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Unit-4 

Lecture Notes 

Recurrent neural network 

Problems where the sequence or order of the events is really important for predicting the next 

event are usually tackled by Recurrent Neural Networks or RNN.  

Speech recognition, language translation, stock market price prediction, music generation etc. 

all these tasks are performed by RNNs. 

The recurrent neural network is a special type of neural network which not just looks at the 

current input being presented to it but also the previous input. So instead of 

Input → Hidden → Output 

it becomes 

Input + Previous Hidden → Hidden → Output 

 

Figure 4.1: Recurrent Neural Network 

The right-hand side of the equality sign in the image shows the network for each time step i.e. at 

t=0 the input X0 goes into the network to produce h0, the next time step the input is X1 but there 

is an additional input from the previous time step from the block A.  

This way the neural network not only looks at the current input but has the context from the 

previous inputs as well. As the recurrent units hold the past values, we can refer to this as 

memory. 

RNNs are called recurrent because they perform the same task for every element of a sequence, 

with the output being dependent on the previous computations. 
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The current state can be written as        

Here, ht is the new state, ht-1 is the previous state while xt is the current input. Because the 

input neuron would have applied the transformations on our previous input. So each successive 

input is called as a time step. 

Let’s say that the activation function is tanh, the weight at the recurrent neuron is Whh and the 

weight at the input neuron is Wxh, we can write the equation for the state at time t as – 

 

The Recurrent neuron in this case is just taking the immediate previous state into consideration. 

For longer sequences the equation can involve multiple such states.  

Once the final state is calculated we can go on to produce the output.   

Comparison between RNN and a simple feed forward neural network. 

A simple feed forward neural network is really good at learning a pattern between a set of 

inputs and outputs. For example, given an image the network can tell you whether the image 

contains a dog or not. But if you input another image of, say an elephant followed by an image 

of a dog it has no context or memory of the dog’s image. It will classify the elephant’s image 

independently. This type of mechanism is not suited well to tasks which require previous 

context for making future predictions. 

 

Figure 4.2: Feed Forward Neural Network 
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Figure 4.3: Recurrent Neural Network 

Training through RNN 

1.​ A single time step of the input is supplied to the network i.e. xt is supplied to the network 

2.​ We then calculate its current state using a combination of the current input and the previous 

state i.e. we calculate ht 

3.​ The current ht becomes ht-1 for the next time step 

4.​ We can go as many time steps as the problem demands and combine the information from 

all the previous states. 

5.​ Once all the time steps are completed the final current state is used to calculate the output yt 

6.​ The output is then compared to the actual output and the error is generated 

7.​ The error is then backpropagated to the network to update the weights. 
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Advantages of Recurrent Neural Network 

•​ RNN is an extremely useful type of neural network when it comes to time series prediction, 

because of the feature of remembering previous inputs. 

•​ RNN can process inputs of any lengths and the model size doesn’t increase. This makes 

the network more flexible than the traditional artificial neural networks. 

•​ In a RNN, weights are shared across time, which results in a lower computational cost. 

 

Disadvantages of Recurrent Neural Network 

•​ The occurrence of “Vanishing Gradient” or “Exploding Gradient”.  

•​ The computation is a slow process and the training of RNN can become very difficult. 

•​ It becomes difficult to access any information that was given to the network if a long time 

period has passed. 

RNN: Commonly used activation functions  

 

Figure 4.4: Activation functions used in RNN 
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RNN: Gradient Problem 

•​ Vanishing/exploding gradient:  The vanishing and exploding gradient phenomena are 

often encountered in the context of RNNs.  

•​ The reason why they happen is that it is difficult to capture long term dependencies because 

of multiplicative gradient that can be exponentially decreasing/increasing with respect to the 

number of layers. 

•​ During back propagation, recurrent neural networks suffer from the vanishing gradient 

problem.  

•​ Gradients are values used to update a neural networks weight. 

•​  The vanishing gradient problem is when the gradient shrinks as it back propagates through 

time.  

•​ If a gradient value becomes extremely small, it doesn’t contribute too much learning 

There are two methods to deal with these problems: 

•​ Gradient clipping:  It is a technique used to cope with the exploding gradient 

problem sometimes encountered when performing backpropagation. By capping the 

maximum value for the gradient, this phenomenon is controlled in practice. 

•​ Types of Gates In order to remedy the vanishing gradient problem, specific gates 

are used in some types of RNNs and usually have a well-defined purpose.  

 

RNN: Short-Term Memory problem 

•​ RNN’s are good for processing sequence data for predictions but suffers from short-term 

memory.  
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•​ If a sequence is long enough, they’ll have a hard time carrying information from earlier time 

steps to later ones. So, if you are trying to process a paragraph of text to do predictions, 

RNN’s may leave out important information from the beginning. 

•​ So in recurrent neural networks, layers that get a small gradient update stops learning. 

Those are usually the earlier layers. So because these layers don’t learn, RNN’s can forget 

what it seen in longer sequences, thus having a short-term memory. 

 

How to overcome short-term memory problem 

LSTM’s (Long Short-Term Memory) and GRU’s (Gated Recurrent Unit) were created as a method 

to mitigate short-term memory, using a mechanism called gates.  

Both LSTMs and GRUs are designed to address the problem of “vanishing 

gradients” in RNNs, which occurs when the gradients of the weights in the network 

become very small and the network has difficulty learning. 

Structure of LSTM: 

•​ LSTM has a chain structure that contains different memory blocks called cells. 

 

Figure 4.5: Outer Structure of Long Short-Term Memory 
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Figure 4.6: Internal Structure of Long Short-Term Memory 

•​ A common LSTM unit is composed of a cell, an input gate, an output gate and a forget gate 

•​ The cell remembers values over arbitrary time intervals and the three gates regulate the flow 

of information into and out of the cell. Gates are just neural networks! 

•​ The gates in an LSTM network are controlled by sigmoid activation functions, which output 

values between 0 and 1. 

•​  The gates allow the network to selectively store or forget information, depending on the 

values of the inputs and the previous state of the cell. 

Long-short-term memory: Structure of LSTM Cell 
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Figure 4.7: Structure of a Cell in Long Short-Term Memory 

Forget gates decide what information to discard from a previous state by assigning a previous state, 

compared to a current input, a value between 0 and 1. A (rounded) value of 1 means to keep the 

information, and a value of 0 means to discard it.   

Input gates decide which pieces of new information to store in the current state, using the same 

system as forget gates.  

Output gates control which pieces of information in the current state to output by assigning a value 

from 0 to 1 to the information, considering the previous and current states. 

 Selectively outputting relevant information from the current state allows the LSTM network 

to maintain useful, long-term dependencies to make predictions, both in current and future 

time-steps. 

Long-short-term memory:  Working 

1.​ LSTMs are a type of Recurrent Neural Network (RNN) that can better retain long-term 

dependencies in the data. 
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2.​ They have a more complex structure than regular RNNs, consisting of input, output, and 

forget gates that can selectively retain or discard information from the hidden state. 

3.​ The input gate determines which information from the current input to store in the hidden 

state. 

4.​ The forget gate determines which information from the previous hidden state to keep or 

discard. 

5.​ The output gate determines which information from the hidden state to output as the final 

prediction. 

6.​ This combination of gates allows LSTMs to retain important information from long 

sequences and discard irrelevant or outdated information. 

7.​ LSTMs are often used for tasks involving long-term dependencies, such as language 

translation and language modeling. 

