Graphing Displacement, Velocity, and Acceleration

Instructions: (1) Complete the tables below using the definitions at right. (2) Graph the following data sets – create one position vs. time graph and one velocity vs. time graph. (3) For any linear relationship, find the equation of the line. (4) Describe **how** the velocity is changing. (unchanging, zero, increasing at a constant rate, decreasing at a constant rate, or changing at a non-constant rate). Put these with the graphs.

	Data Cat 1		
(()	Data Set 1		
t(s)	x (m)	\overline{v} (m/s)	
0	0	0	
1	2		
2	4		
3	6		
4	8		
1 2 3 4 5	10		
Data Set 2			
t(s)	x (m)	\overline{v} (m/s)	
0	12	0	
	9		
2			
3	3		
1 2 3 4 5	6 3 0		
5	-3		
Data Set 3			
t(s)	x (m)	\overline{v} (m/s)	
0	4	0	
1	4		
2	4		
2 3 4	4		
4	4		
5	4		
Data Set 4			
t(s)	x (m)	<u>v</u> (m/s)	
0	0	0	
1	2	Ĭ	
2	6		
3	12		
4	20		
1 2 3 4 5	30		
Data Set 5			
t(s)	x (m)	\overline{v} (m/s)	
0	6	0	
ĺ ĭ	11		
2	15		
3	18		
<u> </u>	20		
1 2 3 4 5	21		
3	<u>∠</u> 1		

<u>Distance</u> (x) \square Most important to Aristotle. Displacement (\triangle^{\times}) describes how far and in what direction an object has been displaced from its original position.

<u>Time</u> (t) ☐ Most important to Galileo. Galileo described things in terms of time rates of change, a quantity divided by time.

Speed □ a measure of how fast something is moving

 the rate at which distance is covered. Speed is a scalar quantity, meaning it only is given as a magnitude.

Velocity $(\stackrel{\bowtie}{\mathcal{V}}) \square$ the rate at which distance is covered, including the direction in which it is covered. Velocity is a *vector quantity*, meaning it is given as a magnitude with a direction.

Acceleration ($\overset{\bowtie}{a}$) \square the rate of change of velocity. Something accelerates when its velocity, either its magnitude or direction, changes. Acceleration is a vector quantity.

$$\overset{\mathbb{M}}{a} = \overset{\Delta \mathbb{V}}{\sim} \Delta t$$

Instantaneous Velocity – the velocity of an object at any one instant.

Average Velocity (\overline{V}) – of a body in motion between the points 1 and 2 is defined as the displacement of the moving body divided by the time it takes for that displacement.

$$\overline{v} = \Delta x / \Delta t$$

Name:	Date:
Dr. Croom's Physics	Chapter 2: One Dimensional Motion