act like logical functions on the pixel
values of two images. By performing a bitwise 'AND' operation between the images containing

horizontal and vertical lines, we isolate the points where they intersect. This operation is
repeated with the images of diagonal lines, capturing the full spectrum of potential junctions.

Figure 14: Lines found by kernels that target specific line directions (horizontal, vertical,
diagonal)

The culmination of this process is the aggregation of all intersections to locate all junctions. By
performing a bitwise 'OR' operation between the various intersection images, we combine the
detected intersections into a single image that reveals the network of junctions within the floor
plan.

Finally, we turn our attention to the centroids of these junctions, which are essentially the
geometric centers of the shapes formed by the intersections. By finding the contours of these
junctions and computing their image moments, we can calculate the centroids' coordinates. A
centroid represents the average position of all the points of an object and is calculated as the
weighted average of the pixel intensities. Drawing these centroids onto the image provides a
visual representation of the structure of the space, completing the process of highlighting the
foundational grid upon which the floor plan is built.

Figure 15: Junction points and intersections found by bitwise operations

This approach, while not included in the final vectorization technique, is instrumental in
understanding the geometry and connectivity of spaces within floor plans. The ability to
accurately detect lines and their intersections is crucial not only for creating digital
representations of physical spaces but also for more advanced analyses, such as space
optimization and automated design assessments.

4. Contour Detection with OpenCV

Contour detection is a fundamental process in computer vision, particularly useful in the field of
architectural analysis and digital floor plan vectorization. This technique is instrumental in
delineating the outlines or boundaries of features within an image, which is a crucial step in
understanding the geometry and spatial organization of the depicted elements.

Using OpenCV, a prominent library in the field of computer vision, contour detection is typically
performed with the `findContours` function. This function examines the binary representation of
the image, where the architectural features have been isolated from the background, to detect
continuous curves that encapsulate the full perimeter of distinct objects. In the context of floor
plans, these objects could be rooms, furniture, or other significant design elements.

The `findContours` function operates by scanning through an image and identifying the regions
where the color or intensity changes dramatically, often indicating the edges of features against
the background. Once these edges are detected, the function groups the series of points along
these edges into contours. Each contour is essentially a vector of coordinates that define the
shape of an object within the image.

Figure 16: The blue points are the discovered contours

After detecting contours, they can be utilized for various applications, such as creating bounding
boxes, shape analysis, or object recognition and classification. In architectural vectorization, the
precise coordinates of these contours are invaluable, as they provide the vector data necessary
to reconstruct accurate digital models of the physical spaces.

To further leverage the information that contours provide, one might write a script that translates
these contour coordinates into a format suitable for data analysis, like a CSV
(Comma-Separated Values) file. By exporting contour data into a CSV, we can facilitate the
integration of this spatial data with other analysis tools or workflows. For instance, the contours
can be imported into CAD (Computer-Aided Design) software for further refinement, or they can
be analyzed programmatically to calculate areas, perimeters, or other attributes that are
essential for architectural planning and evaluation.

The utility of contour detection in architectural floor plan processing cannot be understated. It is
a bridge between the raw pixel data of an image and the structured, geometric information
required for digital modeling and analysis, making it a cornerstone of the digital transformation
of architectural design data.

5. Skeletonization Process

Skeletonization is a process in digital image processing that reduces foreground regions in a
binary image to a skeletal remnant that largely preserves the extent and connectivity of the
original region while throwing away most of the original foreground pixels. The skeleton
represents the shape of the figure in a simplified form, which can be crucial in understanding the
structural layout of floor plans, such as the path network within a building.

Figure 17: UCSC Engineering 2 Floor 2 floor plan image

Figure 18: Skeletonized image

In OpenCV, two well-known algorithms for skeletonization are the Zhang-Suen and Guo-Hall
methods. Both techniques iteratively examine and thin the given shapes until only the minimal
skeletal structure remains.