Gated Recurrent Unit (GRU): Working 

1.​ GRUs are a type of Recurrent Neural Network (RNN) that uses a simpler structure than 

LSTMs and is easier to train. 

2.​ They have two gates: an update gate and a reset gate. 

3.​ The update gate determines which information from the previous hidden state and current 

input to keep, and the reset gate determines which information to discard. 

4.​ The final hidden state is a combination of the information retained by the update gate and 

the current input. 

5.​ This combination of gates allows GRUs to retain relevant information from long sequences 

and discard irrelevant or outdated information. 

6.​ GRUs are often used for tasks involving sequential data, such as language translation and 

language modeling. 
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Figure 4.8: Working of GRU 

•​ The update gate (zt) is responsible for determining the amount of previous information 

(prior time steps) that needs to be passed along the next state.  

Update gate    

  ​ ​ Zt  = σ (WZ . [ht – 1, t] + bZ )​ ​  𝑥

t = timestep​​ ​ ​  

Zt = Update Gate at t 

t = input vector 𝑥

ht = previous hidden state 

WZ = Update gate weight matrix 

bZ = connection bias at t​  
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•​ The reset gate (rt) is used from the model to decide how much of the past information is 

needed to neglect. The formula is the same as the update gate. There is a difference in their 

weights and gate usage.   

Reset gate 

rt =σ (Wr . [ht – 1, t] + br ) 𝑥

t = timestep 

Zt = Reset Gate at t 

t = input vector 𝑥

ht = previous hidden state 

WZ = Reset gate weight matrix 

bZ = connection bias at t​  

         Comparison of RNN, LSTM, GRU 

Table 4.1: Comparison of RNN, LSTM, GRU 

 

Machine translation 

A machine translation model is similar to a language model except it has an encoder network 

placed before. For this reason, it is sometimes referred as a conditional language model.  
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Statistical Machine Translation- is the use of statistical models that learn to translate text from 

a source language to a target language. 

Given a sentence T in the target language, we seek the sentence S from which the translator 

produced T. We know that our chance of error is minimized by choosing that sentence S that is 

most probable given T. Thus, we wish to choose S so as to maximize Pr(S|T). 

The approach is data-driven, requiring only a corpus of examples with both source and target 

language text. This means linguists are no longer required to specify the rules of translation. 

Neural Machine Translation- is the use of neural network models to learn a statistical model 

for machine translation. 

The key benefit to the approach is that a single system can be trained directly on source and 

target text, no longer requiring the pipeline of specialized systems used in statistical machine 

learning. 

Unlike the traditional phrase-based translation system which consists of many small 

sub-components that are tuned separately, neural machine translation attempts to build and train 

a single, large neural network that reads a sentence and outputs a correct translation 

Encoder-Decoder Model- Multilayer Perceptron neural network models can be used for 

machine translation, although the models are limited by a fixed-length input sequence where the 

output must be the same length. 

These early models have been greatly improved upon recently through the use of recurrent 

neural networks organized into an encoder-decoder architecture that allow for variable length 

input and output sequences. 

An encoder neural network reads and encodes a source sentence into a fixed-length vector. A 

decoder then outputs a translation from the encoded vector. The whole encoder–decoder system, 

which consists of the encoder and the decoder for a language pair, is jointly trained to maximize 

the probability of a correct translation given a source sentence 
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Beam search- Beam width   

In machine translation, Given an input sequence x<1>, x<2>, x<3>,…., x<Tx> length Tx are in 

language-1 and the output generated by the decoder network y<1>, y<2>,…., y<Ty> be of length 

Ty in language-2. The outputs are given by the probability P(y<1>,y<2>,….., y<Ty>|a<Tx>). To 

pick up the most likely sentence this probability expression needs to be maximized .The goal is to 

find a sentence y such that: 

Y = arg max P(y <1>, . . .., y<Ty> | x 

Beam search decoding iteratively creates text candidates (beams) and scores them. 

It is a heuristic search algorithm used in machine translation and speech recognition to find the 

likeliest sentence y given an input x. 

●​ Step 1: Find top B likely words y <1>  

●​ Step 2: Compute conditional probabilities y<k> |x, y<1>, ….., y<k-1> 

●​ Step 3: keep top b combinations x, y <1>, ….., y<k> 

 

Beam width: The beam width B is a parameter for beam search.  

•​ Large values of B yield to better result but with slower performance and increased memory.  

•​ Small values of B lead to worse results but is less computationally intensive.  

•​ A standard value for B is around 10. 

•​ if the beam width is set to 1, then this is equivalent to a naive greedy search 

Bleu score 

Length normalization:  In order to improve numerical stability, beam search is usually applied 

on the following normalized objective, often called the normalized log-likelihood objective, 

defined as: 
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Bleu score The Bilingual evaluation understudy (bleu) score quantifies how good a machine 

translation is by computing a similarity score based on n-gram precision. It is defined as follows: 

 

where pn is the bleu score on n-gram only defined as follows: 

 

Attention Model 

Attention is the human ability to concentrate on a few specific things while ignoring others.  

Just like the human brain, the attention mechanism attempts to help neural networks selectively 

concentrate on a few relevant tasks while ignoring others. 

In ANN, attention is a technique that is meant to mimic cognitive attention. The effect 

enhances some parts of the input data while diminishing other parts — the motivation being that 

the network should devote more focus to the small, but important, parts of the data. Learning 

which part of the data is more important than another depends on the context, and this is trained 

by gradient descent. 

Example of attention in action, let us say you look at a class group photo. These photos have 

rows of children sitting or standing along with the class teacher. If someone asks, 'How many 

children are in the photo?' your brain automatically begins counting the heads of children while 

ignoring other details in the photo like the colour of the children's uniform. If someone 
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asks, 'Who is the teacher?' your brain looks for individuals with adult features while ignoring 

the children. This is an example of the attention mechanism automatically done by our brain. 

Attention models involve focusing on the most important components while perceiving some of 

the additional information. This is similar to the visual attention mechanism that the human 

brain uses. For example, the human brain may initially focus on a particular aspect image with a 

higher resolution focus and view the surrounding areas with a lower resolution. However, as the 

brain begins to understand the image, it adjusts the focal point to understand all aspects 

thoroughly. 

Attention models evaluate inputs to identify the most critical components and assign each of 

them with a weight. 

 For example, if using an attention model to translate a sentence from one language to another, 

the model would select the most important words and assign them a higher weight. Similarly, it 

assigns the less significant words a lower value. This helps achieve a more accurate output 

prediction. 

Attention Model allows an RNN to pay attention to specific parts of the input that is considered 

as being important, which improves the performance of the resulting model in practice. Also, 

attention scores are commonly used in image captioning and machine translation.  

C<t> =  ∑t'α<t.t'>a<t'>  with ∑t'α<t.t'> = 1 

α<t.t'> is the amount of attention that the output y<t> should pay to the activation a<t> and c<t> 

 

Benefits of Attention Models 

•​ Attention models reduces larger, more complicated tasks into smaller, more manageable 

areas of attention to understand and process sequentially.  

•​ The models work within neural networks.  

•​ Using attention models enables the network to focus on a few particular aspects at a time 

and ignoring the rest. 
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•​ This allows for efficient and sequential data processing, especially when the network needs 

to categorize entire datasets. 

•​ Attention models also called attention mechanisms are deep learning techniques used to 

provide an additional focus on a specific component.  

•​ The model typically focuses on one component within the network's architecture that's 

responsible for managing and quantifying the interdependent relationships within input 

elements, called self-attention, or between input and output elements, called general 

attention. 

