

SHRADDHA KUMAR
SDBCT

INDEX

Topic Page No.
Topic wise lecture notes 1-28
Question Bank (Descriptive) with answer
(15-20 Important question with answer)
(ncludng unit wise previous year relevant question) 29-39
MCQ/Quiz Practise set
3 (30 Question with answer) 40-49
RGPV-Previous year full length papers of Subject attached
4 (05 years) separetly
5 Unit wise list of previous year Question -(03 years) 50
6 Assignment 51
7 Placement Specific Questions (short answer) 52-54
8 Competetive exam (GATE, PSU,) NA
9 Reference Books 55
10 |Content Beyound Syllabus 56

Unit-4
Lecture Notes

Recurrent neural network

Problems where the sequence or order of the events is really important for predicting the next

event are usually tackled by Recurrent Neural Networks or RNN.

Speech recognition, language translation, stock market price prediction, music generation etc.

all these tasks are performed by RNNs.

The recurrent neural network is a special type of neural network which not just looks at the

current input being presented to it but also the previous input. So instead of
Input —» Hidden - Output
it becomes

Input + Previous Hidden — Hidden — Output

ot Trd
TA_—]= » A

/S S G S

Figure 4.1: Recurrent Neural Network

v

A4

The right-hand side of the equality sign in the image shows the network for each time step i.e. at
t=0 the input X0 goes into the network to produce h,, the next time step the input is X1 but there

is an additional input from the previous time step from the block A.

This way the neural network not only looks at the current input but has the context from the
previous inputs as well. As the recurrent units hold the past values, we can refer to this as

memory.

RNN s are called recurrent because they perform the same task for every element of a sequence,

with the output being dependent on the previous computations.

The current state can be written as he = f(ht-lr xt)

Here, ht is the new state, ht-1 is the previous state while xt is the current input. Because the
input neuron would have applied the transformations on our previous input. So each successive

input is called as a time step.

Let’s say that the activation function is tanh, the weight at the recurrent neuron is Whh and the

weight at the input neuron is W,;,, we can write the equation for the state at time t as —
ht =tanh (Whhht_l'l' thXt)
The Recurrent neuron in this case is just taking the immediate previous state into consideration.

For longer sequences the equation can involve multiple such states.
Once the final state is calculated we can go on to produce the output. Yt = Whyht
Comparison between RNN and a simple feed forward neural network.

A simple feed forward neural network is really good at learning a pattern between a set of
inputs and outputs. For example, given an image the network can tell you whether the image
contains a dog or not. But if you input another image of, say an elephant followed by an image
of a dog it has no context or memory of the dog’s image. It will classify the elephant’s image
independently. This type of mechanism is not suited well to tasks which require previous

context for making future predictions.

Hidden
Input . Output

Figure 4.2: Feed Forward Neural Network

Wy Wy W}l
W W Wy
ﬁo ﬁ-l ﬁ; ﬁ,s ses
Wy Wy W,
Figure 4.3: Recurrent Neural Network
Training through RNN

1. A single time step of the input is supplied to the network i.e. x, is supplied to the network

2. We then calculate its current state using a combination of the current input and the previous

state i.e. we calculate 4,
3. The current 4, becomes h,; for the next time step

4. We can go as many time steps as the problem demands and combine the information from

all the previous states.
5. Once all the time steps are completed the final current state is used to calculate the output y,
6. The output is then compared to the actual output and the error is generated

7. The error is then backpropagated to the network to update the weights.

Advantages of Recurrent Neural Network

* RNN is an extremely useful type of neural network when it comes to time series prediction,

because of the feature of remembering previous inputs.

* RNN can process inputs of any lengths and the model size doesn’t increase. This makes

the network more flexible than the traditional artificial neural networks.

* Ina RNN, weights are shared across time, which results in a lower computational cost.

Disadvantages of Recurrent Neural Network
* The occurrence of “Vanishing Gradient” or “Exploding Gradient”.
* The computation is a slow process and the training of RNN can become very difficult.