The Zhang-Suen thinning algorithm [20] is an iterative thinning process that looks at the local
neighborhood of each pixel in a binary image and decides whether or not it should be removed
based on specific conditions related to the number of foreground-to-background transitions in
the neighborhood, and the number of foreground neighbors. The process is repeated until no
further changes occur in the image. The Zhang-Suen method is precise and tends to preserve
the topology of the original image well, making it a good choice for applications where the
accurate representation of the shape is important.

The Guo-Hall algorithm [21] is another iterative method but uses a slightly different set of
conditions for the removal of pixels. It tends to be faster than the Zhang-Suen method but might
not preserve the topology as well as Zhang-Suen. The Guo-Hall algorithm can sometimes result
in a less noisy skeleton and is often used when speed is a crucial factor, or the final application
can tolerate some topological alterations.

The primary difference between these two methods lies in their specific conditions for pixel
removal and the patterns they recognize as removable. The Zhang-Suen method is known for
its detail preservation but slower performance, while the Guo-Hall method is favored for its
speed and smoother results.

The result of the skeletonization process is a thin version of the original image, where the width
of the shapes is reduced to the minimal possible width, ideally one pixel wide. This is particularly

useful in architectural plans where such skeletal representations can serve as a basis for
analyzing routes, flows, or the spatial relationship between different components. These skeletal
paths are invaluable in several applications, including feature extraction, pattern recognition,
and in the creation of topological maps of spaces.

6. Line Segment Detection Methods

Line Segment Detection (LSD) is an essential computer vision technique with significant
implications in the field of architectural design and analysis. It is particularly adept at identifying
and extracting line segments from images, which is invaluable for interpreting architectural
drawings and floor plans where lines define the boundaries of structures and spaces.

The Line Segment Detector in OpenCV is a popular algorithm used for detecting line segments.
The LSD algorithm operates directly on grayscale images and does not require a preliminary
edge detection stage, unlike some other line detection methods like the Hough Transform. It is
designed to be scale and rotation invariant, meaning that it can detect lines over a range of
orientations and scales, making it quite robust for architectural applications where floor plans
can be at various scales and orientations.

The LSD works by examining an image to identify rapidly changing regions of intensity that
suggest the presence of an edge. Once these potential edges are found, the algorithm performs
a refinement to determine if these are indeed part of a line segment. This involves assessing the
gradient orientations of the pixels and ensuring they are consistent with a straight line. It does
this efficiently, allowing for real-time application in some contexts.

The OpenCV implementation of LSD provides an interface that returns a list of detected lines,
each described by the starting and ending points. This makes it straightforward to overlay these
lines onto the original image or to use them for further computational analysis. The lines
detected by LSD can be used for creating wireframe models of the detected structures, for
converting raster floor plans into vector format, or for recognizing objects defined by straight
lines within the image.

Figure 19: Line Segment Detector applied to UCSC Engineering 2 Floor 2 floor plan image

LSD is particularly advantageous when a high degree of accuracy is required in the line
detection process. It can discern short line segments, which other detectors might miss, and
distinguishes between different line segments that are close to each other. These features make
it especially useful for detailed and accurate analysis of architectural drawings, where precision
in the delineation of structures is paramount.

Integration of Multiple Techniques for Enhanced Vectorization

1. Raster to Vector

Raster to Vector (R2V) transformation represents a cutting-edge shift from traditional raster floor
plan interpretation to a vectorized format that is more conducive to further analysis and
manipulation. [2] R2V employs a neural network architecture to dissect and understand the
complex imagery of floor plans.

Figure 20: Raster to Vector Floorplan Vectorization Results [2]

In the initial phase, R2V leverages a neural network to pinpoint crucial low-level geometric and
semantic junctions within the raster image. These junctions include key architectural points such
as wall corners or endpoints of doors, translating the pictorial data into a structured form. The
process involves identifying these junction points with high precision, laying the groundwork for
the subsequent vectorization.