How do attention models work? 

The attention framework makes it possible for the neural network to replicate the visual 

attention mechanism of the human brain. Just like humans do not focus on each word while 

reading a text, the attention framework allows the neural network to focus on keywords and 

other important information with intense, high-resolution focus and the other words in 

low-resolution. The neural network adjusts its focal point as it begins to understand the scene 

further.  

•​ Typically, programmers code the attention framework as a function.  

•​ The function maps the input query and "s set" of value pairs to an output. 

•​  The input values, keys, query and outcomes are all vectors. The model then calculates the 

output as a weighted sum of the values.  

•​ A function that is compatible with the initial query and the corresponding key value is the 

weight of each value. 

Comparing The Working Of Seq2seq And Attention Frameworks 

•​ To compare the working of these two models, let us consider the following sentences: 

•​ Input sentence in English: Shalini is a good girl 

•​ Output sentence in Hindi: शालिनी एक अच्छी लड़की है 
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•​ The traditional seq2seq model discards the intermediate states of the encoder and uses only 

the final vector states to feed the decoder. Here is the illustration of this process: 

Shalini -----> Seq 1​

is -----> Seq 2​

a -----> Seq 3​

good -----> Seq 4​

girl -----> Seq 5: 

•​ The seq2seq model discards the encoder outputs from Seq 1 to 5, and the system feeds only 

the last state of the encoder as input to the decoder. While this technique works for smaller 

sentences, it becomes a problem as the length of the input sequence increases. It leads to a 

bottleneck, as it becomes difficult to summarize long sequences into a fixed-length vector. 

•​ The attention framework does not throw away these intermediate encoder states. Instead, it 

uses all intermediate states, Seq 1 to 5, to construct the context vectors that the decoder uses 

to generate the output sequence. 

When to use attention models 

•​ The initial purpose of attention models was to help improve computer vision and the 

encoder-decoder-based neural machine translation system. This system uses natural 

language processing (NLP) and relies on huge data libraries that have complex functions.  

•​ Using attention models helps create maps to fixed-length vectors to generate translations 

and understanding. While these may not be wholly accurate, it provides a result that 

represents the general sentiment and intention of the initial input. 

Types Of Attention Models 

•​ Global attention model 

•​ Local attention model 

•​ Self-attention model 

Global attention model 
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Global attention model is also known as the soft attention framework. Collects inputs from all 

encoder and decoder states before evaluating the current state to generate the output. It uses 

each encoder step and decoder preview step to align or calculate attention weights. It multiplies 

the results from each encoder step with globally aligned weights to find the content value to 

feed to the recurrent neural network (RNN). This model uses values from the RNN to find the 

decoder's outputs. 

Local attention model 

Local attention model is also known as the hard attention model. Has a similar working 

structure to the global model. The significant difference is that the local attention mechanism 

uses only a few encoder positions to calculate the align weights. This model determines the 

context vector and aligns weights by selecting words from the encoder's source and the 

first-aligned position.  

It allows for predictive and monotonic alignment. The predictive alignment enables the model to 

predict the final alignment position and the monotonic alignment considers only select 

information. It also combines specific aspects of hard and soft attention. 

Self-attention model 

The self-attention mechanism focuses on various positions from a single input sequence. We 

can combine the global and local attention frameworks to create this model. The difference is 

that it considers the same input sequence instead of focusing on the target output sequence 

Reinforcement Learning 

Reinforcement learning is a branch of machine learning that is concerned to take a sequence of 

actions in order to maximize some reward. RL does not know anything about the environment, it 

learns what to do by exploring the environment. It uses actions, and receive states and rewards. The 

agent can only change the environment through actions.  
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Figure 4.9: Reinforcement Learning Model 

Reinforcement learning (RL) is a general framework where agents learn to perform actions in 

an environment so as to maximize a reward. The two main components are the environment, 

which represents the problem to be solved, and the agent, which represents the learning 

algorithm. 

•​ The agent and environment continuously interact with each other.  

•​ At each time step, the agent takes an action on the environment based on its policy       , 

where St is the current observation from the environment, and receives a reward rt+1 and the 

next observation St+1 from the environment.  

•​ The goal is to improve the policy so as to maximize the sum of rewards (return). 

•​ Note: It is important to distinguish between the state of the environment and 

the observation, which is the part of the environment state that the agent can see, e.g. in a 

poker game, the environment state consists of the cards belonging to all the players and the 

community cards, but the agent can observe only its own cards and a few community cards. 

In most literature, these terms are used interchangeably and observation is also denoted 

as S. 

One of the big difficulties of RL is that some actions take time to create a reward. Also, the 

reward received by the environment is not related to the last action, but some action on the past. 

We are not told what actions lead to higher rewards. Instead, we learn it from experience. We 

repeat try-and-error attempts and observe which action gives us a higher reward and which 
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gives a lower reward.  Moreover, we are not even told when rewards are given in the beginning. 

They might be given immediately or might be given after a few time steps after we take action.  

Therefore, we need a dynamical framework that captures those two features, “try-and-error 

search” and “delayed rewards.”. 

Markov Decision Process (MDP) 

MDP is a framework that can solve most Reinforcement Learning problems with discrete 

actions. With the Markov Decision Process, an agent can arrive at an optimal policy for 

maximum rewards over time. The Markov decision process (MDP), is an approach in 

reinforcement learning to take decisions in a grid world environment.  

A grid world environment consists of states in the form of grids. The MDP tries to capture a 

world in the form of a grid by dividing it into states, actions, models/transition models, and 

rewards. The solution to an MDP is called a policy and the objective is to find the optimal 

policy for that MDP task. 

An MDP consists of two elements; the agent and the environment. 

 

Figure 4.9: Example of Markov Decision Process 
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The agent is a learner or decision-maker. In the above example, the agent is the rabbit. The 

environment is everything surrounding the agent. In the example, the environment includes 

everything in the field where the rabbit is with food and the tiger. After the agent taking an 

action, we face a different situation. We call these different situations states. For example, the 

situation where the rabbit has not moved yet is considered as a state, and the situation where the 

rabbit is between the broccoli and the tiger after she eats the carrot is considered as another 

state. 

Markov Decision Process (MDP) Framework 

The following diagram is a formalization of MDP. At time t, the agent at state St chooses an 

action At from the action space and the environment returns a new state St+1 from the state space. 

Then, the agent receives the reward Rt+1 depending on the starting state, the taken action, and 

the subsequent state. 

 

Figure 4.10:  Reinforcement Learning used in MDP Framework 

In the rabbit example, the action space consists of moving right and left. The state space 

includes all the four possible situations, 1) the rabbit is at the initial position, 2) the rabbit is 

between the broccoli and tiger, 3) the rabbit is the leftmost after eating the broccoli, and 4) The 

rabbit being eaten by the tiger. The possible rewards are +3(Situation 2), +10(Situation 3), and 

-100(Situation 4). The details are described in the following diagram. 

•​ The MDP framework (of reinforcement learning) is important because it accounts for a 

change in situations that might lead to change in optimal action, which is not considered in 

the k-armed bandit framework. 
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•​ An MDP consists of its agent and environment. The agent interacts with the environment 

observing transitions of states and receiving rewards to find an optimal action (the 

maximum cumulative rewards) at each state. 

Bellman Equation 

The agent tries to get the most expected sum of rewards from every state it lands in. In order to 

achieve that we must try to get the optimal value function, i.e. the maximum sum of cumulative 

rewards. Bellman equation will help us to do so. 

