
 

Title: Towards Automatic Vectorization of Architectural Floor Plans 
 
Abstract: This research delves into the significant challenge of converting detailed architectural 
raster floor plan images into simplified, precise digital maps through the application of 
state-of-the-art computer vision and deep learning techniques, coupled with advanced image 
processing strategies. It specifically targets the shortcomings of prevalent wall extraction 
algorithms that often fail to deliver clear and accurate representations suitable for various 
practical uses. The core of the study is an innovative methodology that harnesses the 
capabilities of neural network models, enhanced by the implementation of Hough transforms, 
morphological operations, and feature extraction, to improve the transformation process 
markedly. A series of rigorous experiments were conducted to refine and validate the proposed 
methodology, focusing on the iterative enhancement of the clarity and precision of the resultant 
digital maps. The outcomes demonstrate a leap forward in the quality of the digital maps 
generated from architectural floor plans, with the integrated approach yielding significantly 
better-defined and more accurate maps than traditional methods. This advancement has 
profound implications for fields requiring precise spatial representations, such as urban 
planning, emergency response planning, real estate, and interior design, as well as for creating 
navigational aids that enhance the autonomy and mobility of the visually impaired. By improving 
the fidelity of digital map translations, this research contributes to the body of knowledge in 
computer vision, providing a scalable solution for automated map generation. The findings also 
open avenues for subsequent research to further refine the conversion process and explore 
new applications in various industries that depend on detailed spatial data. 
 
 
I. Introduction 
 
A. Background and Significance 
 
The advent of digital technology has ushered in a new era of architectural design and 
representation. With the growing complexity of architectural plans, there is an increasing need 
to translate these intricate designs into accessible and manageable formats. Raster images of 
architectural floor plans, while rich in detail, present challenges in terms of clarity and usability, 
particularly when they need to be integrated into various digital applications. These raster 
images, which represent visual data as a grid of individually colored pixels, are ideal for detailed 
and complex imagery but can be problematic due to their fixed resolution, which limits scaling 
and editing capabilities without loss of quality. 
 



 

 
Figure 1: Sample of a raster image which represents visual data as a grid of individually colored 
pixels [22] 
 
 

 
Figure 2: This image shows the UCSC Science and Engineering Library floor plan, a raster input 
image [24] 



 

 
The ability to convert these raster images into vectorized formats is of paramount importance as 
it allows for scalable, precise, and easily manipulable representations of architectural spaces. 
Vector graphics, which represent images using paths rather than pixels, are ubiquitous in 
industrial designs [5], including graphic designs [11], 2D interfaces [12], and floor plans [13]. 
 
Traditional methods of vectorization, while foundational, have proven inadequate in dealing with 
the diversity and complexity found in modern floor plans. Wall extraction algorithms, a crucial 
step in this process, have been prone to inaccuracies, leading to a gap in the efficiency and 
reliability of the vectorized output. These gaps not only hinder the practical applications of floor 
plans but also limit their use in advanced simulations and analytical models that professionals in 
urban planning, real estate, and interior design rely upon. 
 
The significance of this research lies in its potential to revolutionize the way architectural floor 
plans are processed and interpreted. By leveraging the latest advancements in computer vision 
and deep learning, the study proposes a sophisticated approach to address these longstanding 
issues. The development of an integrated system that employs noise removal, optical character 
recognition (OCR), and a series of advanced vectorization techniques represents a leap forward 
in the field. It stands to significantly enhance the digital manipulation of floor plans, providing a 
level of detail and accuracy that was previously unattainable. 
 
 
B. Purpose of the Study 
 
The primary purpose of this study is to develop an effective and reliable method for converting 
raster images of architectural floor plans into vectorized digital maps. This conversion is crucial 
for several reasons: it enhances the clarity and utility of the plans, facilitates their integration into 
various digital platforms and applications, and enables precise scaling and manipulation of the 
spatial data they contain. 
 
 



 

 
Figure 3: This image shows the input raster image (in black) overlaid with the extracted walls (in 
blue). 
 
 
Despite the advancements in computer-aided design (CAD) and geographic information 
systems (GIS), the transition from raster to vector formats remains a challenge due to the noise 
inherent in scanned images, the complexity of architectural drawings, and the presence of 
non-geometric elements such as textual annotations. To overcome these hurdles, the study 
aims to create a sophisticated toolchain that incorporates a series of image processing 
techniques for noise removal, an innovative convolutional neural network (CNN) based 
algorithm [1] for accurate feature recognition, and advanced vectorization procedures. 
 
The objective of the research is to streamline the process by automating the vectorization of 
floor plans, thereby reducing the time and effort traditionally required for manual conversion. 
This automation is expected to lead to a more standardized and efficient production of digital 
maps, ultimately facilitating a wide array of applications in real estate, urban planning, and 
beyond. 
 
Additionally, the study intends to advance the understanding and capabilities of OCR in the 
context of architectural floor plans by customizing its application to recognize and remove text 



 

without compromising the integrity of the underlying spatial data. This aspect is critical as textual 
noise can significantly hinder the accuracy of feature detection and vectorization. 
 
Finally, the study aspires to explore the efficacy of multiple techniques—including bitwise 
masks, corner detection, contour finding, skeletonization, and Hough transforms—in conjunction 
with each other. By systematically analyzing and combining these techniques, the research 
aims to propose a composite methodology that outperforms existing algorithms in both precision 
and efficiency. 
 
Through achieving these objectives, the study will not only contribute a novel approach to the 
field of architectural image processing but will also serve as a foundation for future research, 
potentially leading to further advancements and new applications of computer vision and 
machine learning in the analysis and interpretation of architectural and spatial data. 
 
C. Thesis Statement 
 
This thesis posits that the integration of advanced image processing techniques, coupled with 
the application of a specialized convolutional neural network algorithm and a comprehensive 
vectorization process, can significantly enhance the conversion of architectural raster floor plans 
into vectorized digital maps. By addressing the limitations inherent in current vectorization 
methodologies—specifically, the noise interference and the imprecision of geometric feature 
extractions—the proposed approach aims to deliver a substantial improvement in the clarity, 
accuracy, and usability of the digitized floor plans. The research contends that such an 
integrated system can transform the landscape of architectural design, urban planning, and 
related fields by providing a reliable, efficient, and scalable solution for digital map generation, 
thereby expanding the scope and depth of spatial analysis and its subsequent applications. 
 
D. Scope and Delimitation of Research 
 
The scope of this research is deliberately focused on the development and validation of an 
automated system for the vectorization of architectural floor plans. It encompasses the 
investigation and application of noise removal techniques tailored to the context of raster 
images, the adaptation and optimization of a convolutional neural network algorithm known as 
DeepFloorPlan, and the implementation of a comprehensive suite of image processing and 
vectorization techniques. 
 
Delimitations of the study are established to maintain a tight research focus and feasible project 
boundaries. The research will concentrate specifically on the vectorization of 2D floor plans and 
will not extend to 3D models or elevation drawings. The types of floor plans to be considered will 
be restricted to residential and commercial buildings, excluding specialized structures like 
industrial complexes, which often require a different set of parameters and considerations. 
 
In terms of image processing, while the study will address common forms of noise found in 
raster images, such as speckles and smudges due to scanning, it will not cover the correction of 



 

distortions due to perspective or warping of paper plans. The OCR aspect will aim to eliminate 
textual noise from images but will not delve into the recognition and extraction of text for digital 
documentation purposes. 
 
The convolutional neural network will be tailored to identify and process architectural features 
within floor plans, and the research will not include the development of new neural network 
architectures but will rather focus on optimizing existing models for the task at hand. 
 
Vectorization will involve several advanced techniques; however, the research will delimit its 
scope to those that are well-suited to the 2D representation of architectural plans. Techniques 
that are not commonly applied in the floor plan vectorization domain, or those that require an 
excessive computational load disproportionate to their added value, will be excluded from this 
study. 
 