Following junction identification, the process uses integer programming to methodically piece
together these points into recognizable architectural primitives. These primitives are not merely
abstract lines but carry geometric and semantic significance — for instance, wall lines, door
lines, or icon boxes. This integer programming ensures that the resulting primitives adhere to
the topological and geometric rules of a floor plan, producing an output that is not only accurate
in detail but also consistent in structure.

The final vector representation, arising from this meticulous procedure, enables a range of
computational applications. For instance, it allows for the generation of 3D models, facilitates
architectural remodeling, and can even serve as a foundation for comprehensive building
analysis.

Figure 21: Raster to Vector Conversion Process [2]

Despite the efficacy of R2V in handling original raster floor plans, challenges arise when dealing
with output from other processing techniques, such as DeepFloorPlan. When R2V is applied to
images already processed by DeepFloorPlan, the performance is noted to decline. This
discrepancy could stem from the differences in how DeepFloorPlan and R2V interpret and
manipulate the initial raster data. DeepFloorPlan's processing may alter the image in ways that
are less compatible with the R2V model, which has been trained on and expects unaltered
raster images.

Figure 22: UCSC Engineering 2 Floor 2 floor plan image

Figure 23: Raster to Vector ran on UCSC Engineering 2 Floor 2 floor plan image

Figure 24: UCSC Science and Engineering Library floor plan image [24]

Figure 25: Raster to Vector ran on UCSC Science and Engineering Library floor plan image

An interesting experiment within this vectorization endeavor involved incorporating a tiling
algorithm to segment the original floor plan into smaller sections and individually process each
through R2V. However, this approach did not yield successful outcomes, which could be
attributed to the loss of contextual information when a floor plan is fragmented. The tiling
algorithm, while conceptually robust for managing large images, may disrupt the continuity that
R2V relies on to accurately infer the full scope of a floor plan's structure.

In conclusion, while R2V represents a significant advancement in the digital interpretation of
floor plans, its integration with other techniques must be approached with consideration of their
inter-compatibility. The learning-based approach of R2V shows promise in overcoming the
limitations of heuristics-based methods, suggesting a potential paradigm shift in how
architectural data is processed and utilized in digital environments.

2. Utilization of Probabilistic and Regular Hough Transform

The Hough Transform is an analytical technique integral to the field of image analysis,
particularly within the domain of vectorization, where the detection of geometric shapes is
essential. It serves as a bridge between the pixel-based data in raster images and the
line-based geometric representations in vector images. The technique is based on transforming
points in image space to a parameter space where lines or curves can be more easily identified.
For the vectorization of architectural floor plans, which are replete with linear elements such as
walls, doorways, and furniture outlines, the Hough Transform is invaluable.

There are two primary variants of the Hough Transform: the Standard Hough Transform (SHT)
and the Probabilistic Hough Transform (PHT). The SHT works by mapping each edge pixel in
the image space to a sinusoidal curve in the parameter space, often represented as the Hough
space. The intersections of these curves correspond to potential line segments in the image
space. Accumulator cells in the Hough space "vote" for these intersections, and the locations
with the highest votes indicate where the most likely line segments exist. SHT is comprehensive
and robust, capable of detecting all possible lines, but it is computationally intensive because it
considers every point along an edge, leading to a high number of calculations, particularly for
large and complex images.

The PHT, on the other hand, offers a more computationally efficient alternative. It is a
randomized version of the SHT that only considers a random subset of edge points. It estimates
the parameters of line segments present in the image by iteratively selecting point pairs and
checking if they could form part of a line with a sufficient number of votes. The PHT is faster
than the SHT because it does not process every edge point and does not fill the accumulator
space as extensively. However, this probabilistic nature means it may miss some line segments
that the SHT would detect, especially if they are short or faint.