•​ Bellman equation decomposes the value function into two parts, the immediate reward 

plus the discounted future values. 

•​ This equation simplifies the computation of the value function, such that rather than 

summing over multiple time steps, we can find the optimal solution of a complex problem 

by breaking it down into simpler, recursive sub-problems and finding their optimal 

solutions. 

Bellman equation for the State-value function 

•​ This equation tells us how to find the value of a state ‘s’ following a policy 𝜋. It recursively 

breaks down the value computation into an immediate expected reward from the next 

state, r(s,a), plus the value of a successor state, V𝜋(s’), with a discount factor 𝛾.  

 

Bellman equation for the Action-value function 

•​ The state-value function, this equation tells us how to find recursively the value of a 

state-action pair following a policy 𝜋. 
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•​ The state-value function V(s’) is equivalent to the sum of the action-value functions 

Q(s’,a’) of all outgoing actions a’, multiplied by the policy probability of selecting each 

action, 𝜋(a’|s’), the previous formula can be expressed as follows: 

 

γ, denotes the discount factor, is a factor multiplying the future expected reward, and varies on 

the range of [0,1]. It controls the importance of the future rewards versus the immediate ones. 

The lower the discount factor is, the less important future rewards are, and the Agent will tend 

to focus on actions which will yield immediate rewards only 

Unfortunately, in most scenarios, we do not know the probability P and the reward r, so we 

cannot solve MDPs by directly applying the Bellman equation. But there are some alternatives 

to find them from experience. 

Actor-Critic model 

Actor-Critics aim to take advantage of all the good stuff from both value-based and 

policy-based while eliminating all their drawbacks. And how do they do this? The principal idea 

is to split the model in two:  

•​ one for computing an action based on a state and  

•​ another one to produce the Q values of the action. 

 

•​ The “Actor” updates the policy distribution in the direction suggested by the Critic (such 

as with policy gradients). 

•​ The “Critic” estimates the value function. This could be the action-value (the Q value) or 

state-value (the V value). 

•​ And both the Critic and Actor functions are parameterized with neural networks. 

•​ Actor-Critic algorithms combine the two methods in order to create a more robust method. 

How Actor Critic works 
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Imagine you play a video game with a friend that provides you some feedback. You’re the Actor 

and your friend is the Critic. 

 

Figure 4.11: Example of Actor Critic Model 

•​ At the beginning, you don’t know how to play, so you try some action randomly. The Critic 

observes your action and provides feedback. 

•​ Learning from this feedback, you’ll update your policy and be better at playing that game. 

•​ On the other hand, your friend (Critic) will also update their own way to provide feedback 

so it can be better next time. 

The idea of Actor Critic is to have two neural networks. We estimate both: 

 

 

 

 

Both run in parallel. Because we have two models (Actor and Critic) that must be trained, it 

means that we have two set of weights that must be optimized separately. 

Q Value Function 

Q Value (Q Function): Usually denoted as Q(s,a) (sometimes with a π subscript, and 

sometimes as Q(s,a; θ) in Deep RL), Q Value is a measure of the overall expected reward 

assuming the Agent is in state s and performs action a, and then continues playing until the end 
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of the episode following some policy π. Its name is an abbreviation of the word “Quality”, and 

it is defined mathematically as: 

 

where N is the number of states from state ‘s’ till the terminal state, ‘γ’ is the discount factor and 

r⁰ is the immediate reward received after performing action a’’ in state ‘s’. 

Q Learning 

Q-learning is a model-free reinforcement learning algorithm to learn the value of an action in a 

particular state. It does not require a model of the environment (hence "model-free"), and it can 

handle problems with stochastic transitions and rewards without requiring adaptations. 

Approximate the state-action pairs Q-function from the samples of Q(s, a) that we observe 

during interaction with the environment. This approach is known as Time-Difference 

Learning. 

Q-learning is an off-policy reinforcement learning algorithm that seeks to find the best action 

to take given the current state.  It’s considered off-policy because the q-learning function learns 

from actions that are outside the current policy, like taking random actions, and therefore a 

policy isn’t needed. More specifically, q-learning seeks to learn a policy that maximizes the 

total reward.  
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Figure 4.12: Q Learning Model 

The ‘q’ in q-learning stands for quality. Quality in this case represents how useful a given action 

is in gaining some future reward. In its most simplified form, it uses a table to store all Q-Values 

of all possible state-action pairs possible. It updates this table using the Bellman equation, while 

action selection is usually made with an ε-greedy policy (no uncertainties in state-transitions 

and expected rewards), the update rule of Q-Learning is:  

Q(s, a) = r(s,a) + ℽ maxa Q(s’, a) 

where N is the number of states from state ‘s’ till the terminal state, ‘γ’ is the discount factor and 

‘r⁰’ is the immediate reward received after performing action ‘a’ in state ‘s’. 

State–action–reward–state–action (SARSA)  

•​ The Markov Property 

The Markov Property state that: “Future is Independent of the past given the present” 

•​ Transition: Moving from one state to another is called Transition. 

•​ Transition Probability: The probability that the agent will move from one state to 

another is called transition probability. 

Mathematically we can express this statement as: S[t] denotes the current state of the agent and 

s[t+1] denotes the next state. What this equation means is that the transition from state S[t] to 

S[t+1] is entirely independent of the past. 

28 
 



 

State–action–reward–state–action (SARSA) is an algorithm for learning a Markov decision 

process policy, used in the reinforcement learning area of machine learning. The main function 

for updating the Q-value depends on the current state of the agent "S1", the action the agent 

chooses "A1", the reward "R" the agent gets for choosing this action, the state "S2" that the 

agent enters after taking that action, and finally the next action "A2" the agent chooses in its 

new state. The acronym for the quintuple (st, at, rt, st+1, at+1) or (st, at, rt+1 st+1, at+1,) is SARSA.   

Q(st, at) � Q(st, at) + α[ rt + ℽQ(st+1, at+1) – Q(st, at)] 

A SARSA agent interacts with the environment and updates the policy based on actions taken, 

hence this is known as an on-policy learning algorithm. The Q value for a state-action is 

updated by an error, adjusted by the learning rate alpha. Q values represent the possible 

reward received in the next time step for taking action a in state ‘s’, plus the discounted future 

reward received from the next state-action observation. 

Difference between Sarsa & Q-Learning 

The Sarsa algorithm is pretty much the Q-Learning algorithm with a slight modification in order 

to make it an on-policy algorithm. The Q-Learning update rule is based on the Bellman 

equation for the optimal Q-Value, and so in the case on no uncertainties in state-transitions and 

expected rewards, the Q-Learning update rule is: 

Q(s, a) = r(s,a) + ℽ maxa Q(s’, a) 

In order to transform this into an on-policy algorithm, the last term is modified: 

Q(s, a) = r(s, a) + ℽQ(s’, a’) 

when here, both actions a and a’ are chosen by the same policy. The name of the algorithm is 

derived from its update rule, which is based on (s,a,r,s’,a’), all coming from the same policy. 

The difference between these two algorithms is that SARSA chooses an action following the 

same current policy and updates its Q-values whereas Q-learning chooses the greedy action, that 

is, the action that gives the maximum Q-value for the state, that is, it follows an optimal policy. 
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S. 

No

. 