The final output of the research will be a set of digital maps in a vector format, and the study will 
not extend to the integration of these maps into other systems or the exploration of their use in 
real-time applications. The research aims to build a robust foundation upon which such 
integrations and applications can be developed in future studies. 
 
II. Literature Review 
 
A. Current Methods in Architectural Floor Plan Vectorization 
 
The vectorization of architectural floor plans is a complex domain that has seen considerable 
transformation over the years. Historically, the process relied heavily on heuristic-based 
methods that utilized low-level image processing techniques. These traditional methods often 
incorporated thresholding, edge detection, and morphological operations to extract key features 
from raster images of floor plans. Typically, these approaches aimed to identify essential 
architectural primitives like walls, doors, and windows by detecting lines and shapes and 
applying rules grounded in standard architectural drawing conventions [2]. 
 
However, the traditional techniques frequently struggled with handling complex or noisy images, 
proving to be less effective with varying styles and qualities of architectural drawings. 
 
In response to these challenges, the field has seen a paradigm shift towards incorporating more 
sophisticated algorithms that leverage the advancements in artificial intelligence, particularly 
through the application of deep learning technologies. A notable method by De introduces a 
sophisticated approach that differentiates between thick and thin lines representing boundary 
and interior walls, respectively [3]. This method improves upon traditional techniques by 
incorporating morphological operations and geometric analysis, thereby enhancing the 
efficiency and accuracy of vectorizing complex architectural drawings. 
 
Further advancements in the field are exemplified by the work of Song et al., who developed a 
specialized algorithm for vectorizing high-definition blueprints that contain intricate architectural 



 

details. This innovative approach transcends simple line detection by integrating advanced 
techniques, including semantic segmentation using deep learning, refinement through 
generative adversarial networks (GANs), and heuristic-based simplifications. This methodology 
not only captures finer details but also enhances the scalability of vectorization processes for 
digital applications, making significant strides over traditional methods [4]. 
 
Moreover, researchers such as Liu et al. have made significant contributions by improving 
vectorization accuracy using convolutional neural networks (CNNs) and integer programming to 
meticulously connect detected architectural features [2]. This development marks a significant 
departure from earlier methods and offers improved precision and recall in the extraction of floor 
plan features. Such advancements open new avenues for automating the processing of 
architectural drawings, thereby facilitating more efficient digital archiving and editing. 
 
Recent innovations also include the application of style transfer techniques for vectorization. 
Isola et al. introduced the use of Conditional GANs for style transfer [14], effectively altering the 
style of floorplans while preserving their structural information. This approach is particularly 
beneficial for unifying the style of diverse floorplan drawings, which simplifies subsequent 
vectorization and analysis tasks. 
 
Another significant advancement is the introduction of the VectorFloorSeg system by Yang et 
al., which employs a two-stream Graph Attention Network to improve the segmentation and 
vectorization of roughcast floorplans. This method not only enhances the precision of the 
vectorization process but also contributes to more structured and analyzable vector outputs [5]. 
 
The transition to more intelligent and adaptable vectorization systems signifies a major 
advancement in the ability to handle a broader spectrum of complexities found in floor plans. 
The integration of machine learning not only mitigates the limitations of traditional image 
processing techniques but also significantly enhances the automation and refinement of the 
vectorization process. This progress expands the practical applications of vectorized outputs in 
architectural, engineering, and construction industries, promising more robust tools for 
professionals in these fields. 
 
 
B. Image Processing Techniques and Their Limitations 
 
Image processing techniques play a crucial role in the vectorization of architectural floor plans, 
but they are not without limitations. Traditional methods, which have been heavily reliant on 
heuristic approaches, often struggle with the diversity and complexity of floor plan designs. 
These traditional techniques typically employ a variety of strategies such as edge detection, 
thresholding, and morphological operations to extract meaningful features from raster images. 
While effective in certain scenarios, these methods can falter with images that contain noisy 
data or intricate details, often leading to incomplete or inaccurate vectorization. 
 



 

The challenges are further compounded by the diverse nature of architectural drawings. For 
instance, floor plans can vary significantly in style, notation, and quality depending on the 
source, which may include scanned paper plans or digitally created documents. Each type 
presents unique challenges, such as variations in line thickness, superimposed text and 
symbols, or faded lines in older documents. These factors often necessitate tailored approaches 
for different types of images, limiting the scalability of traditional processing techniques. 
 
Recent advancements in deep learning have provided new avenues for addressing these 
limitations. For example, the integration of convolutional neural networks (CNNs) has been 
shown to enhance feature recognition capabilities significantly. However, while these models 
offer improved accuracy and adaptability, they require substantial computational resources and 
extensive training data, which can be a barrier to implementation. Additionally, deep learning 
models may still struggle with highly irregular patterns and non-standard layout designs often 
found in customized or non-traditional architectural drawings. 
 
Moreover, a novel approach proposed by Kim et al. explores the use of style transfer techniques 
to preprocess floor plans into a unified style before vectorization [6]. This method shows 
promise in handling complicated drawings characterized by overlapping graphics and irregular 
notation, which are typical issues that confound standard image processing techniques. By 
converting various formats of floor plans into a unified style using conditional generative 
adversarial networks (cGANs), the vectorization process becomes more straightforward and 
less susceptible to the common errors of traditional methods. However, this technique, while 
innovative, still faces challenges in consistency across diverse architectural styles and must be 
finely tuned to manage the subtleties of different building element representations. 
 
In summary, while image processing techniques have evolved considerably, their effectiveness 
is often curtailed by the inherent limitations of dealing with complex and diverse architectural 
data. The ongoing development of machine learning models presents potential solutions but 
also introduces new challenges in terms of data requirements and computational demands. As 
these technologies continue to advance, further research is needed to fully harness their 
capabilities and mitigate their limitations. 
 
C. Advances in Convolutional Neural Networks for Image Analysis 
 



 

 
Figure 4: Convolutional Neural Network Architecture [9] 
 
Convolutional Neural Networks (CNNs) have emerged as a cornerstone in the field of deep 
learning, particularly revolutionizing tasks in image analysis due to their unique architectural 
features. These networks leverage layered convolutions, which are mathematical operations 
that filter input data to extract increasingly complex features in hierarchical layers. This process 
is pivotal in handling high-dimensional data like images, where traditional neural networks falter 
due to the sheer volume of connections and parameters involved. 
 
CNNs are distinguished from traditional neural networks by their ability to enforce a local 
connectivity pattern between neurons of adjacent layers, where each connection learns to 
recognize a specific feature of the input [7]. For instance, in the context of image processing, the 
first layer might learn to detect edges, while deeper layers might recognize more complex 
shapes or specific objects [8]. This is achieved through the use of learnable filters or kernels 
that, when applied across an image, generate feature maps that summarize the presence of 
detected features from the input. 
 
A significant advantage of CNNs is their use of shared weights in convolutional layers, which 
drastically reduces the number of parameters, making deep learning models more feasible to 
train. This parameter sharing also aids in generalizing learned features across different parts of 
the image, embodying a form of translation invariance, which is crucial for tasks like image 
classification and object detection. 
 
Recent advancements in CNN architecture have further pushed the boundaries of this 
technology. For example, innovations such as deep residual learning have allowed the 
construction of networks that are much deeper than was previously possible, enhancing 
learning capabilities without a corresponding increase in training complexity. This approach, 
used in models like ResNet, introduces skip connections that allow gradients to flow through the 
network directly, mitigating the vanishing gradient problem associated with training very deep 
networks [8]. 
 



 

Furthermore, novel architectures and techniques continue to refine the efficacy and efficiency of 
CNNs. The introduction of modules like Inception layers, which allow CNNs to choose from 
among multiple filter sizes in each layer, provides a way to capture information at various scales 
and complexities. This adaptability makes CNNs highly effective for a range of tasks from simple 
image recognition to complex scenarios like scene understanding and medical image analysis. 
 