* It becomes difficult to access any information that was given to the network if a long time

period has passed.

RNN: Commonly used activation functions

Sigmoid Tanh RELU
)) e —e * .)
g(z) = - g(z) = — . g(z) = max(0, z)
l+e+ ef+e”
1 14 1
1 VA

Figure 4.4: Activation functions used in RNN

RNN: Gradient Problem

* Vanishing/exploding gradient: The vanishing and exploding gradient phenomena are

often encountered in the context of RNNs.

* The reason why they happen is that it is difficult to capture long term dependencies because
of multiplicative gradient that can be exponentially decreasing/increasing with respect to the

number of layers.

* During back propagation, recurrent neural networks suffer from the vanishing gradient

problem.
* Gradients are values used to update a neural networks weight.

* The vanishing gradient problem is when the gradient shrinks as it back propagates through

time.
* If a gradient value becomes extremely small, it doesn’t contribute too much learning
There are two methods to deal with these problems:

* Gradient clipping: It is a technique used to cope with the exploding gradient
problem sometimes encountered when performing backpropagation. By capping the

maximum value for the gradient, this phenomenon is controlled in practice.

* Types of Gates In order to remedy the vanishing gradient problem, specific gates

are used in some types of RNNs and usually have a well-defined purpose.

RNN: Short-Term Memory problem

* RNN’s are good for processing sequence data for predictions but suffers from short-term

memory.

If a sequence is long enough, they’ll have a hard time carrying information from earlier time
steps to later ones. So, if you are trying to process a paragraph of text to do predictions,

RNN’s may leave out important information from the beginning.

So in recurrent neural networks, layers that get a small gradient update stops learning.
Those are usually the earlier layers. So because these layers don’t learn, RNN’s can forget

what it seen in longer sequences, thus having a short-term memory.

new weight = weight - learning rate*gradient

.............................

.............................

Not much of a difference update value

How to overcome short-term memory problem

LSTM’s (Long Short-Term Memory) and GRU’s (Gated Recurrent Unit) were created as a method

to mitigate short-term memory, using a mechanism called gates.

Both LSTMs and GRUs are designed to address the problem of “vanishing
gradients” in RNNs, which occurs when the gradients of the weights in the network
become very small and the network has difficulty learning.

Structure of LSTM:

LSTM has a chain structure that contains different memory blocks called cells.
A = A .

6 o

Figure 4.5: Outer Structure of Long Short-Term Memory

()
-
A A
g
b J

Figure 4.6: Internal Structure of Long Short-Term Memory
* A common LSTM unit is composed of a cell, an input gate, an output gate and a forget gate

* The cell remembers values over arbitrary time intervals and the three gates regulate the flow

of information into and out of the cell. Gates are just neural networks!

* The gates in an LSTM network are controlled by sigmoid activation functions, which output

values between 0 and 1.

* The gates allow the network to selectively store or forget information, depending on the

values of the inputs and the previous state of the cell.

Long-short-term memory: Structure of LSTM Cell

] = Sigmoid function

o —

| = tanh function

® = point-by-point
multiplication

= point-by-point

1/ addition

’—~ =vector connections

{ -". f
| Forget|Gate

h

Output Gate I :

S ——

LSTM CELL

Figure 4.7: Structure of a Cell in Long Short-Term Memory

Forget gates decide what information to discard from a previous state by assigning a previous state,
compared to a current input, a value between 0 and 1. A (rounded) value of 1 means to keep the

information, and a value of 0 means to discard it.

Input gates decide which pieces of new information to store in the current state, using the same

system as forget gates.

Output gates control which pieces of information in the current state to output by assigning a value

from 0 to 1 to the information, considering the previous and current states.

Selectively outputting relevant information from the current state allows the LSTM network
to maintain useful, long-term dependencies to make predictions, both in current and future

time-steps.
Long-short-term memory: Working

1. LSTMs are a type of Recurrent Neural Network (RNN) that can better retain long-term

dependencies in the data.