In the context of enhancing vectorization, the Hough Transform is integrated into the workflow to
detect and standardize the lines and shapes that define the layout of the floor plan. The decision
to use SHT or PHT depends on the specific requirements of the project. For instance, if
computational resources and processing time are limited, or if only the most prominent lines are
of interest, the PHT may be the preferable choice. Conversely, if the floor plan contains many
subtle or critical details, the thoroughness of the SHT would be more appropriate.

3. Combining Hough Transform with Junction Detection

In the development of the vectorization pipeline, the incorporation of the Hough Transform in
conjunction with junction detection was explored as a potential method to enhance the precision
of line detection. This approach aimed to refine the set of lines detected by the Hough
Transform by considering only those that intersected with identified junctions, which are
indicative of critical architectural points like wall corners. Despite its conceptual merit, this
method introduced complexity and was ultimately not included in the final vectorization
technique.

Figure 26: Hough Transform

Figure 27: Hough Transform combined with junction intersection

4. Hough Transform with improved non-maximum suppression

A more efficient solution was found in the form of an improved non-maximum suppression
algorithm within the Hough Transform process. Non-maximum suppression serves to streamline
the output of the Hough Transform by ensuring that each detected line is unique and the
strongest representative of that feature within the image. The improvement of this algorithm
proved to be a superior approach to managing the issue of duplicate lines—a problem that the
combination of Hough Transform and junction detection aimed to address.

The enhanced non-maximum suppression technique works by meticulously analyzing the
accumulator space of the Hough Transform to discriminate between lines that are closely
spaced. By fine-tuning the Hough parameters, particularly the rho resolution, the process
became more sensitive to the distinction between separate architectural features that could
erroneously be conflated into a single detection with a coarser resolution. Decreasing the rho
value resulted in an increased number of bins in the accumulator array, allowing for a narrower
scope within each bin, which is vital for the accurate separation of lines.

To ensure balanced detection of horizontal and vertical lines, the Hough Transform image was
transformed into a square format. This transformation equally weights lines of all orientations,
preventing any directional bias and enhancing the uniformity of line detection across the image.

This refined approach to non-maximum suppression was instrumental in improving the overall
effectiveness of the line detection mechanism. It offered a streamlined, more computationally
efficient method that eliminated the need for the prior junction detection step, simplifying the
vectorization process while enhancing its accuracy. The adoption of this technique in the final
vectorization pipeline underscores the importance of iterative refinement and optimization in
computational methods, achieving a balance between comprehensive line detection and the
elimination of extraneous information to produce clean, precise vector representations of
architectural floor plans.

IV. Results

In the following section, we present a comprehensive analysis of the Hough Transform's
performance for line detection in images, focusing on the effects of non-maximum suppression
and rho resolution. The Hough Transform is a robust technique that enables the identification of
lines in an image by mapping edge points from the image space to a parameter space, where
each point corresponds to a potential line in the original image. By investigating the impact of
various parameter settings and post-processing techniques, we aim to optimize the line
detection accuracy and minimize the presence of duplicate or overlapping lines. Through a
series of experiments and visual evaluations, we demonstrate the effectiveness of
non-maximum suppression and decreased rho resolution in enhancing the Hough Transform's
output, ultimately leading to cleaner and more precise line detection results. The findings
presented in this section provide valuable insights into the intricacies of the Hough Transform
and offer guidance for achieving optimal line detection performance in various computer vision
applications.

Figure 28: Hough Transform applied to UCSC Engineering 2 Floor 2 floor plan image without
non-maximum suppression

Figure 29: Hough Transform applied to UCSC Science and Engineering Library floor plan image
without non-maximum suppression

Figure 28 and 29 illustrate the result of applying the default Hough Transform without any
non-maximum suppression. As can be observed, the default implementation detects a
significant number of overlapping and duplicate lines. This is because the transform identifies all

possible lines that pass through the edge points in the image, leading to redundant detections.
The presence of these duplicate lines can clutter the output and make it challenging to interpret
the results accurately.