In the realm of practical applications, CNNs have been pivotal in advancing computer vision, 
enabling real-world applications such as facial recognition, autonomous vehicle navigation, and 
automated medical diagnostics. The ability of CNNs to learn from vast amounts of unstructured 
image data has opened up possibilities that were previously beyond the reach of machine 
learning technologies. 
 
In conclusion, the continuous evolution of CNN architectures and the integration of new 
convolutional techniques are expanding the frontiers of what can be achieved with image 
analysis, pushing forward the capabilities of artificial intelligence in interpreting and 
understanding visual information. The ongoing research and development in this area suggest 
that CNNs will remain at the forefront of AI technologies, driving innovations across various 
sectors of industry and science. 
 
The use of convolutional neural networks (CNNs) in the analysis and vectorization of 
architectural floor plans represents a significant advancement in the field of computer vision. 
CNNs have revolutionized how complex patterns and features are extracted from images, 
providing more robust and accurate vectorization capabilities than traditional methods.  
 
One notable advancement is demonstrated by Liu et al., who implemented CNNs to achieve 
breakthroughs in corner detection and the connection inference of architectural elements. Their 
system, designed for consumer-grade floorplan images, achieves over 90% precision and recall 
by combining CNNs for detecting corners with binary integer programming for connecting these 
detected features [2]. This approach highlights the potential for CNNs to significantly enhance 
the vectorization process by improving the accuracy of feature detection and connection 
inference. 
 
In another development, Song et al. presented a novel vectorization algorithm specifically 
designed for high-definition blueprints with intricate architectural details. Their method involves a 
multi-stage process where CNNs play a crucial role in segmenting and refining the vectorization 
of complex blueprint images. The initial step involves rough semantic segmentation using 
off-the-shelf algorithms, followed by CNN-driven inference to identify missing smaller 
architectural components and refine them using a generative adversarial network [4]. This 
approach underscores the adaptability of CNNs to manage the unique challenges posed by 
detailed architectural plans, ensuring detailed and precise vector outputs. 
 
Moreover, Zeng et al. introduced a multi-task network that employs room-boundary-guided 
attention mechanisms within a CNN framework to enhance floor plan recognition [1]. This 
method demonstrates how CNNs can be specialized to focus on specific elements of a floor 



 

plan, such as room boundaries, to improve the overall accuracy and efficiency of vectorization 
processes. 
 
These examples illustrate the significant role that CNNs have come to play in the vectorization 
of architectural drawings. By leveraging deep learning techniques, researchers have been able 
to address some of the traditional challenges associated with vectorization, such as the 
accurate detection of fine details and the effective processing of complex images. The ongoing 
advancements in CNN applications continue to push the boundaries of what can be achieved in 
architectural image analysis, paving the way for more automated and precise vectorization 
techniques. 
 
 
D. The Role of OCR in Image Processing 
 
Optical Character Recognition (OCR) plays a pivotal role in the field of image processing, 
transforming the way text data is extracted and utilized across various applications throughout a 
spectrum of industries [10]. OCR technology converts different types of text data, such as 
handwritten, typewritten, or printed text, into machine-readable forms. This conversion is critical 
for many applications, ranging from automated form processing to intelligent document 
management systems. 
 
The general function of OCR involves the detection, segmentation, and identification of 
characters within images. This process begins with pre-processing steps such as noise 
reduction, normalization, and binarization, where the image is converted into a binary image to 
simplify the detection of text against the background. Advanced techniques use adaptive 
thresholding methods to handle different lighting conditions and backgrounds, enhancing the 
robustness of text detection. 
 
After pre-processing, character segmentation is performed, which isolates individual characters 
or groups of characters. This segmentation is crucial for the subsequent step of character 
recognition, where each segment is compared against a database of known characters using 
pattern recognition algorithms such as neural networks or support vector machines. Modern 
OCR systems employ deep learning techniques, particularly convolutional neural networks, to 
improve recognition accuracy even further. 
 
OCR technology has been particularly transformative in sectors that require the digitization of 
large volumes of documents, such as the legal, banking, and healthcare industries. In legal 
applications, OCR helps manage case files by converting volumes of printed legal documents 
into searchable digital formats, thereby speeding up case review processes and reducing 
physical storage requirements. In banking, OCR facilitates the processing of cheques and 
financial documents, automating data entry tasks that were traditionally performed manually, 
thus increasing efficiency and reducing error rates. 
 



 

Moreover, in healthcare, OCR technology is used to digitize patient records and prescriptions, 
integrating them into electronic health records systems. This digitization supports better data 
management, improves the accessibility of information for medical staff, and enhances patient 
care by providing quick access to patient histories. 
 
In the context of architectural floor plans, OCR is employed to remove non-geometric elements 
such as texts and annotations from the images before they undergo further processing for 
vectorization. This removal is crucial as it ensures that the vectorization process focuses purely 
on architectural elements like walls and doors without the interference of text, which might be 
misinterpreted as architectural details. 
 
The advancements in OCR technologies have expanded its application scope, facilitating the 
extraction and digital transformation of textual content from images across various fields. This 
not only enhances data accessibility and utility but also significantly improves the efficiency of 
information management systems. 
 
 
III. Methodology 
 
 
A. Data Collection and Source 
 
The foundation of this research hinges on the comprehensive collection and careful selection of 
architectural floor plans. For this study, I am utilizing publicly available floor plans from the 
University of California, Santa Cruz (UC Santa Cruz). These documents provide a detailed 
representation of various campus buildings, including academic facilities, residential structures, 
and administrative offices. The choice of UC Santa Cruz as a data source is strategic, offering a 
diverse array of building layouts and designs that are essential for a robust analysis. 
 
These floor plans are sourced directly from the UC Santa Cruz’s official websites, where they 
are made available for public access. This transparency not only facilitates academic and 
research purposes but also ensures that the data used in this study is up-to-date and 
representative of real-world architectural practices. Each floor plan is provided in a 
high-resolution raster format, which presents both a challenge and an opportunity for the 
vectorization process. 
 
The collection process involved systematically downloading these floor plans, ensuring each file 
was correctly labeled with the building’s name and its specific use within the campus. This 
meticulous approach to data collection is crucial for maintaining the integrity and organization of 
the research dataset, which in turn supports the subsequent stages of image processing and 
vectorization. 
 
By utilizing these publicly accessible documents, this research adheres to legal and ethical 
standards, avoiding any issues related to copyright or restricted access. Moreover, the wide 



 

variety of floor plans available from a single, cohesive source allows for a controlled study of 
vectorization techniques across different architectural styles and functional requirements of 
campus buildings. This methodological choice not only enriches the research but also enhances 
its applicability to educational campus planning and management. 
 
 
B. Preprocessing of Raster Floor Plan Images 
 
The preprocessing of raster floor plan images is a critical step in preparing the data for effective 
vectorization. This phase involves several techniques aimed at enhancing the quality of the 
images and ensuring that only relevant architectural features are retained for analysis. 
 
 
1. OCR Implementation with Keras for Text Removal 
 
The preprocessing phase of raster floor plan images plays a critical role in the successful 
vectorization of architectural details. A key challenge in this process is the removal of text 
labels, which, although essential for human readers, are often a source of noise that can disrupt 
automated analysis. To address this, we employ the pre-trained Optical Character Recognition 
(OCR) model provided by `keras_ocr`, which is specially designed to detect and decode text 
within images effectively. 
 
In our methodology, the first step involves setting up an OCR pipeline using `keras_ocr`. This 
pipeline is configured to utilize a deep learning model that has been trained to recognize textual 
content within a wide variety of images. The model's robustness makes it particularly suitable for 
dealing with the complex backgrounds and varied text styles found in architectural floor plans. 
 