Topic Reference 

1 Recurrent neural 

network 

https://www.ibm.com/topics/recurrent-neural-networks 

 

2 Long short-term 

memory 

https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/lst

m 

 

3 Gated Recurrent Unit https://www.analyticsvidhya.com/blog/2021/03/introduction-to-gated-r

ecurrent-unit-gru/ 

 

4 Translation https://leonardoaraujosantos.gitbook.io/artificial-inteligence/machine_l

earning/supervised_learning/recurrent_neural_networks/machine-transl

ation-using-rnn 

 

5 Beam search and width https://www.javatpoint.com/define-beam-search 

 

6 Bleu score https://towardsdatascience.com/foundations-of-nlp-explained-bleu-scor

e-and-wer-metrics-1a5ba06d812b 

 

7 Attention model https://in.indeed.com/career-advice/career-development/attention-mode

l#:~:text=An%20attention%20model%2C%20also%20known,attention

%20and%20processing%20them%20sequentially. 

 

8 Reinforcement Learning https://www.techtarget.com/searchenterpriseai/definition/reinforcement

-learning 

 

9 RL-framework https://www.turing.com/kb/best-tools-for-reinforcement-learning 

 

10 MDP https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is

-markov-decision-process/#:~:text=A%20Markov%20decision%20pro

cess%20(MDP,makes%20sequential%20decisions%20over%20time. 

 

11 Actor-critic model https://medium.com/intro-to-artificial-intelligence/the-actor-critic-reinf

orcement-learning-algorithm-c8095a655c14 
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12 Q-learning https://www.techtarget.com/searchenterpriseai/definition/Q-learning#:~

:text=Q%2Dlearning%20is%20a%20machine,way%20animals%20or

%20children%20learn. 

 

13 SARSA https://builtin.com/machine-learning/sarsa 

 

 

 

 

Unit-4 

Questions Bank (Descriptive) with Answers 

 

Q1.  What is Reinforcement learning? Explain the detailed concepts. (May 2022) (May 2023) 

Ans. Reinforcement learning is a branch of machine learning that is concerned to take a sequence of 

actions in order to maximize some reward. RL does not know anything about the environment, it 

learns what to do by exploring the environment. It uses actions, and receive states and rewards. The 

agent can only change the environment through actions.  

Reinforcement learning (RL) is a general framework 

where agents learn to perform actions in an environment 

so as to maximize a reward. The two main components 

are the environment, which represents the problem to be 

solved, and the agent, which represents the learning 

algorithm 

•​ The agent and environment continuously interact with each other.  

•​ At each time step, the agent takes an action on the environment based on its policy       , 

where St is the current observation from the environment, and receives a reward rt+1 and the 

next observation St+1 from the environment.  
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•​ The goal is to improve the policy so as to maximize the sum of rewards (return). 

One of the big difficulties of RL is that some actions take time to create a reward. Also, the 

reward received by the environment is not related to the last action, but some action on the past. 

We are not told what actions lead to higher rewards. Instead, we learn it from experience. We 

repeat try-and-error attempts and observe which action gives us a higher reward and which 

gives a lower reward.  Moreover, we are not even told when rewards are given in the beginning. 

They might be given immediately or might be given after a few time steps after we take action.  

Q2. Describe the concept of MDP. (May 2022) 

Ans. MDP (Markov Decision Process) is a framework that can solve most Reinforcement Learning 

problems with discrete actions. With the Markov Decision Process, an agent can arrive at an 

optimal policy for maximum rewards over time. The Markov decision process (MDP), is an 

approach in reinforcement learning to take decisions in a grid world environment.  

A grid world environment consists of states in the form of grids. The MDP tries to capture a world 

in the form of a grid by dividing it into states, actions, models/transition models, and rewards. The 

solution to an MDP is called a policy and the objective is to find the optimal policy for that MDP 

task. 

An MDP consists of two elements; the agent and 

the environment. The agent is a learner or 

decision-maker. In the above example, the agent is 

the rabbit. The environment is everything 

surrounding the agent. In the example, the 

environment includes everything in the field where the rabbit is with food and the tiger. After the 

agent taking an action, we face a different situation. We call these different situations states. For 

example, the situation where the rabbit has not moved yet is considered as a state, and the situation 

where the rabbit is between the broccoli and the tiger after she eats the carrot is considered as 

another state. 

 

Q3. Explain Q learning algorithm assuming deterministic rewards and actions. (May 2022) 

Ans. Q-learning is a model-free reinforcement learning algorithm to learn the value of an action in a 

particular state. It does not require a model of the environment (hence "model-free"), and it can 
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handle problems with stochastic transitions and rewards without requiring adaptations. 

Approximate the state-action pairs Q-function from the samples of Q(s, a) that we observe during 

interaction with the environment. This approach is known as Time-Difference Learning. 

Q-learning is an off-policy reinforcement learning algorithm that seeks to find the best action to 

take given the current state.  It’s considered off-policy because the q-learning function learns from 

actions that are outside the current policy, like taking random actions, and therefore a policy isn’t 

needed.  

Specifically for deterministic rewards and actions, q-learning seeks to learn a policy that maximizes 

the total reward. The ‘q’ in q-learning stands for quality. Quality in this case represents how useful a 

given action is in gaining some future reward. In its most simplified form, it uses a table to store all 

Q-Values of all possible state-action pairs possible. It updates this table using the Bellman equation, 

while action selection is usually made with an ε-greedy policy. (no uncertainties in state-transitions 

and expected rewards), the update rule of Q-Learning is: 

 

where N is the number of states from state ‘s’ till the terminal state, γ is the discount factor and r⁰ is 

the immediate reward received after performing action a in state s. 

 

 

Q4.  Explain the following term: Attention Model. (May 2022) 

Ans. In ANN, attention is a technique that is meant to mimic cognitive attention. The effect 

enhances some parts of the input data while diminishing other parts — the motivation being that the 

network should devote more focus to the small, but important, parts of the data.Learning which part 
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of the data is more important than another depends on the context, and this is trained by gradient 

descent. Attention models involve focusing on the most important components while perceiving 

some of the additional information. This is similar to the visual attention mechanism that the human 

brain uses.  

For example, the human brain may initially focus on a particular aspect image with a higher 

resolution focus and view the surrounding areas with a lower resolution. However, as the brain 

begins to understand the image, it adjusts the focal point to understand all aspects thoroughly. 

●​ The aim of attention models is to reduce larger, more complicated tasks into smaller, more 

manageable areas of attention to understand and process sequentially.  

●​ The models work within neural networks.  

●​ Using attention models enables the network to focus on a few particular aspects at a time 

and ignoring the rest. 

●​ This allows for efficient and sequential data processing, especially when the network needs 

to categorize entire datasets. 
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Q5.  What are the structural and operational differences between a feed-forward network and 

a recurrent neural network? Identify the difference between LSTM, GRU and Vanilla-RNN. 

(May 2023) 

Comparison Attribute 

Feed-forward Neural 

Networks Recurrent Neural Networks 

Signal flow direction Forward only Bidirectional  

Delay introduced  No Yes  

Complexity Low High 

Neuron independence in the 

same layer 

Yes No 

Speed High slow 

Commonly used for Pattern recognition, speech 

recognition, and character 

recognition 

Language translation, 

speech-to-text conversion, and 

robotic control. 