Figure 30: Hough Transform applied to UCSC Engineering 2 Floor 2 floor plan image with
non-maximum suppression and rho value of 1.

Figure 31: Hough Transform applied to UCSC Science and Engineering Library floor plan image
with non-maximum suppression and rho value of 1.

To address this issue, we introduce non-maximum suppression, as demonstrated in Figures 30
and 31. Non-maximum suppression is a technique that helps reduce the number of duplicate
and overlapping lines by suppressing lines that are close together in both the rho (distance from

the origin) and theta (angle) dimensions. The implemented algorithm iterates through the
detected lines, compares their rho and theta values, and only retains the strongest lines that are
not within a specified tolerance range of each other. By applying non-maximum suppression, we
obtain a cleaner output with fewer redundant lines, enhancing the clarity and interpretability of
the detected lines.

Figure 32: Hough Transform applied to UCSC Engineering 2 Floor 2 floor plan image with
non-maximum suppression and rho value of 0.1.

Figure 33: Hough Transform applied to UCSC Science and Engineering Library floor plan image
with non-maximum suppression and rho value of 0.1.

Figures 32 and 33 showcase the Hough Transform output with improved non-maximum
suppression and a decreased rho resolution. By decreasing the rho resolution, we effectively
increase the number of bins in the accumulator's rho dimension. This finer granularity allows the
transform to detect subtle variations in the distance of lines from the origin. Consequently, the
Hough Transform can distinguish between lines that are nearly parallel or in close proximity to
each other, which might otherwise be grouped together under a coarser rho setting. The
resultant image exhibits a significant improvement in line detection accuracy, with almost all the
prominent lines in the image being correctly identified as distinct entities.

It is important to note that despite the enhancements achieved through improved non-maximum
suppression and decreased rho resolution, some lines may still be absent in the final output.
This can be attributed to various factors, including the selected threshold values, the presence
of noise or discontinuities in the image, or inherent limitations of the Hough Transform algorithm.
To further optimize the line detection results, additional techniques such as fine-tuning the
parameters, applying advanced pre-processing or post-processing methods, or exploring
alternative line detection algorithms can be considered.

In conclusion, the experimental results presented in this section demonstrate the significant
impact of non-maximum suppression and rho resolution on the performance of the Hough
Transform for line detection. By implementing these techniques, we can effectively reduce the
number of duplicate and overlapping lines, improve the separation of closely spaced lines, and
enhance the overall accuracy of line detection in images. The findings highlight the importance
of carefully tuning the parameters and applying appropriate post-processing methods to obtain
optimal results when utilizing the Hough Transform for line detection tasks.

V. Discussion

A. Interpretation of Results

The results of this study underscore significant advancements in the automatic vectorization of
architectural floor plans. The integration of computer vision techniques, particularly
convolutional neural networks (CNNs) and Hough Transform, has proven effective in enhancing
the accuracy and clarity of vectorized horizontal and vertical line outputs from raster images.
The DeepFloorPlan algorithm, with its room-boundary-guided attention mechanism,
demonstrated robust performance in identifying and delineating architectural elements such as
walls and doors, even in complex floor plans.

The implementation of tiling algorithms was crucial in maintaining high-resolution detail across
large floor plan images, ensuring that the CNN could process each segment effectively without
loss of detail. Post-processing techniques, such as the enhanced non-maximum suppression in
the Hough Transform, significantly reduced the occurrence of duplicate and overlapping lines,
thereby improving the overall precision of the line detection process.

Moreover, the extraction of PostScript commands from some architectural PDFs provides a
novel approach to assess the accuracy of this vectorization methodology. PostScript, a page
description language used in the electronic and desktop publishing areas, enables precise
rendering of document layouts and images, which includes architectural drawings. By parsing
PostScript commands embedded in PDFs, we can directly compare the original commands with
the vectorized outputs, thus providing a measurable benchmark for the precision of our
vectorization techniques.