Once the pipeline is in place, each floor plan image is processed through this system. The 
model scans the entire image, identifying regions where text is present. For each detected text 
region, the model provides bounding box coordinates, which precisely define the location and 
extent of text within the image. These bounding boxes are crucial as they determine the areas 
that need to be addressed in the subsequent steps of the preprocessing phase. 
 
After text detection, the next step is to create a mask for the text areas identified by the OCR 
model. This mask is applied over the original image to cover all detected text regions. With the 
mask in place, we then apply an inpainting technique, which is a method used to reconstruct the 
areas obscured by the mask. Inpainting works by using information from the surrounding pixels 
to fill in the masked areas, effectively removing the text while preserving the continuity of the 
architectural elements in the image. 
 
The inpainting process is delicate as it must ensure that the filled areas blend seamlessly with 
the rest of the image, without leaving any traces of the original text or creating visual artifacts 
that could interfere with the accuracy of the vectorization process. The success of this step is 



 

critical as it produces a cleaned image that retains all necessary architectural details but without 
any of the disruptive textual information. 
 
Finally, the processed image, now cleared of text, is saved and prepared for the next stages of 
vectorization. This clean version of the floor plan is far more suitable for automated analysis, as 
it allows the vectorization algorithms to focus purely on architectural features without the 
interference of extraneous text. By using the `keras_ocr` model for text removal, we streamline 
the preprocessing of floor plans, ensuring high-quality inputs for our vectorization process, 
which in turn enhances both the efficiency and accuracy of our architectural analyses. 
 
2. Low-Level Image Processing Technique for Wall Filtering 
 
In the development phase of a vectorization technique, I experimented with a low-level image 
processing approach designed to enhance the clarity of walls in architectural floor plans. This 
method incorporated multiple OpenCV image processing techniques to refine the representation 
of walls, differentiating them more clearly from other elements within the images. Although this 
approach was ultimately not included in the final vectorization pipeline, it provides valuable 
insights into the complexity of image processing required for architectural drawings. 
 
The process began with Otsu’s thresholding, a technique that converts a grayscale image into a 
binary image by determining an optimal threshold value. This threshold value is chosen to 
minimize the intra-class variance of the black and white pixels, effectively highlighting 
architectural features like walls, which typically appear as darker lines against a lighter 
background. 
 
Following the thresholding, the technique employed noise removal through morphological 
operations, specifically using an opening operation composed of an erosion followed by dilation 
with a 3x3 kernel. The erosion helps remove small-scale noise by eroding away the boundaries 
of foreground regions, which include the walls, thereby eliminating isolated noise points. 
Subsequently, dilation is applied to smooth and restore the edges of the wall features, ensuring 
that the erosion does not overly diminish their presence. This sequence of opening—applying 
erosion followed by dilation—is performed twice to effectively reduce noise while preserving the 
integrity of larger structural elements like walls. 
 
To further refine the visibility of walls, additional dilations were performed. This step thickens the 
walls in the binary image, enhancing their prominence and ensuring they are distinct from minor 
artifacts or non-structural lines that might remain post-noise reduction. 
 
Additionally, a distance transform was utilized, which calculates the minimum distance from 
each foreground pixel to the nearest background pixel. By applying a threshold to this 
distance-transformed image, the method identifies regions most likely to be walls (sure 
foreground) and distinguishes them from less certain areas. This segmentation is crucial for 
reinforcing the definition of walls and ensuring that the vectorization process captures these 
critical architectural elements accurately. 



 

 
This low-level image processing technique, though not included in the final approach, helped us 
understand the challenges and potential solutions in processing complex architectural drawings, 
informing further development of more sophisticated methods like DeepFloorPlan for effective 
floor plan vectorization. 
 
 
C. Application of the DeepFloorPlan Algorithm 
 
The DeepFloorPlan algorithm significantly enhances the precision of architectural floor plan 
vectorization, outperforming traditional low-level image processing techniques through its use of 
advanced deep learning strategies. Grounded in the robust methodologies from the study "Deep 
Floor Plan Recognition using a Multi-task Network with Room-boundary-Guided Attention," 
DeepFloorPlan employs a convolutional neural network (CNN) to adeptly recognize and 
delineate various architectural elements. [1] This deep learning approach is superior in handling 
the complexities inherent in diverse architectural drawings, which often elude simpler, 
rule-based processing methods. The CNN effectively learns from a vast dataset of images, 
allowing it to adapt to and accurately process a wide array of floor plan designs and 
complexities. Moreover, DeepFloorPlan integrates a room-boundary-guided attention 
mechanism, which significantly enhances its ability to focus on and accurately segment crucial 
architectural features, an aspect where traditional methods generally falter. This capability 
ensures a higher level of precision and adaptability in processing floor plans, marking a 
substantial improvement over the conventional image processing approaches. 
 

 
Figure 5: DeepFloorPlan Architecture [1] 
 
1. Description of Convolutional Neural Network-based DeepFloorPlan 
 
DeepFloorPlan is a multi-task CNN that focuses on recognizing and differentiating between 
various elements of a floor plan, such as walls, doors, and different types of rooms. It employs a 
room-boundary-guided attention mechanism, which enhances the accuracy of room type 
prediction by focusing on the spatial relationships and boundaries within the floor plan. This 



 

mechanism allows the network to handle complex layouts with varying wall thicknesses and 
non-rectangular shapes more effectively than traditional image processing methods. 
 
A significant feature of DeepFloorPlan is its ability to process images by segmenting them into 
meaningful categories. For instance, in its typical operation, it segments rooms by type, coloring 
different room types with different colors. However, for the purposes of vectorization where such 
differentiation is unnecessary, we modify the output to render walls in black and all other 
elements in white. This simplification focuses the vectorization process on the structural 
elements of the floor plan, which are crucial for accurate digital representation. 
 

 
Figure 6: UCSC Engineering 2 Floor 2 floor plan image [23] 
 

 
Figure 7: A tile 
 

 



 

Figure 8: The tile from Figure 7 after being processed by DeepFloorPlan  
 
 

 
 
 
 
 
 
 
 

Figure 9: After all tiles are reassembled 
 
 
2. Implementation of Tiling Algorithm for Processing Large Images 
 
Given the constraints of neural networks in handling large images directly due to computational 
limits and the loss of resolution when scaling images down, we implement a tiling algorithm. 
This algorithm divides the original large floor plan images into smaller, manageable tiles, each of 
which can be individually processed by the DeepFloorPlan algorithm without the loss of detail 
that would occur from resizing the entire image. 
 
The tiling process involves segmenting the image into squares of a fixed size (e.g., 256x256 
pixels), processing each tile independently through DeepFloorPlan, and then reassembling the 
processed tiles to form the complete image. This method ensures that each portion of the floor 
plan is analyzed with the highest possible accuracy and detail, maintaining the integrity of the 
walls and boundaries throughout the image. 
 
To handle the potential issue of discontinuities between tiles, particularly at the boundaries 
where architectural features might be split across tiles, special care is taken in the reassembly 
process. We ensure that the reassembly maintains the continuity of architectural features, 
aligning segments perfectly to reconstruct the original layout accurately. 
 
The integration of the DeepFloorPlan algorithm with the tiling strategy enables us to effectively 
process floor plans of any size, overcoming the typical limitations associated with CNNs 
regarding input dimensions. This approach not only enhances the precision of the vectorization 
process but also scales efficiently to handle large datasets of architectural drawings. 
 
 
D. Post-processing Techniques for Vectorization 
 
While none of the post-processing techniques were ultimately utilized in the final vectorization 
approach for this project, exploring such methods provides valuable insights into potential 
applications for extracting additional information from floor plans.  



 

 
Techniques like Harris Corner Detection and the Shi-Tomasi Corner Detection Method are 
critical in computer vision for identifying features within an image that are pivotal for various 
analysis tasks. 
 