10

They have a more complex structure than regular RNNs, consisting of input, output, and

forget gates that can selectively retain or discard information from the hidden state.

The input gate determines which information from the current input to store in the hidden

state.

The forget gate determines which information from the previous hidden state to keep or

discard.

The output gate determines which information from the hidden state to output as the final

prediction.

This combination of gates allows LSTMs to retain important information from long

sequences and discard irrelevant or outdated information.

LSTMs are often used for tasks involving long-term dependencies, such as language

translation and language modeling.

Gated Recurrent Unit (GRU): Working

I.

GRU:s are a type of Recurrent Neural Network (RNN) that uses a simpler structure than

LSTMs and is easier to train.
They have two gates: an update gate and a reset gate.

The update gate determines which information from the previous hidden state and current

input to keep, and the reset gate determines which information to discard.

The final hidden state is a combination of the information retained by the update gate and

the current input.

This combination of gates allows GRUs to retain relevant information from long sequences

and discard irrelevant or outdated information.

GRUs are often used for tasks involving sequential data, such as language translation and

language modeling.

11

o 5 \
{ Update Gate |

|}

- - - —

Reset Gate

~

|

-;%_

! {s)
]

Xt

7z
Ki L

Gated Recurrent Network (GRU)

Figure 4.8: Working of GRU

he

= Sigmoid function

= tanh function

= Hadamard Product
operation

= addition operation

= vector connections

* The update gate (z,) is responsible for determining the amount of previous information

(prior time steps) that needs to be passed along the next state.

Update gate

Zi=o(Wy. [h 1, x] +Dby)

t = timestep

Z, = Update Gate at t

X, = input vector

h, = previous hidden state

W, = Update gate weight matrix

b, = connection bias at t

12

* The reset gate (1)) is used from the model to decide how much of the past information is

needed to neglect. The formula is the same as the update gate. There is a difference in their

weights and gate usage.

Reset gate

re=o (W, [h,_;, xJ +b,)

t = timestep

Z, = Reset Gate at t

X, = input vector

h, = previous hidden state

W, = Reset gate weight matrix

b, = connection bias at t

Comparison of RNN, LSTM, GRU

Table 4.1: Comparison of RNN, LSTM, GRU

RINN LSTM GRU
Structure Stmple More complex Smmplerthan LSTM
T'raining Canbe difficult Canbemore difficult |Easierthan LSTM
Good for complex Canbemtermediate
Performance Good for simple tasks) P between simple and
tasks
complex tasks
Hidden state Smngle Multiple (memory cell)| Single
Gates None Input, output, forget |Update, reset
i-hhﬂlt:'- to refain mited g Intermediate between
ong-term Limite trons RNNs and LSTMs
dependencies

Machine translation

A machine translation model is similar to a language model except it has an encoder network

placed before. For this reason, it is sometimes referred as a conditional language model.

13

Statistical Machine Translation- is the use of statistical models that learn to translate text from

a source language to a target language.

Given a sentence T in the target language, we seek the sentence S from which the translator
produced T. We know that our chance of error is minimized by choosing that sentence S that is

most probable given T. Thus, we wish to choose S so as to maximize Pr(S|T).

The approach is data-driven, requiring only a corpus of examples with both source and target

language text. This means linguists are no longer required to specify the rules of translation.

Neural Machine Translation- is the use of neural network models to learn a statistical model

for machine translation.

The key benefit to the approach is that a single system can be trained directly on source and
target text, no longer requiring the pipeline of specialized systems used in statistical machine

learning.

Unlike the traditional phrase-based translation system which consists of many small
sub-components that are tuned separately, neural machine translation attempts to build and train

a single, large neural network that reads a sentence and outputs a correct translation

Encoder-Decoder Model- Multilayer Perceptron neural network models can be used for
machine translation, although the models are limited by a fixed-length input sequence where the

output must be the same length.

These early models have been greatly improved upon recently through the use of recurrent
neural networks organized into an encoder-decoder architecture that allow for variable length

input and output sequences.