The study's findings highlight the efficacy of combining advanced image processing techniques
with deep learning models to achieve superior results in the vectorization of architectural floor
plans.

B. Challenges Encountered and Overcome

Throughout the research, several challenges were encountered and effectively addressed. One
significant challenge was dealing with the noise and textual elements present in raster floor plan
images, which often interfered with the vectorization process. The application of Optical
Character Recognition (OCR) for text removal, followed by inpainting techniques to fill in the
gaps, successfully mitigated this issue, resulting in cleaner images for processing. Another
challenge was the computational limitations associated with processing large images using
CNNs. This was overcome by implementing a tiling algorithm that segmented the images into
smaller, manageable tiles, allowing for efficient processing without loss of detail. Additionally, the
problem of duplicate and overlapping lines detected by the Hough Transform was resolved
through the development of an improved non-maximum suppression algorithm, which refined
the line detection results and ensured the clarity and precision of the vectorized outputs. These
solutions collectively enhanced the robustness and reliability of the proposed vectorization
methodology, demonstrating its potential for practical application in various fields requiring
precise digital representations of architectural floor plans.

VI. Implications

A. Application to Semantic Interior Mapology (SIM)

The potential future integration of advanced automatic vectorization techniques into the
Semantic Interior Mapology (SIM) toolbox would significantly enhance its functionality and
efficiency. SIM is designed to convert architectural floor plans into interactive 3D visualizations
[17], and the incorporation of automatic vectorization streamlines this process. By leveraging the
precise and automated vectorization methods developed in this study, the SIM toolbox could
quickly and accurately trace floor plans, converting raster images into detailed vectorized maps.
This process is facilitated by the Map Conversion toolkit within SIM, which now benefits from the
ability to automatically detect and delineate architectural features such as walls and doors with

high accuracy. Moreover, the system enables users to select corners and identify rooms, further
simplifying the process of transforming floor plans into detailed 3D models.

The automated vectorization process involves using convolutional neural networks (CNNs) and
Hough Transform techniques to identify and trace the structural elements of floor plans. This
integration would allow SIM to handle a variety of architectural styles and complexities with
minimal manual input, significantly reducing the time and effort required to prepare floor plans
for 3D visualization. The vectorized outputs are then seamlessly transformed into the SIM file
format, which can be converted into GeoJSON for use with mapping platforms like
OpenStreetMap and Mapbox.

B. Practical Applications in Various Industries

The advancements in vectorization techniques have broad implications across multiple
industries. In urban planning and real estate, the ability to quickly and accurately convert floor
plans into detailed digital maps enhances the efficiency of project planning and property
management. These vectorized maps can be seamlessly integrated into geographic information
systems (GIS), enabling detailed spatial analysis and decision-making. In the field of
architecture and construction, precise digital representations of floor plans facilitate better
design, remodeling, and construction management processes.

C. Enhancements in Navigational Aids and Spatial Orientation

The improved vectorization techniques significantly enhance the development of navigational
aids, particularly for individuals with visual impairments. Accurate and detailed digital maps of
building interiors are crucial for creating effective navigational tools that provide clear and
reliable guidance. By integrating these high-fidelity vector maps with real-time location data,
developers can create applications that offer precise directions and spatial orientation cues,
thereby improving the autonomy and mobility of visually impaired users. These advancements
also support the development of advanced navigation systems in large public spaces such as
airports, shopping malls, and educational institutions, enhancing the overall user experience by
providing intuitive and accessible navigation solutions.