 
 
 
1. Harris Corner Detection Technique 

The Harris Corner Detection technique, developed by Chris Harris and Mike Stephens in 1988, 
is a widely used method for identifying corners and edges in an image. [15] This method relies 
on the principle that corners are characterized by significant changes in intensity in all 
directions. The Harris Corner Detector computes a corner response function  for each 
pixel in the image, which measures the change in intensity for a displacement of  in all 
directions: 

 

where  is the window function,  is the shifted intensity, and  is the 
intensity. 

To maximize this function  for corner detection, the Harris Corner Detector applies Taylor 
Expansion to the equation and uses mathematical steps to derive the final equation: 

 

where: 

 

Here,  and  are image derivatives in x and y directions respectively, which can be easily 
found using cv.Sobel(). 

After this, they create a score, basically an equation, which determines if a window can contain 
a corner or not: 

 

where , , and  and  are the eigenvalues of . The 
magnitudes of these eigenvalues decide whether a region is a corner, an edge, or flat. 
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Figure 10: Harris Corner Detection region categorization based on magnitude of eigenvalues 
[18] 

The Harris Corner Detector is robust to rotation and illumination changes but may struggle with 
scale invariance. It is computationally efficient and has been widely used in various computer 
vision applications, such as object tracking, image registration, and 3D reconstruction. 

 

 
Figure 11: Harris Corner Detection applied to floor plan image 
 
 
2. Shi-Tomasi Corner Detection Method 
 



 

Later in 1994, J. Shi and C. Tomasi made a small modification to the Harris Corner Detector in 
their paper "Good Features to Track," which shows better results compared to the Harris Corner 
Detector. [16] The scoring function in the Harris Corner Detector was given by: 
 

 
 
Instead of this, Shi-Tomasi proposed: 

 
 
If  is greater than a threshold value, it is considered as a corner. If we plot it in  space 
as we did in the Harris Corner Detector, we get an image where only when  and  are above 
a minimum value, , it is considered as a corner (green region of the below image). 
 

 
Figure 12: Depiction of the thresholding principle used in the Shi-Tomasi corner detection 
method, visualized in the eigenvalue space. The green area represents the region where both 
eigenvalues (λ1 and λ2) exceed a minimum threshold (λmin), identifying a strong corner. The 
orange and gray areas show where one or neither of the eigenvalues surpass the threshold, 
thus not qualifying as corners. [19] 
 
The Shi-Tomasi Corner Detection Method shares similar properties with the Harris method, such 
as rotation and illumination invariance. It is also computationally efficient and has been used in 
various computer vision tasks, including feature tracking and image matching. 
In the context of floor plan vectorization, corner detection techniques like Harris and Shi-Tomasi 
can be valuable for identifying key points and features within the floor plan image. These 
corners can serve as reference points for further analysis, such as room segmentation, wall 
detection, or symbol recognition. However, the specific application of these techniques would 
depend on the characteristics of the floor plan images and the desired level of detail in the 
vectorized output. 
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Figure 13: Shi-Tomasi Corner Detection applied to floor plan image 
 
 
 
 
 
 
 
 
 
3. Bitwise Masks for Junction and Centroid Detection 
 
In the realm of digital image processing for floor plan analysis, identifying the structure of 
spaces often necessitates discerning the lines and intersections that represent walls, doors, and 
other defining architectural features. A critical step in this process involves the extraction of 
horizontal and vertical lines which, in architectural drawings, typically delineate the boundaries 
of rooms and corridors. 
 
We use kernels designed to target specific shapes. For horizontal lines, a horizontal structuring 
element, elongated across the x-axis, helps to highlight and preserve lines that run left-to-right. 
Conversely, a vertical structuring element, extended along the y-axis, is used to emphasize lines 
that stretch top-to-bottom. These operations serve to clean the image of noise, ensuring that the 
horizontal and vertical elements stand out clearly. 
 
In addition to horizontal and vertical lines, diagonal lines can also hold significant structural 
information. Custom-shaped kernels, akin to diagonal matrices, are crafted to target these lines. 
One kernel is oriented for one diagonal direction, and by flipping this kernel horizontally, we can 
create a second one for the opposite diagonal. 
 
Once these directional lines are defined, the next objective is to identify junctions—points where 
two lines intersect, often corresponding to corners of rooms or intersections within a network of 
hallways. This is achieved through bitwise operations that act like logical functions on the pixel 
values of two images. By performing a bitwise 'AND' operation between the images containing 



 

horizontal and vertical lines, we isolate the points where they intersect. This operation is 
repeated with the images of diagonal lines, capturing the full spectrum of potential junctions. 

 
Figure 14: Lines found by kernels that target specific line directions (horizontal, vertical, 
diagonal) 
 
The culmination of this process is the aggregation of all intersections to locate all junctions. By 
performing a bitwise 'OR' operation between the various intersection images, we combine the 
detected intersections into a single image that reveals the network of junctions within the floor 
plan. 
 
Finally, we turn our attention to the centroids of these junctions, which are essentially the 
geometric centers of the shapes formed by the intersections. By finding the contours of these 
junctions and computing their image moments, we can calculate the centroids' coordinates. A 
centroid represents the average position of all the points of an object and is calculated as the 
weighted average of the pixel intensities. Drawing these centroids onto the image provides a 
visual representation of the structure of the space, completing the process of highlighting the 
foundational grid upon which the floor plan is built. 



 

 
Figure 15: Junction points and intersections found by bitwise operations 
 
This approach, while not included in the final vectorization technique, is instrumental in 
understanding the geometry and connectivity of spaces within floor plans. The ability to 
accurately detect lines and their intersections is crucial not only for creating digital 
representations of physical spaces but also for more advanced analyses, such as space 
optimization and automated design assessments. 
 
 
4. Contour Detection with OpenCV 
 
Contour detection is a fundamental process in computer vision, particularly useful in the field of 
architectural analysis and digital floor plan vectorization. This technique is instrumental in 
delineating the outlines or boundaries of features within an image, which is a crucial step in 
understanding the geometry and spatial organization of the depicted elements. 
 
Using OpenCV, a prominent library in the field of computer vision, contour detection is typically 
performed with the `findContours` function. This function examines the binary representation of 
the image, where the architectural features have been isolated from the background, to detect 
continuous curves that encapsulate the full perimeter of distinct objects. In the context of floor 
plans, these objects could be rooms, furniture, or other significant design elements. 
 
The `findContours` function operates by scanning through an image and identifying the regions 
where the color or intensity changes dramatically, often indicating the edges of features against 
the background. Once these edges are detected, the function groups the series of points along 
these edges into contours. Each contour is essentially a vector of coordinates that define the 
shape of an object within the image. 



 

 
Figure 16: The blue points are the discovered contours 
 
After detecting contours, they can be utilized for various applications, such as creating bounding 
boxes, shape analysis, or object recognition and classification. In architectural vectorization, the 
precise coordinates of these contours are invaluable, as they provide the vector data necessary 
to reconstruct accurate digital models of the physical spaces. 
 
To further leverage the information that contours provide, one might write a script that translates 
these contour coordinates into a format suitable for data analysis, like a CSV 
(Comma-Separated Values) file. By exporting contour data into a CSV, we can facilitate the 
integration of this spatial data with other analysis tools or workflows. For instance, the contours 
can be imported into CAD (Computer-Aided Design) software for further refinement, or they can 
be analyzed programmatically to calculate areas, perimeters, or other attributes that are 
essential for architectural planning and evaluation. 
 
The utility of contour detection in architectural floor plan processing cannot be understated. It is 
a bridge between the raw pixel data of an image and the structured, geometric information 
required for digital modeling and analysis, making it a cornerstone of the digital transformation 
of architectural design data. 
 