 

Vanilla RNN, also known as simple RNN, processes inputs sequentially, maintaining the hidden 

state that encodes information about the inputs it has processed. At each step, the RNN does a series 

of calculations before producing an output. For classification tasks, a single output is needed. For 

text generation based on the previous word, an output is required at every time step.This iterative 

generation process allows the model to progressively generate a coherent sequence of words, 

building upon the context provided by the preceding words. 
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Q6. What do you mean by Recurrent Neural Network? Explain with the help of diagram. In 

which cases this model is suitable. (Dec 2020) 

Ans. The recurrent neural network is a special type of neural network which not just looks at the 

current input being presented to it but also the previous input. So instead of 

Input → Hidden → Output 

it becomes 

Input + Previous Hidden → Hidden → Output 

 

•​ RNNs can take one or more input vectors and produce one or more output vectors and the 

output(s) are influenced not just by weights applied on inputs like a regular NN, but also by 

a “hidden” state vector representing the context based on prior input(s)/output(s).  

•​ So, the same input could produce a different output depending on previous inputs in 

the series 
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•​ The current state can be written as      

•​ Here, ht is the new state, ht-1 is the previous state while xt is the current input. Because the 

input neuron would have applied the transformations on our previous input. So each successive 

input is called as a time step. 

•​ Let’s say that the activation function is tanh, the weight at the recurrent neuron is Whh and 

the weight at the input neuron is Wxh, we can write the equation for the state at time t as – 

 

 

The model is suitable for wide range of applications such as: 

1. Natural Language Processing (NLP): (i) Language Modeling: RNNs can predict the next word in 

a sentence, useful for tasks like text generation and autocomplete. (ii) Machine Translation: RNNs 

can be used for translation tasks, with one RNN encoding the input sentence and another decoding 

it in the target language. (iii) Sentiment Analysis: RNNs can analyze text sentiment by capturing 

contextual information from words in a sequence. 

2. Speech Recognition and Synthesis: (i) Speech-to-Text: RNNs are employed to convert spoken 

language into written text, making them the backbone of speech recognition systems. (ii) 

Text-to-Speech: RNNs can generate human-like speech from text input, improving voice assistants 

and accessibility tools. 

3. Time-Series Analysis and Forecasting: (i) Financial Forecasting: RNNs can predict stock prices, 

currency exchange rates, and other financial variables. (ii) Weather Prediction: RNNs can analyze 

historical weather data to forecast future weather conditions. 
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4. Music Generation: RNNs can generate music sequences, learning patterns from existing music 

compositions and producing new compositions. 

5. Video Analysis and Action Recognition: (i) Video Understanding: RNNs can process frames in a 

video sequence to understand actions, objects, and activities. 

Gesture Recognition: RNNs can recognize hand gestures and movements in videos for applications 

like sign language translation. 

6. Robotics and Autonomous Systems: (i) Path Prediction: RNNs can help robots predict the paths 

of moving objects and plan their actions accordingly. (ii) Gesture Control: RNNs enable natural 

interaction with robots through gesture recognition. 

7. Language Generation and Dialogue Systems: (i) Chatbots: RNNs power chatbots and virtual 

assistants by generating coherent responses in conversations. (ii) Storytelling: RNNs can create 

stories or narratives based on input prompts. 

 

Q7. Explain Actor-Critic model. List down what are its advantages in reinforcement learning. 

(Dec 2020) 

Ans. Actor-Critics aim to take advantage of all the good stuff from both value-based and 

policy-based while eliminating all their drawbacks. And how do they do this? 

The principal idea is to split the model in two: (i) one for computing an action based on a state and  

(ii) another one to produce the Q values of the action. 

The “Actor” updates the policy distribution in the direction suggested by the Critic (such as with 

policy gradients). The “Critic” estimates the value function. This could be the action-value (the Q 

value) or state-value (the V value). And both the Critic and Actor functions are parameterized with 

neural networks. 

Actor-Critic algorithms combine the two methods in order to create a more robust method. 

•​ The Actor takes as input the state and outputs the best action.  
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•​ It essentially controls how the agent behaves by learning the optimal policy 

(policy-based).  

•​ The Critic, on the other hand, evaluates the action by computing the value function (value 

based).  

•​ They both get better in their own role as the time passes.  

•​ The overall architecture will work more efficiently than the two methods separately. 

 

Q8. Describe Q-Learning in brief. What is SARSA algorithm? Explain this. (Dec 2020) 

Ans. Q-learning is a model-free reinforcement learning algorithm to learn the value of an action in 

a particular state. It does not require a model of the environment (hence "model-free"), and it can 

handle problems with stochastic transitions and rewards without requiring adaptations. 

Approximate the state-action pairs Q-function from the samples of Q(s, a) that we observe during 

interaction with the environment. This approach is known as Time-Difference Learning. 

Q-learning is an off-policy reinforcement learning algorithm that seeks to find the best action to 

take given the current state.  It’s considered off-policy because the q-learning function learns from 

actions that are outside the current policy, like taking random actions, and therefore a policy isn’t 

needed.  

State–action–reward–state–action (SARSA) is an algorithm for learning a Markov decision 

process policy, used in the reinforcement learning area of machine learning.  

The main function for updating the Q-value depends on the current state of the agent "S1", the 

action the agent chooses "A1", the reward "R" the agent gets for choosing this action, the state "S2" 

that the agent enters after taking that action, and finally the next action "A2" the agent chooses in its 

new state. 

The acronym for the quintuple (st, at, rt, st+1, at+1) or (st, at, rt+1, st+1, at+1) is SARSA.   

A SARSA agent interacts with the environment and updates the policy based on actions taken, 

hence this is known as an on-policy learning algorithm. The Q value for a state-action is updated by 

an error, adjusted by the learning rate alpha. Q values represent the possible reward received in the 
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next time step for taking action a in state ‘s’, plus the discounted future reward received from the 

next state-action observation. 

Q9. Explain the difference between Value iteration and Policy iteration. What is Markov 

Decision Process (MDP)? (Dec 2020) 

Ans. Policy iteration and value iteration are both dynamic programming algorithms that find an 

optimal policy  in a reinforcement learning environment. They both employ variations of 

Bellman updates and exploit one-step look-ahead: 

●​ In policy iteration, we start with a fixed policy. Conversely, in value iteration, we begin by 

selecting the value function. Then, in both algorithms, we iteratively improve until we reach 

convergence. 

●​ The policy iteration algorithm updates the policy. The value iteration algorithm iterates over 

the value function instead. Still, both algorithms implicitly update the policy and state value 

function in each iteration. 

●​ In each iteration, the policy iteration function goes through two phases. One phase evaluates 

the policy, and the other one improves it. The value iteration function covers these two 

phases by taking a maximum over the utility function for all possible actions. 

The value iteration algorithm is straightforward. It combines two phases of the policy iteration into 

a single update operation. However, the value iteration function runs through all possible actions at 

once to find the maximum action value. Subsequently, the value iteration algorithm is 

computationally heavier. 

Both algorithms are guaranteed to converge to an optimal policy in the end. Yet, the policy iteration 

algorithm converges within fewer iterations. As a result, the policy iteration is reported to conclude 

faster than the value iteration algorithm. 
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Markov Decision Process (MDP): MDP is a framework that can solve most Reinforcement Learning 

problems with discrete actions. With the Markov Decision Process, an agent can arrive at an optimal 

policy for maximum rewards over time. The Markov decision process (MDP), is an approach in 

reinforcement learning to take decisions in a grid world environment. A grid world environment 

consists of states in the form of grids. 