An encoder neural network reads and encodes a source sentence into a fixed-length vector. A
decoder then outputs a translation from the encoded vector. The whole encoder—decoder system,
which consists of the encoder and the decoder for a language pair, is jointly trained to maximize

the probability of a correct translation given a source sentence

14

Beam search- Beam width

In machine translation, Given an input sequence x<1>, x<2>, x<3>,...., x<Tx> length Tx are in
language-1 and the output generated by the decoder network y<1>, y<2>,...., y<Ty> be of length
Ty in language-2. The outputs are given by the probability P(y<I>y<2>,....., y<Ty>|a<Tx>). To
pick up the most likely sentence this probability expression needs to be maximized .The goal is to

find a sentence y such that:

<I>,

Y=argmax P(y =" ...,y |x

Beam search decoding iteratively creates text candidates (beams) and scores them.

It is a heuristic search algorithm used in machine translation and speech recognition to find the

likeliest sentence y given an input X.

e Step 1: Find top B likely words y </~

<k>

x, vy

<k>

e Step 2: Compute conditional probabilities y

e Step 3: keep top b combinations x, y <", ..., y

Beam width: The beam width B is a parameter for beam search.
» Large values of B yield to better result but with slower performance and increased memory.
* Small values of B lead to worse results but is less computationally intensive.
* A standard value for B is around 10.

* if'the beam width is set to 1, then this is equivalent to a naive greedy search
Bleu score

Length normalization: In order to improve numerical stability, beam search is usually applied
on the following normalized objective, often called the normalized log-likelihood objective,

defined as:

15

€i, yﬁ-]"-":l neny yr_l}

y

T,

1 -ll ol

ijective — F Zk'g [p{y-..f A
=1

Bleu score The Bilingual evaluation understudy (bleu) score quantifies how good a machine

translation is by computing a similarity score based on n-gram precision. It is defined as follows:

1 n
bleu score = exp o ;pk

where p, is the bleu score on n-gram only defined as follows:

E countj, (n-gram)

n-grame

Z count(n-gram)

n-grame§

Pn =

Attention Model

Attention is the human ability to concentrate on a few specific things while ignoring others.
Just like the human brain, the attention mechanism attempts to help neural networks selectively

concentrate on a few relevant tasks while ignoring others.

In ANN, attention is a technique that is meant to mimic cognitive attention. The effect
enhances some parts of the input data while diminishing other parts — the motivation being that
the network should devote more focus to the small, but important, parts of the data. Learning
which part of the data is more important than another depends on the context, and this is trained

by gradient descent.

Example of attention in action, let us say you look at a class group photo. These photos have
rows of children sitting or standing along with the class teacher. If someone asks, 'How many
children are in the photo?' your brain automatically begins counting the heads of children while

ignoring other details in the photo like the colour of the children's uniform. If someone

16

asks, 'Who is the teacher?' your brain looks for individuals with adult features while ignoring

the children. This is an example of the attention mechanism automatically done by our brain.

Attention models involve focusing on the most important components while perceiving some of
the additional information. This is similar to the visual attention mechanism that the human
brain uses. For example, the human brain may initially focus on a particular aspect image with a
higher resolution focus and view the surrounding areas with a lower resolution. However, as the
brain begins to understand the image, it adjusts the focal point to understand all aspects

thoroughly.

Attention models evaluate inputs to identify the most critical components and assign each of

them with a weight.

For example, if using an attention model to translate a sentence from one language to another,
the model would select the most important words and assign them a higher weight. Similarly, it
assigns the less significant words a lower value. This helps achieve a more accurate output

prediction.

Attention Model allows an RNN to pay attention to specific parts of the input that is considered
as being important, which improves the performance of the resulting model in practice. Also,

attention scores are commonly used in image captioning and machine translation.