 
5. Skeletonization Process 
 
Skeletonization is a process in digital image processing that reduces foreground regions in a 
binary image to a skeletal remnant that largely preserves the extent and connectivity of the 
original region while throwing away most of the original foreground pixels. The skeleton 
represents the shape of the figure in a simplified form, which can be crucial in understanding the 
structural layout of floor plans, such as the path network within a building. 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 

Figure 17: UCSC Engineering 2 Floor 2 floor plan image 

 
Figure 18: Skeletonized image 
 
In OpenCV, two well-known algorithms for skeletonization are the Zhang-Suen and Guo-Hall 
methods. Both techniques iteratively examine and thin the given shapes until only the minimal 
skeletal structure remains. 
 
The Zhang-Suen thinning algorithm [20] is an iterative thinning process that looks at the local 
neighborhood of each pixel in a binary image and decides whether or not it should be removed 
based on specific conditions related to the number of foreground-to-background transitions in 
the neighborhood, and the number of foreground neighbors. The process is repeated until no 
further changes occur in the image. The Zhang-Suen method is precise and tends to preserve 
the topology of the original image well, making it a good choice for applications where the 
accurate representation of the shape is important. 
 
The Guo-Hall algorithm [21] is another iterative method but uses a slightly different set of 
conditions for the removal of pixels. It tends to be faster than the Zhang-Suen method but might 
not preserve the topology as well as Zhang-Suen. The Guo-Hall algorithm can sometimes result 
in a less noisy skeleton and is often used when speed is a crucial factor, or the final application 
can tolerate some topological alterations. 
 
The primary difference between these two methods lies in their specific conditions for pixel 
removal and the patterns they recognize as removable. The Zhang-Suen method is known for 
its detail preservation but slower performance, while the Guo-Hall method is favored for its 
speed and smoother results. 
 
The result of the skeletonization process is a thin version of the original image, where the width 
of the shapes is reduced to the minimal possible width, ideally one pixel wide. This is particularly 



 

useful in architectural plans where such skeletal representations can serve as a basis for 
analyzing routes, flows, or the spatial relationship between different components. These skeletal 
paths are invaluable in several applications, including feature extraction, pattern recognition, 
and in the creation of topological maps of spaces. 
 
 
6. Line Segment Detection Methods 
 
Line Segment Detection (LSD) is an essential computer vision technique with significant 
implications in the field of architectural design and analysis. It is particularly adept at identifying 
and extracting line segments from images, which is invaluable for interpreting architectural 
drawings and floor plans where lines define the boundaries of structures and spaces. 
 
The Line Segment Detector in OpenCV is a popular algorithm used for detecting line segments. 
The LSD algorithm operates directly on grayscale images and does not require a preliminary 
edge detection stage, unlike some other line detection methods like the Hough Transform. It is 
designed to be scale and rotation invariant, meaning that it can detect lines over a range of 
orientations and scales, making it quite robust for architectural applications where floor plans 
can be at various scales and orientations. 
 
The LSD works by examining an image to identify rapidly changing regions of intensity that 
suggest the presence of an edge. Once these potential edges are found, the algorithm performs 
a refinement to determine if these are indeed part of a line segment. This involves assessing the 
gradient orientations of the pixels and ensuring they are consistent with a straight line. It does 
this efficiently, allowing for real-time application in some contexts. 
 
The OpenCV implementation of LSD provides an interface that returns a list of detected lines, 
each described by the starting and ending points. This makes it straightforward to overlay these 
lines onto the original image or to use them for further computational analysis. The lines 
detected by LSD can be used for creating wireframe models of the detected structures, for 
converting raster floor plans into vector format, or for recognizing objects defined by straight 
lines within the image. 
 
 

 
Figure 19: Line Segment Detector applied to UCSC Engineering 2 Floor 2 floor plan image 



 

LSD is particularly advantageous when a high degree of accuracy is required in the line 
detection process. It can discern short line segments, which other detectors might miss, and 
distinguishes between different line segments that are close to each other. These features make 
it especially useful for detailed and accurate analysis of architectural drawings, where precision 
in the delineation of structures is paramount. 
 
 
Integration of Multiple Techniques for Enhanced Vectorization 
 
1. Raster to Vector 
 
Raster to Vector (R2V) transformation represents a cutting-edge shift from traditional raster floor 
plan interpretation to a vectorized format that is more conducive to further analysis and 
manipulation. [2] R2V employs a neural network architecture to dissect and understand the 
complex imagery of floor plans. 



 

 
 
Figure 20: Raster to Vector Floorplan Vectorization Results [2] 
 



 

 
 
 
 
 
 
 
 
 
 
 
In the initial phase, R2V leverages a neural network to pinpoint crucial low-level geometric and 
semantic junctions within the raster image. These junctions include key architectural points such 
as wall corners or endpoints of doors, translating the pictorial data into a structured form. The 
process involves identifying these junction points with high precision, laying the groundwork for 
the subsequent vectorization. 
 
Following junction identification, the process uses integer programming to methodically piece 
together these points into recognizable architectural primitives. These primitives are not merely 
abstract lines but carry geometric and semantic significance — for instance, wall lines, door 
lines, or icon boxes. This integer programming ensures that the resulting primitives adhere to 
the topological and geometric rules of a floor plan, producing an output that is not only accurate 
in detail but also consistent in structure. 
 
The final vector representation, arising from this meticulous procedure, enables a range of 
computational applications. For instance, it allows for the generation of 3D models, facilitates 
architectural remodeling, and can even serve as a foundation for comprehensive building 
analysis. 

 
Figure 21: Raster to Vector Conversion Process [2] 



 

 
Despite the efficacy of R2V in handling original raster floor plans, challenges arise when dealing 
with output from other processing techniques, such as DeepFloorPlan. When R2V is applied to 
images already processed by DeepFloorPlan, the performance is noted to decline. This 
discrepancy could stem from the differences in how DeepFloorPlan and R2V interpret and 
manipulate the initial raster data. DeepFloorPlan's processing may alter the image in ways that 
are less compatible with the R2V model, which has been trained on and expects unaltered 
raster images. 

 
 
Figure 22: UCSC Engineering 2 Floor 2 floor plan image 

 
Figure 23: Raster to Vector ran on UCSC Engineering 2 Floor 2 floor plan image 



 

 
Figure 24: UCSC Science and Engineering Library floor plan image [24] 



 

 
Figure 25: Raster to Vector ran on UCSC Science and Engineering Library floor plan image 
 
An interesting experiment within this vectorization endeavor involved incorporating a tiling 
algorithm to segment the original floor plan into smaller sections and individually process each 
through R2V. However, this approach did not yield successful outcomes, which could be 
attributed to the loss of contextual information when a floor plan is fragmented. The tiling 
algorithm, while conceptually robust for managing large images, may disrupt the continuity that 
R2V relies on to accurately infer the full scope of a floor plan's structure. 
 
In conclusion, while R2V represents a significant advancement in the digital interpretation of 
floor plans, its integration with other techniques must be approached with consideration of their 
inter-compatibility. The learning-based approach of R2V shows promise in overcoming the 
limitations of heuristics-based methods, suggesting a potential paradigm shift in how 
architectural data is processed and utilized in digital environments. 
 
 
2. Utilization of Probabilistic and Regular Hough Transform 
 



 

The Hough Transform is an analytical technique integral to the field of image analysis, 
particularly within the domain of vectorization, where the detection of geometric shapes is 
essential. It serves as a bridge between the pixel-based data in raster images and the 
line-based geometric representations in vector images. The technique is based on transforming 
points in image space to a parameter space where lines or curves can be more easily identified. 
For the vectorization of architectural floor plans, which are replete with linear elements such as 
walls, doorways, and furniture outlines, the Hough Transform is invaluable. 
 
There are two primary variants of the Hough Transform: the Standard Hough Transform (SHT) 
and the Probabilistic Hough Transform (PHT). The SHT works by mapping each edge pixel in 
the image space to a sinusoidal curve in the parameter space, often represented as the Hough 
space. The intersections of these curves correspond to potential line segments in the image 
space. Accumulator cells in the Hough space "vote" for these intersections, and the locations 
with the highest votes indicate where the most likely line segments exist. SHT is comprehensive 
and robust, capable of detecting all possible lines, but it is computationally intensive because it 
considers every point along an edge, leading to a high number of calculations, particularly for 
large and complex images. 
 