The MDP tries to capture a world in the form of a grid by dividing it into states, actions, 

models/transition models, and rewards. The solution to an MDP is called a policy and the objective 

is to find the optimal policy for that MDP task. 
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Unit-4 

MCQ/ Quiz Practice Set 

 

1. What is the primary purpose of a Recurrent Neural Network (RNN)? 

a) Image classification 

b) Text generation 

c) Reinforcement learning 

d) Object detection 

Answer: b) Text generation 

 

 

2. Which layer type is typically used to capture sequential dependencies in an RNN? 

a) Input layer 

b) Hidden layer 

c) Output layer 

d) Activation layer 

Answer: b) Hidden layer 

 

3. What is the advantage of using recurrent layers in an RNN? 

a) They can capture temporal dependencies in the input data 

b) They can handle variable-length inputs 

c) They can generate synthetic data 

d) They can handle non-linear transformations 

Answer: a) They can capture temporal dependencies in the input data 

 

4. What is the purpose of the hidden state in an RNN? 

a) To store the information from the previous time step 

b) To adjust the learning rate during training 

c) To compute the gradients for backpropagation 
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d) None of the above 

Answer: a) To store the information from the previous time step 

 

5. Which activation function is commonly used in the recurrent layers of an RNN? 

a) ReLU (Rectified Linear Unit) 

b) Sigmoid 

c) Tanh (Hyperbolic Tangent) 

d) Softmax 

Answer: c) Tanh (Hyperbolic Tangent) 

 

6. What is the purpose of the time step parameter in an RNN? 

a) To determine the number of recurrent layers in the network 

b) To adjust the learning rate during training 

c) To specify the length of the input sequence 

d) None of the above 

Answer: c) To specify the length of the input sequence 

 

7. Which layer type is commonly used to initialize the hidden state in an RNN? 

a) Input layer 

b) Hidden layer 

c) Output layer 

d) Activation layer 

Answer: b) Hidden layer 

 

8. What is the purpose of the bidirectional RNN architecture? 

a) To handle sequential data in both forward and backward directions 

b) To reduce the computational complexity of the network 

c) To adjust the learning rate during training 

d) None of the above 

Answer: a) To handle sequential data in both forward and backward directions 

9. Which layer type is responsible for making final predictions in an RNN? 
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a) Input layer 

b) Hidden layer 

c) Output layer 

d) Activation layer 

Answer: c) Output layer 

 

10. What is the purpose of the recurrent connection in an RNN? 

a) To propagate the hidden state across different time steps 

b) To adjust the weights and biases of the network 

c) To reduce the dimensionality of the input data 

d) None of the above 

Answer: a) To propagate the hidden state across different time steps 

 

11. Which layer type is commonly used in RNNs for sequence-to-sequence tasks? 

a) Input layer 

b) Hidden layer 

c) Output layer 

d) Attention layer 

Answer: d) Attention layer 

 

12. What is the purpose of the backpropagation through time (BPTT) algorithm in RNN training? 

a) To compute the gradients and update the network's parameters 

b) To adjust the learning rate during training 

c) To prevent overfitting by regularizing the model 

d) None of the above 

Answer: a) To compute the gradients and update the network's parameters 

 

13. Which layer type is commonly used in RNNs to handle variable-length inputs? 

a) Input layer 

b) Hidden layer 

c) Output layer 
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d) None of the above 

Answer: a) Input layer 

 

14. What is the purpose of the initial hidden state in an RNN? 

a) To provide the starting point for the recurrent computation 

b) To adjust the learning rate during training 

c) To compute the gradients for backpropagation 

d) None of the above 

Answer: a) To provide the starting point for the recurrent computation 

 

15. Which layer type is responsible for handling the output at each time step in an RNN? 

a) Input layer 

b) Hidden layer 

c) Output layer 

d) Activation layer 

Answer: c) Output layer 

 

16. What is the purpose of the teacher forcing technique in RNN training? 

a) To adjust the learning rate during training 

b) To propagate the gradients through time 

c) To reduce the computational complexity of the network 

d) None of the above 

Answer: b) To propagate the gradients through time 

 

 

 

17. Which layer type is commonly used in RNNs for language modeling tasks? 

a) Input layer 

b) Hidden layer 

c) Output layer 

d) None of the above 
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Answer: c) Output layer 

 

18. What is the purpose of the sequence-to-vector architecture in an RNN? 

a) To process an input sequence and produce a fixed-length representation 

b) To adjust the weights and biases of the network 

c) To reduce the dimensionality of the input data 

d) None of the above 

Answer: a) To process an input sequence and produce a fixed-length representation 

 

19. Which layer type is responsible for introducing non-linearity in an RNN? 

a) Input layer 

b) Hidden layer 

c) Output layer 

d) Activation layer 

Answer: d) Activation layer 

 

20. What is the purpose of the forget gate in a Gated Recurrent Unit (GRU)? 

a) To control the flow of information from the previous hidden state 

b) To adjust the learning rate during training 

c) To compute the gradients for backpropagation 

d) None of the above 

Answer: a) To control the flow of information from the previous hidden state 

 

 

21. Which layer type is commonly used in RNNs for machine translation tasks? 

a) Input layer 

b) Hidden layer 

c) Output layer 

d) Attention layer 

 

Answer: d) Attention layer 
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22. What is the purpose of the peephole connections in a Long Short-Term Memory (LSTM) 

network? 

a) To allow the cell state to influence the gating mechanisms 

b) To adjust the learning rate during training 

c) To introduce non-linearity to the network 

d) None of the above 

Answer: a) To allow the cell state to influence the gating mechanisms 

 

23. Which layer type is responsible for handling variable-length outputs in an RNN? 

a) Input layer 

b) Hidden layer 

c) Output layer 

d) None of the above 

Answer: c) Output layer 

 

24. What is the purpose of the cell state in an LSTM network? 

a) To store long-term dependencies in the input sequence 

b) To adjust the learning rate during training 

c) To compute the gradients for backpropagation 

d) None of the above 

Answer: a) To store long-term dependencies in the input sequence 

 

 

25. Which layer type is commonly used in RNNs for speech recognition tasks? 

a) Input layer 

b) Hidden layer 

c) Output layer 

d) None of the above 

Answer: c) Output layer 
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26. What is the purpose of the input gate in an LSTM network? 

a) To control the flow of information from the current input 

b) To adjust the learning rate during training 

c) To introduce non-linearity to the network 

d) None of the above 

Answer: a) To control the flow of information from the current input 

 

27. Which layer type is responsible for handling variable-length inputs and outputs in an RNN? 

a) Input layer 

b) Hidden layer 

c) Output layer 

d) None of the above 

Answer: d) None of the above 

28. What is the purpose of the output gate in an LSTM network? 

a) To control the flow of information to the current output 

b) To adjust the learning rate during training 

c) To introduce non-linearity to the network 

d) None of the above 

Answer: a) To control the flow of information to the current output 

 

29. Which layer type is commonly used in RNNs for time series prediction tasks? 

a) Input layer 

b) Hidden layer 

c) Output layer 

d) None of the above 

Answer: c) Output layer 

 

30. What is the purpose of the reset gate in a Gated Recurrent Unit (GRU)? 

a) To reset the hidden state based on the current input 

b) To adjust the learning rate during training 

c) To introduce non-linearity to the network 
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d) None of the above 

Answer: a) To reset the hidden state based on the current input 

 

31. What sets Reinforcement Learning apart from other machine learning paradigms? 

a) Pre-trained models 

b) Supervised labeling 

c) Interaction with an environment 

d) Batch processing 

Answer: c) Interaction with an environment 

 

32. What term describes the strategy of choosing actions to maximize cumulative rewards over 

time? 

a) Hyperparameter tuning 

b) Feature extraction 

c) Reinforcement learning 

d) Policy optimization 

Answer: d) Policy optimization 

 