D. Contributions to the Field of Computer Vision

The study's contributions extend beyond practical applications, significantly advancing the field
of computer vision. The integration of CNN-based feature recognition with advanced image
processing techniques sets a new benchmark for the accuracy and efficiency of floor plan
vectorization. This research demonstrates the potential of deep learning models to handle
complex and diverse architectural layouts, addressing limitations of traditional vectorization
methods. The enhanced algorithms for noise removal, line detection, and feature extraction
contribute to the development of more robust and scalable solutions for automated map
generation. These innovations open new avenues for research in computer vision, particularly in

the areas of architectural image analysis and digital map creation, paving the way for further
advancements and new applications in spatial data analysis and visualization.

VII. Conclusion

A. Summary of Findings

This research has demonstrated significant advancements in the automatic vectorization of
architectural floor plans, leveraging state-of-the-art computer vision techniques and deep
learning models. The integration of convolutional neural networks (CNNs) with advanced image
processing methods, such as the Hough Transform and enhanced non-maximum suppression,
has markedly improved the accuracy and clarity of vectorized outputs from raster images. The
study highlights the potential for these techniques to enhance tools like the Semantic Interior
Mapology (SIM) toolbox, which aims to convert complex floor plans into detailed, interactive 3D
visualizations. Key achievements include the efficient handling of various architectural styles
and the significant reduction in manual input required for floor plan conversion.

B. Conclusion Drawn from the Research

The research concludes that the developed automatic vectorization techniques provide a robust
and scalable solution for converting architectural floor plans into high-fidelity digital maps. These
techniques address several longstanding challenges in the field, such as noise interference and
the imprecision of traditional vectorization methods. By enhancing the accuracy of feature
detection and line tracing, the proposed approach not only improves the quality of digital floor
plans but also expands their applicability across various industries. The findings suggest that
integrating these methods into tools like the SIM toolbox could significantly enhance their utility
and potential for widespread adoption in fields requiring precise spatial data representation and
analysis.

C. Recommendations for Future Research

Future research should focus on further refining the vectorization algorithms to handle even
more complex and varied architectural designs. Enhancements could include developing
techniques to better manage curved and irregular shapes, as well as improving the robustness
of the algorithms against different types of noise and distortions commonly found in scanned
images. A key area for future exploration is the improvement of room detection and recognition
capabilities. This involves enhancing the algorithms to more accurately identify and label distinct
rooms and spaces within floor plans, which is crucial for applications in building management,
interior design, and navigation systems. Advancing the precision of room recognition would
facilitate more detailed and useful spatial data, enabling better integration with systems like SIM
that rely on accurate indoor mapping.

Additionally, exploring the integration of these vectorization methods with real-time data
processing and augmented reality applications could significantly expand their utility. Research
should also consider optimizing the computational efficiency of the algorithms to facilitate their
deployment on mobile devices and other resource-constrained platforms. Finally, further studies
could investigate the application of these techniques to 3D models and elevation drawings,
broadening their scope and enhancing their contribution to the fields of architecture, urban
planning, and beyond.

References

[1] Z. Zeng, X. Li, Y. K. Yu, and C.-W. Fu, "Deep Floor Plan Recognition using a Multi-task
Network with Room-boundary-Guided Attention," in Proceedings of the IEEE International
Conference on Computer Vision, 2019.

[2] C. Liu, J. Wu, P. Kohli and Y. Furukawa, "Raster-to-Vector: Revisiting Floorplan
Transformation," 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy,
2017, pp. 2214-2222, doi: 10.1109/ICCV.2017.241.

[3] P. de, "Vectorization of Architectural Floor Plans," 2019 Twelfth International Conference on
Contemporary Computing (IC3), Noida, India, 2019, pp. 1-5, doi: 10.1109/IC3.2019.8844930.

[4] W. Song, M. M. Abyaneh, M. A. A. Shabani, and Y. Furukawa, "Vectorizing Building
Blueprints," in Proceedings of the Asian Conference on Computer Vision (ACCV), Dec. 2022,
pp. 1044-1059.

[5] Bingchen Yang, Haiyong Jiang, Hao Pan, and Jun Xiao. “Vectorfloorseg: Two-stream graph
attention network for vectorized roughcast floorplan segmentation.” In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1358–1367, 2023.