C* = Xa*a™” with Sa™*" =1

<> <t>

a~""" is the amount of attention that the output y=* should pay to the activation = and ¢
Benefits of Attention Models

* Attention models reduces larger, more complicated tasks into smaller, more manageable

areas of attention to understand and process sequentially.
* The models work within neural networks.

» Using attention models enables the network to focus on a few particular aspects at a time

and ignoring the rest.

17

» This allows for efficient and sequential data processing, especially when the network needs

to categorize entire datasets.

* Attention models also called attention mechanisms are deep learning techniques used to

provide an additional focus on a specific component.

* The model typically focuses on one component within the network's architecture that's
responsible for managing and quantifying the interdependent relationships within input
elements, called self-attention, or between input and output elements, called general

attention.
How do attention models work?

The attention framework makes it possible for the neural network to replicate the visual
attention mechanism of the human brain. Just like humans do not focus on each word while
reading a text, the attention framework allows the neural network to focus on keywords and
other important information with intense, high-resolution focus and the other words in
low-resolution. The neural network adjusts its focal point as it begins to understand the scene

further.
* Typically, programmers code the attention framework as a function.
* The function maps the input query and "s set" of value pairs to an output.

* The input values, keys, query and outcomes are all vectors. The model then calculates the

output as a weighted sum of the values.

* A function that is compatible with the initial query and the corresponding key value is the

weight of each value.
Comparing The Working Of Seq2seq And Attention Frameworks
* To compare the working of these two models, let us consider the following sentences:

* Input sentence in English: Shalini is a good girl

* Output sentence in Hindi: Mfolail Teh 36 ﬂgﬁ %

18

* The traditional seq2seq model discards the intermediate states of the encoder and uses only

the final vector states to feed the decoder. Here is the illustration of this process:

* The seq2seq model discards the encoder outputs from Seq 1 to 5, and the system feeds only
the last state of the encoder as input to the decoder. While this technique works for smaller
sentences, it becomes a problem as the length of the input sequence increases. It leads to a

bottleneck, as it becomes difficult to summarize long sequences into a fixed-length vector.

* The attention framework does not throw away these intermediate encoder states. Instead, it
uses all intermediate states, Seq 1 to 5, to construct the context vectors that the decoder uses

to generate the output sequence.
When to use attention models

* The initial purpose of attention models was to help improve computer vision and the
encoder-decoder-based neural machine translation system. This system uses natural

language processing (NLP) and relies on huge data libraries that have complex functions.

» Using attention models helps create maps to fixed-length vectors to generate translations
and understanding. While these may not be wholly accurate, it provides a result that

represents the general sentiment and intention of the initial input.
Types Of Attention Models
* Global attention model
* Local attention model
* Self-attention model

Global attention model

19

Global attention model is also known as the soft attention framework. Collects inputs from all
encoder and decoder states before evaluating the current state to generate the output. It uses
each encoder step and decoder preview step to align or calculate attention weights. It multiplies
the results from each encoder step with globally aligned weights to find the content value to
feed to the recurrent neural network (RNN). This model uses values from the RNN to find the

decoder's outputs.
Local attention model

Local attention model is also known as the hard attention model. Has a similar working
structure to the global model. The significant difference is that the local attention mechanism
uses only a few encoder positions to calculate the align weights. This model determines the
context vector and aligns weights by selecting words from the encoder's source and the

first-aligned position.

It allows for predictive and monotonic alignment. The predictive alignment enables the model to
predict the final alignment position and the monotonic alignment considers only select

information. It also combines specific aspects of hard and soft attention.
Self-attention model

The self-attention mechanism focuses on various positions from a single input sequence. We
can combine the global and local attention frameworks to create this model. The difference is

that it considers the same input sequence instead of focusing on the target output sequence
Reinforcement Learning

Reinforcement learning is a branch of machine learning that is concerned to take a sequence of
actions in order to maximize some reward. RL does not know anything about the environment, it
learns what to do by exploring the environment. It uses actions, and receive states and rewards. The

agent can only change the environment through actions.