The PHT, on the other hand, offers a more computationally efficient alternative. It is a 
randomized version of the SHT that only considers a random subset of edge points. It estimates 
the parameters of line segments present in the image by iteratively selecting point pairs and 
checking if they could form part of a line with a sufficient number of votes. The PHT is faster 
than the SHT because it does not process every edge point and does not fill the accumulator 
space as extensively. However, this probabilistic nature means it may miss some line segments 
that the SHT would detect, especially if they are short or faint. 
 
In the context of enhancing vectorization, the Hough Transform is integrated into the workflow to 
detect and standardize the lines and shapes that define the layout of the floor plan. The decision 
to use SHT or PHT depends on the specific requirements of the project. For instance, if 
computational resources and processing time are limited, or if only the most prominent lines are 
of interest, the PHT may be the preferable choice. Conversely, if the floor plan contains many 
subtle or critical details, the thoroughness of the SHT would be more appropriate. 
 
3. Combining Hough Transform with Junction Detection 
 
In the development of the vectorization pipeline, the incorporation of the Hough Transform in 
conjunction with junction detection was explored as a potential method to enhance the precision 
of line detection. This approach aimed to refine the set of lines detected by the Hough 
Transform by considering only those that intersected with identified junctions, which are 
indicative of critical architectural points like wall corners. Despite its conceptual merit, this 
method introduced complexity and was ultimately not included in the final vectorization 
technique. 



 

 
Figure 26: Hough Transform 

 
Figure 27: Hough Transform combined with junction intersection 
 
4. Hough Transform with improved non-maximum suppression 
 
A more efficient solution was found in the form of an improved non-maximum suppression 
algorithm within the Hough Transform process. Non-maximum suppression serves to streamline 
the output of the Hough Transform by ensuring that each detected line is unique and the 
strongest representative of that feature within the image. The improvement of this algorithm 
proved to be a superior approach to managing the issue of duplicate lines—a problem that the 
combination of Hough Transform and junction detection aimed to address. 
 
The enhanced non-maximum suppression technique works by meticulously analyzing the 
accumulator space of the Hough Transform to discriminate between lines that are closely 
spaced. By fine-tuning the Hough parameters, particularly the rho resolution, the process 
became more sensitive to the distinction between separate architectural features that could 
erroneously be conflated into a single detection with a coarser resolution. Decreasing the rho 
value resulted in an increased number of bins in the accumulator array, allowing for a narrower 
scope within each bin, which is vital for the accurate separation of lines. 
 
To ensure balanced detection of horizontal and vertical lines, the Hough Transform image was 
transformed into a square format. This transformation equally weights lines of all orientations, 
preventing any directional bias and enhancing the uniformity of line detection across the image. 
 



 

This refined approach to non-maximum suppression was instrumental in improving the overall 
effectiveness of the line detection mechanism. It offered a streamlined, more computationally 
efficient method that eliminated the need for the prior junction detection step, simplifying the 
vectorization process while enhancing its accuracy. The adoption of this technique in the final 
vectorization pipeline underscores the importance of iterative refinement and optimization in 
computational methods, achieving a balance between comprehensive line detection and the 
elimination of extraneous information to produce clean, precise vector representations of 
architectural floor plans. 
 
 
 
IV. Results 
 
In the following section, we present a comprehensive analysis of the Hough Transform's 
performance for line detection in images, focusing on the effects of non-maximum suppression 
and rho resolution. The Hough Transform is a robust technique that enables the identification of 
lines in an image by mapping edge points from the image space to a parameter space, where 
each point corresponds to a potential line in the original image. By investigating the impact of 
various parameter settings and post-processing techniques, we aim to optimize the line 
detection accuracy and minimize the presence of duplicate or overlapping lines. Through a 
series of experiments and visual evaluations, we demonstrate the effectiveness of 
non-maximum suppression and decreased rho resolution in enhancing the Hough Transform's 
output, ultimately leading to cleaner and more precise line detection results. The findings 
presented in this section provide valuable insights into the intricacies of the Hough Transform 
and offer guidance for achieving optimal line detection performance in various computer vision 
applications. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
Figure 28: Hough Transform applied to UCSC Engineering 2 Floor 2 floor plan image without 
non-maximum suppression 
 
 

 
Figure 29: Hough Transform applied to UCSC Science and Engineering Library floor plan image 
without non-maximum suppression 
 

Figure 28 and 29 illustrate the result of applying the default Hough Transform without any 
non-maximum suppression. As can be observed, the default implementation detects a 
significant number of overlapping and duplicate lines. This is because the transform identifies all 



 

possible lines that pass through the edge points in the image, leading to redundant detections. 
The presence of these duplicate lines can clutter the output and make it challenging to interpret 
the results accurately. 

 

Figure 30: Hough Transform applied to UCSC Engineering 2 Floor 2 floor plan image with 
non-maximum suppression and rho value of 1. 

 
Figure 31: Hough Transform applied to UCSC Science and Engineering Library floor plan image 
with non-maximum suppression and rho value of 1. 

 

To address this issue, we introduce non-maximum suppression, as demonstrated in Figures 30 
and 31. Non-maximum suppression is a technique that helps reduce the number of duplicate 
and overlapping lines by suppressing lines that are close together in both the rho (distance from 



 

the origin) and theta (angle) dimensions. The implemented algorithm iterates through the 
detected lines, compares their rho and theta values, and only retains the strongest lines that are 
not within a specified tolerance range of each other. By applying non-maximum suppression, we 
obtain a cleaner output with fewer redundant lines, enhancing the clarity and interpretability of 
the detected lines. 

 

Figure 32: Hough Transform applied to UCSC Engineering 2 Floor 2 floor plan image with 
non-maximum suppression and rho value of 0.1. 

 
Figure 33: Hough Transform applied to UCSC Science and Engineering Library floor plan image 
with non-maximum suppression and rho value of 0.1. 



 

 

Figures 32 and 33 showcase the Hough Transform output with improved non-maximum 
suppression and a decreased rho resolution. By decreasing the rho resolution, we effectively 
increase the number of bins in the accumulator's rho dimension. This finer granularity allows the 
transform to detect subtle variations in the distance of lines from the origin. Consequently, the 
Hough Transform can distinguish between lines that are nearly parallel or in close proximity to 
each other, which might otherwise be grouped together under a coarser rho setting. The 
resultant image exhibits a significant improvement in line detection accuracy, with almost all the 
prominent lines in the image being correctly identified as distinct entities. 

It is important to note that despite the enhancements achieved through improved non-maximum 
suppression and decreased rho resolution, some lines may still be absent in the final output. 
This can be attributed to various factors, including the selected threshold values, the presence 
of noise or discontinuities in the image, or inherent limitations of the Hough Transform algorithm. 
To further optimize the line detection results, additional techniques such as fine-tuning the 
parameters, applying advanced pre-processing or post-processing methods, or exploring 
alternative line detection algorithms can be considered. 

In conclusion, the experimental results presented in this section demonstrate the significant 
impact of non-maximum suppression and rho resolution on the performance of the Hough 
Transform for line detection. By implementing these techniques, we can effectively reduce the 
number of duplicate and overlapping lines, improve the separation of closely spaced lines, and 
enhance the overall accuracy of line detection in images. The findings highlight the importance 
of carefully tuning the parameters and applying appropriate post-processing methods to obtain 
optimal results when utilizing the Hough Transform for line detection tasks. 

 
V. Discussion 
 
A. Interpretation of Results 
 
The results of this study underscore significant advancements in the automatic vectorization of 
architectural floor plans. The integration of computer vision techniques, particularly 
convolutional neural networks (CNNs) and Hough Transform, has proven effective in enhancing 
the accuracy and clarity of vectorized horizontal and vertical line outputs from raster images. 
The DeepFloorPlan algorithm, with its room-boundary-guided attention mechanism, 
demonstrated robust performance in identifying and delineating architectural elements such as 
walls and doors, even in complex floor plans. 
 