[6] Kim, S.; Park, S.; Kim, H.; Yu, K. “Deep floor plan analysis for complicated drawings based
on style transfer.” J. Comput. Civ. Eng. 2021, 35, 04020066.

[7] O’Shea, K.; Nash, R. An introduction to convolutional neural networks. arXiv 2015,
arXiv.1511.08458 DOI: 10.48550/arXiv.1511.08458.

[8] Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A Survey of Convolutional Neural Networks:
Analysis, Applications, and Prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, pp.
6999–7019.

[9] S. Albelwi and A. Mahmood, "A framework for designing the architectures of deep
convolutional neural networks," Entropy, vol. 19, no. 6, p. 242, 2017.

[10] A. Singh, K. Bacchuwar, and A. Bhasin, "A survey of OCR applications," International
Journal of Machine Learning and Computing, vol. 2, no. 3, p. 314, 2012.

[11] P. Reddy, M. Gharbi, M. Lukac, and N. J. Mitra, "Im2vec: Synthesizing vector graphics
without vector supervision," in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 7342-7351, 2021.

[12] A. Carlier, M. Danelljan, A. Alahi, and R. Timofte, "DeepSVG: A hierarchical generative
network for vector graphics animation," Advances in Neural Information Processing Systems,
vol. 33, pp. 16351-16361, 2020.

[13] A. Kalervo, J. Ylioinas, M. Häikiö, A. Karhu, and J. Kannala, "Cubicasa5k: A dataset and an
improved multi-task model for floorplan image analysis," in Proceedings of the 21st
Scandinavian Conference on Image Analysis (SCIA 2019), Norrköping, Sweden, June 11-13,
2019, pp. 28-40. Springer, 2019.

[14] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, "Image-to-image translation with conditional
adversarial networks," in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1125-1134, 2017.

[15] C. Harris, M. Stephens, et al., "A combined corner and edge detector," in Alvey Vision
Conference, vol. 15, no. 50, pp. 10-5244, 1988.

[16] J. Shi et al., "Good features to track," in 1994 Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pp. 593-600, 1994.

[17] V. Trinh and R. Manduchi, "Semantic interior mapology: A toolbox for indoor scene
description from architectural floor plans," in 24th International Conference on 3D Web
Technology, vol. 2019, pp. 1-1, 2019.

[18] “OpenCV: Harris Corner Detection,” Opencv.org, 2024.
https://docs.opencv.org/3.4/dc/d0d/tutorial_py_features_harris.html.

‌[19] “OpenCV: Shi-Tomasi Corner Detector & Good Features to Track,” Opencv.org, 2024.
https://docs.opencv.org/4.x/d4/d8c/tutorial_py_shi_tomasi.html.
‌
[20] T. Y. Zhang and C. Y. Suen, "A fast parallel algorithm for thinning digital patterns,"
Communications of the ACM, vol. 27, no. 3, pp. 236-239, 1984.

[21] Z. Guo and R. W. Hall, "Parallel thinning with two-subiteration algorithms," Communications
of the ACM, vol. 32, no. 3, pp. 359-373, 1989.

[22] "Raster vs Vector". Gomez Graphics Vector Conversions. Retrieved 23 May 2024. “Raster
images are created with pixel-based programs or captured with a camera or scanner. They are
more common in general such as jpg, gif, png, and are widely used on the web.”

[23] UC Santa Cruz, “Floor Plans | BSOE Facilities,” UCSC BSOE Facilities, 2024.
https://facilities.soe.ucsc.edu/floor-plans (accessed May 23, 2024).

[24] UC Santa Cruz, “Library Guides: Science & Engineering Library: S&E Library Floor Plans,”
UC Santa Cruz University Library, 2024.
https://guides.library.ucsc.edu/science-and-engineering-library/floor-plans (accessed May 23,
2024).
‌