20

State: s

ions:
Reward: r Actions: a

Environment

Figure 4.9: Reinforcement Learning Model

Reinforcement learning (RL) is a general framework where agents learn to perform actions in
an environment so as to maximize a reward. The two main components are the environment,
which represents the problem to be solved, and the agent, which represents the learning

algorithm.
* The agent and environment continuously interact with each other.

* At each time step, the agent takes an action on the environment based on its policy
where S, is the current observation from the environment, and receives a reward r..; and the

next observation S, from the environment.
* The goal is to improve the policy so as to maximize the sum of rewards (return).

* Note: It is important to distinguish between the state of the environment and
the observation, which is the part of the environment state that the agent can see, e.g. in a
poker game, the environment state consists of the cards belonging to all the players and the
community cards, but the agent can observe only its own cards and a few community cards.
In most literature, these terms are used interchangeably and observation is also denoted

as S.

One of the big difficulties of RL is that some actions take time to create a reward. Also, the
reward received by the environment is not related to the last action, but some action on the past.
We are not told what actions lead to higher rewards. Instead, we learn it from experience. We

repeat try-and-error attempts and observe which action gives us a higher reward and which

21

gives a lower reward. Moreover, we are not even told when rewards are given in the beginning.

They might be given immediately or might be given after a few time steps after we take action.

Therefore, we need a dynamical framework that captures those two features, “try-and-error

i)

search” and “delayed rewards.”.
Markov Decision Process (MDP)

MDP is a framework that can solve most Reinforcement Learning problems with discrete
actions. With the Markov Decision Process, an agent can arrive at an optimal policy for
maximum rewards over time. The Markov decision process (MDP), is an approach in

reinforcement learning to take decisions in a grid world environment.

A grid world environment consists of states in the form of grids. The MDP tries to capture a
world in the form of a grid by dividing it into states, actions, models/transition models, and
rewards. The solution to an MDP is called a policy and the objective is to find the optimal

policy for that MDP task.

An MDP consists of two elements; the agent and the environment.

P ™

Move left Move right

L k. ® & ™ -
I

? H’ -100

Figure 4.9: Example of Markov Decision Process

22

The agent is a learner or decision-maker. In the above example, the agent is the rabbit. The
environment is everything surrounding the agent. In the example, the environment includes
everything in the field where the rabbit is with food and the tiger. After the agent taking an
action, we face a different situation. We call these different situations states. For example, the
situation where the rabbit has not moved yet is considered as a state, and the situation where the
rabbit is between the broccoli and the tiger after she eats the carrot is considered as another

state.
Markov Decision Process (MDP) Framework

The following diagram is a formalization of MDP. At time ¢, the agent at state S,chooses an
action 4, from the action space and the environment returns a new state S,,, from the state space.
Then, the agent receives the reward R,.; depending on the starting state, the taken action, and

the subsequent state.

-

"_| Agent ||

state reward

y action
S, i A,
| Rhl i
- .
< Environment |[€——
' .

Figure 4.10: Reinforcement Learning used in MDP Framework

In the rabbit example, the action space consists of moving right and left. The state space
includes all the four possible situations, 1) the rabbit is at the initial position, 2) the rabbit is
between the broccoli and tiger, 3) the rabbit is the leftmost after eating the broccoli, and 4) The
rabbit being eaten by the tiger. The possible rewards are +3(Situation 2), +10(Situation 3), and
-100(Situation 4). The details are described in the following diagram.

* The MDP framework (of reinforcement learning) is important because it accounts for a
change in situations that might lead to change in optimal action, which is not considered in

the k-armed bandit framework.

23

* An MDP consists of its agent and environment. The agent interacts with the environment
observing transitions of states and receiving rewards to find an optimal action (the

maximum cumulative rewards) at each state.
Bellman Equation

The agent tries to get the most expected sum of rewards from every state it lands in. In order to
achieve that we must try to get the optimal value function, i.e. the maximum sum of cumulative

rewards. Bellman equation will help us to do so.