33. In Reinforcement Learning, what does the term “agent” refer to? 

a) A person supervising the learning process 

b) A software program making decisions 

c) A labeled data point 

d) A neural network architecture 

Answer: b) A software program making decisions 

 

34. What are the numerical values used to evaluate the outcomes of actions taken by an agent? 

a) Observations 

b) Rewards 

c) Policies 

d) Loss functions 

Answer: b) Rewards 
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35. The “reward function” in RL is used for: 

a) Defining the neural network architecture 

b) Calculating the probability of actions 

c) Evaluating the quality of an agent’s actions 

d) Filtering noisy observations 

Answer: c) Evaluating the quality of an agent’s actions 

 

36. Balancing between trying new actions and exploiting known actions is known as: 

a) Exploration vs. exploitation 

b) Model validation 

c) Feature extraction 

d) Dimensionality reduction 

Answer: a) Exploration vs. exploitation 

 

37. Which algorithm is particularly well-suited for environments with continuous action spaces? 

a) Q-Learning 

b) Deep Q-Network (DQN) 

c) Policy Gradient 

d) Monte Carlo Tree Search (MCTS) 

Answer: c) Policy Gradient 

 

38. How do Double Q-Learning and target network updates address training instabilities in deep 

RL? 

a) By reducing the size of the neural network 

b) By updating the target network more frequently 

c) By using dropout regularization 

d) By mitigating overestimation of action values 

Answer: d) By mitigating overestimation of action values 

 

39. What challenge does sparse rewards pose in Reinforcement Learning? 
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a) Agents become too greedy 

b) Agents stop exploring new actions 

c) Agents focus only on exploitation 

d) Agents struggle to learn effective strategies 

Answer: b) Agents stop exploring new actions 

 

40. Which real-world applications benefit from Reinforcement Learning? 

a) Image classification 

b) Text generation 

c) Autonomous driving 

d) Data clustering 

Answer: c) Autonomous driving 

 

 

 

51 
 



 

Unit-4 

Unit wise list of previous year questions 

Q1.  What is Reinforcement learning? Explain the detailed concepts. (May 2022) (May 2023) 

Q2. Describe the concept of MDP. (May 2022) 

Q3. Explain Q learning algorithm assuming deterministic rewards and actions. (May 2022) 

Q4.  Explain the following term: Attention Model. (May 2022) 

Q5.  What are the structural and operational differences between a feed-forward network and a 

recurrent neural network? Identify the difference between LSTM, GRU and Vanilla-RNN. (May 

2023) 

Q6. What do you mean by Recurrent Neural Network? Explain with the help of diagram. In which 

cases this model is suitable. (Dec 2020) 

Q7. Explain Actor-Critic model. List down what are its advantages in reinforcement learning. (Dec 

2020) 

Q8. Describe Q-Learning in brief. What is SARSA algorithm? Explain this. (Dec 2020) 

Q9. Explain the difference between Value iteration and Policy iteration. What is Markov Decision 

Process (MDP)? (Dec 2020) 
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Unit-4 

Assignment-IV 

Q. No Question CO Learning 

Level 

 

Q-1 
What is Recurrent Neural Network? Explain with the 

help of a diagram? Also write applications of RNN. 
CO4 L3 

 

Q-2 Explain the working of LSTM and GRU.                        CO4 L2 

 

Q-3 
Discuss Actor critic model. List down its advantages in 

reinforcement learning? 
CO4 L4 

 

Q-4 
Describe Q-learning in brief. What is SARSA 

Algorithm? Explain 
CO4 L2 

Q-5 

Explain the difference between Value iteration and 

Policy iteration. What is Markov Decision Process 

(MDP)? 

CO4 L2 
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Unit-4 

Placement Specific Questions & Answers 

1.​ What is the primary purpose of a Recurrent Neural Network (RNN)? 

Ans. Text generation 

 

2.​ Which layer type is typically used to capture sequential dependencies in an RNN? 

Ans.  Hidden layer 

 

3.​ What is the advantage of using recurrent layers in an RNN? 

Ans.  They can capture temporal dependencies in the input data 

 

4.​ What is the purpose of the hidden state in an RNN? 

Ans. To store the information from the previous time step 

 

5.​ Which activation function is commonly used in the recurrent layers of an RNN? 

Ans. Tanh (Hyperbolic Tangent) 

 

6.​ What is the purpose of the time step parameter in an RNN? 

Ans. To specify the length of the input sequence 

 

7.​ Which layer type is commonly used to initialize the hidden state in an RNN? 

Ans.  Hidden layer 

 

8.​ What is the purpose of the bidirectional RNN architecture? 

Ans.  To handle sequential data in both forward and backward directions 
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9.​ Which layer type is responsible for making final predictions in an RNN? 

Ans.  Output layer 

 

10.​ What is the purpose of the recurrent connection in an RNN? 

Ans. To propagate the hidden state across different time steps 

 

11.​ What is the purpose of the backpropagation through time (BPTT) algorithm in RNN training? 

Ans.  To compute the gradients and update the network's parameters 

 

12.​ What is the purpose of the initial hidden state in an RNN? 

Ans.  To provide the starting point for the recurrent computation 

 

13.​ What is the purpose of the teacher forcing technique in RNN training? 

Ans. To propagate the gradients through time 

 

14.​ What is the purpose of the sequence-to-vector architecture in an RNN? 

Ans. To process an input sequence and produce a fixed-length representation 

 

15.​ What is the purpose of the forget gate in a Gated Recurrent Unit (GRU)? 

Ans. To control the flow of information from the previous hidden state 

 

16.​ Which layer type is responsible for handling variable-length outputs in an RNN? 

Ans.  Output layer 

 

17.​ What is the purpose of the cell state in an LSTM network? 

Ans. To store long-term dependencies in the input sequence 
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18.​ Which layer type is commonly used in RNNs for speech recognition tasks? 

Ans. Output layer 

 

19.​ What is the purpose of the cell state in an LSTM network? 

Ans. To store long-term dependencies in the input sequence 

 

20.​ Which layer type is commonly used in RNNs for machine translation tasks? 

Ans. Attention layer 

 

21.​ What is the purpose of the input gate in an LSTM network? 

Ans.  To control the flow of information from the current input 
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1.​ Deep Learning (Adaptive Computation and Machine Learning series) 18 November 2016, 

by Aaron Courville, Ian Goodfellow  

2.​ Introduction to Machine Learning with Python: A Guide for Data Scientists (Greyscale 

Indian Edition) Paperback – 1 January 2016, by Andreas Mulle  

3.​ Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, 

and Techniques to Build Intelligent Systems, Third Edition (Full Colour Print), by Aurélien 

Géron O’Reilly-Media-2019  
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Content Beyond Syllabus 

Workshop on Artificial Intelligence & Machine Learning 

 

Workshop on AIML 

Glad to share that a Workshop on AIML has been organized on 21 February 2024 for 

CSE/AIML/DS/IT/EC/ME Students.   

The workshop was conducted by experienced professionals of the field Mr. Faizal Ali, Mr. Rajitram 

singh and Mr. Bhimesh Verma from Mind Coders, Indore. 

During the workshop students gained insights of Artificial Intelligence, Machine Learning, Deep 

Learning, Big Data. 

 Students got to know development of live projects and working with clients.  

Highlight of the workshop was hands-on project and assignments related to latest technology.  

Special Thanks to Respected Director Dr. P. S. Chauhan sir, for his constant Support.   

Coordinators 

Dr. Praveen Patidar  

Ms. Manisha Kadam 
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