The implementation of tiling algorithms was crucial in maintaining high-resolution detail across 
large floor plan images, ensuring that the CNN could process each segment effectively without 
loss of detail. Post-processing techniques, such as the enhanced non-maximum suppression in 
the Hough Transform, significantly reduced the occurrence of duplicate and overlapping lines, 
thereby improving the overall precision of the line detection process. 



 

 
Moreover, the extraction of PostScript commands from some architectural PDFs provides a 
novel approach to assess the accuracy of this vectorization methodology. PostScript, a page 
description language used in the electronic and desktop publishing areas, enables precise 
rendering of document layouts and images, which includes architectural drawings. By parsing 
PostScript commands embedded in PDFs, we can directly compare the original commands with 
the vectorized outputs, thus providing a measurable benchmark for the precision of our 
vectorization techniques. 
 
The study's findings highlight the efficacy of combining advanced image processing techniques 
with deep learning models to achieve superior results in the vectorization of architectural floor 
plans. 
 
B. Challenges Encountered and Overcome 
 
Throughout the research, several challenges were encountered and effectively addressed. One 
significant challenge was dealing with the noise and textual elements present in raster floor plan 
images, which often interfered with the vectorization process. The application of Optical 
Character Recognition (OCR) for text removal, followed by inpainting techniques to fill in the 
gaps, successfully mitigated this issue, resulting in cleaner images for processing. Another 
challenge was the computational limitations associated with processing large images using 
CNNs. This was overcome by implementing a tiling algorithm that segmented the images into 
smaller, manageable tiles, allowing for efficient processing without loss of detail. Additionally, the 
problem of duplicate and overlapping lines detected by the Hough Transform was resolved 
through the development of an improved non-maximum suppression algorithm, which refined 
the line detection results and ensured the clarity and precision of the vectorized outputs. These 
solutions collectively enhanced the robustness and reliability of the proposed vectorization 
methodology, demonstrating its potential for practical application in various fields requiring 
precise digital representations of architectural floor plans. 
 
 
 
VI. Implications 
 
A. Application to Semantic Interior Mapology (SIM) 
 
The potential future integration of advanced automatic vectorization techniques into the 
Semantic Interior Mapology (SIM) toolbox would significantly enhance its functionality and 
efficiency. SIM is designed to convert architectural floor plans into interactive 3D visualizations 
[17], and the incorporation of automatic vectorization streamlines this process. By leveraging the 
precise and automated vectorization methods developed in this study, the SIM toolbox could 
quickly and accurately trace floor plans, converting raster images into detailed vectorized maps. 
This process is facilitated by the Map Conversion toolkit within SIM, which now benefits from the 
ability to automatically detect and delineate architectural features such as walls and doors with 



 

high accuracy. Moreover, the system enables users to select corners and identify rooms, further 
simplifying the process of transforming floor plans into detailed 3D models. 
 
The automated vectorization process involves using convolutional neural networks (CNNs) and 
Hough Transform techniques to identify and trace the structural elements of floor plans. This 
integration would allow SIM to handle a variety of architectural styles and complexities with 
minimal manual input, significantly reducing the time and effort required to prepare floor plans 
for 3D visualization. The vectorized outputs are then seamlessly transformed into the SIM file 
format, which can be converted into GeoJSON for use with mapping platforms like 
OpenStreetMap and Mapbox. 
 
 
B. Practical Applications in Various Industries 
 
The advancements in vectorization techniques have broad implications across multiple 
industries. In urban planning and real estate, the ability to quickly and accurately convert floor 
plans into detailed digital maps enhances the efficiency of project planning and property 
management. These vectorized maps can be seamlessly integrated into geographic information 
systems (GIS), enabling detailed spatial analysis and decision-making. In the field of 
architecture and construction, precise digital representations of floor plans facilitate better 
design, remodeling, and construction management processes. 
 
C. Enhancements in Navigational Aids and Spatial Orientation 
 
The improved vectorization techniques significantly enhance the development of navigational 
aids, particularly for individuals with visual impairments. Accurate and detailed digital maps of 
building interiors are crucial for creating effective navigational tools that provide clear and 
reliable guidance. By integrating these high-fidelity vector maps with real-time location data, 
developers can create applications that offer precise directions and spatial orientation cues, 
thereby improving the autonomy and mobility of visually impaired users. These advancements 
also support the development of advanced navigation systems in large public spaces such as 
airports, shopping malls, and educational institutions, enhancing the overall user experience by 
providing intuitive and accessible navigation solutions. 
 
D. Contributions to the Field of Computer Vision 
 
The study's contributions extend beyond practical applications, significantly advancing the field 
of computer vision. The integration of CNN-based feature recognition with advanced image 
processing techniques sets a new benchmark for the accuracy and efficiency of floor plan 
vectorization. This research demonstrates the potential of deep learning models to handle 
complex and diverse architectural layouts, addressing limitations of traditional vectorization 
methods. The enhanced algorithms for noise removal, line detection, and feature extraction 
contribute to the development of more robust and scalable solutions for automated map 
generation. These innovations open new avenues for research in computer vision, particularly in 



 

the areas of architectural image analysis and digital map creation, paving the way for further 
advancements and new applications in spatial data analysis and visualization. 
 
 
VII. Conclusion 
 
A. Summary of Findings 
 
This research has demonstrated significant advancements in the automatic vectorization of 
architectural floor plans, leveraging state-of-the-art computer vision techniques and deep 
learning models. The integration of convolutional neural networks (CNNs) with advanced image 
processing methods, such as the Hough Transform and enhanced non-maximum suppression, 
has markedly improved the accuracy and clarity of vectorized outputs from raster images. The 
study highlights the potential for these techniques to enhance tools like the Semantic Interior 
Mapology (SIM) toolbox, which aims to convert complex floor plans into detailed, interactive 3D 
visualizations. Key achievements include the efficient handling of various architectural styles 
and the significant reduction in manual input required for floor plan conversion. 
 
B. Conclusion Drawn from the Research 
 
The research concludes that the developed automatic vectorization techniques provide a robust 
and scalable solution for converting architectural floor plans into high-fidelity digital maps. These 
techniques address several longstanding challenges in the field, such as noise interference and 
the imprecision of traditional vectorization methods. By enhancing the accuracy of feature 
detection and line tracing, the proposed approach not only improves the quality of digital floor 
plans but also expands their applicability across various industries. The findings suggest that 
integrating these methods into tools like the SIM toolbox could significantly enhance their utility 
and potential for widespread adoption in fields requiring precise spatial data representation and 
analysis. 
 
C. Recommendations for Future Research 
 
Future research should focus on further refining the vectorization algorithms to handle even 
more complex and varied architectural designs. Enhancements could include developing 
techniques to better manage curved and irregular shapes, as well as improving the robustness 
of the algorithms against different types of noise and distortions commonly found in scanned 
images. A key area for future exploration is the improvement of room detection and recognition 
capabilities. This involves enhancing the algorithms to more accurately identify and label distinct 
rooms and spaces within floor plans, which is crucial for applications in building management, 
interior design, and navigation systems. Advancing the precision of room recognition would 
facilitate more detailed and useful spatial data, enabling better integration with systems like SIM 
that rely on accurate indoor mapping. 
 



 

Additionally, exploring the integration of these vectorization methods with real-time data 
processing and augmented reality applications could significantly expand their utility. Research 
should also consider optimizing the computational efficiency of the algorithms to facilitate their 
deployment on mobile devices and other resource-constrained platforms. Finally, further studies 
could investigate the application of these techniques to 3D models and elevation drawings, 
broadening their scope and enhancing their contribution to the fields of architecture, urban 
planning, and beyond. 
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