* Bellman equation decomposes the value function into two parts, the immediate reward

plus the discounted future values.

» This equation simplifies the computation of the value function, such that rather than
summing over multiple time steps, we can find the optimal solution of a complex problem
by breaking it down into simpler, recursive sub-problems and finding their optimal

solutions.
Bellman equation for the State-value function

» This equation tells us how to find the value of a state ‘s’ following a policy m. It recursively
breaks down the value computation into an immediate expected reward from the next

state, r(s,a), plus the value of a successor state, Vm(s’), with a discount factor y.

Ve(s) =) m(als)-) P& (r(s,a) +y¥(s))

€

Bellman equation for the Action-value function

* The state-value function, this equation tells us how to find recursively the value of a

state-action pair following a policy .

Qr(s,a) = X5 P(r(s,a) +y-Xam(a'|s’) - Qr(s',a"))

24

* The state-value function V(s’) is equivalent to the sum of the action-value functions
Q(s’,a’) of all outgoing actions a’, multiplied by the policy probability of selecting each

action, rr(a’|s’), the previous formula can be expressed as follows:

Qu(s,a) = Xy P, (r (s, a) +yV,(s")

v, denotes the discount factor, is a factor multiplying the future expected reward, and varies on
the range of [0,1]. It controls the importance of the future rewards versus the immediate ones.
The lower the discount factor is, the less important future rewards are, and the Agent will tend

to focus on actions which will yield immediate rewards only

Unfortunately, in most scenarios, we do not know the probability P and the reward r, so we
cannot solve MDPs by directly applying the Bellman equation. But there are some alternatives

to find them from experience.
Actor-Critic model

Actor-Critics aim to take advantage of all the good stuff from both value-based and
policy-based while eliminating all their drawbacks. And how do they do this? The principal idea

is to split the model in two:
* one for computing an action based on a state and

* another one to produce the Q values of the action.

* The “Actor” updates the policy distribution in the direction suggested by the Critic (such

as with policy gradients).

* The “Critic” estimates the value function. This could be the action-value (the Q value) or

state-value (the V value).
* And both the Critic and Actor functions are parameterized with neural networks.
* Actor-Critic algorithms combine the two methods in order to create a more robust method.

How Actor Critic works

25

Imagine you play a video game with a friend that provides you some feedback. You’re the Actor

and your friend is the Critic.

I rotate
the piece

Really bad
-

@
‘- d b
Actor Critic

Figure 4.11: Example of Actor Critic Model

* At the beginning, you don’t know how to play, so you try some action randomly. The Critic

observes your action and provides feedback.
* Learning from this feedback, you’ll update your policy and be better at playing that game.

* On the other hand, your friend (Critic) will also update their own way to provide feedback

SO 1t can be better next time.

The idea of Actor Critic is to have two neural networks. We estimate both:

ACTOR: A policy function, CRITIC: A value function,
controls how our agent acts. measures how good these actions are.

Both run in parallel. Because we have two models (Actor and Critic) that must be trained, it

means that we have two set of weights that must be optimized separately.
Q Value Function

Q Value (Q Function): Usually denoted as Q(s,a) (sometimes with a m subscript, and
sometimes as Q(s,a; 0) in Deep RL), Q Value is a measure of the overall expected reward

assuming the Agent is in state s and performs action a, and then continues playing until the end

26

of the episode following some policy m. Its name is an abbreviation of the word “Quality”, and

it is defined mathematically as:

where N is the number of states from state ‘s’ till the terminal state, “y’ is the discount factor and

" is the immediate reward received after performing action a” in state ‘s’.
Q Learning

Q-learning is a model-free reinforcement learning algorithm to learn the value of an action in a
particular state. It does not require a model of the environment (hence "model-free"), and it can
handle problems with stochastic transitions and rewards without requiring adaptations.
Approximate the state-action pairs Q-function from the samples of Q(s, a) that we observe
during interaction with the environment. This approach is known as Time-Difference

Learning.

Q-learning is an off-policy reinforcement learning algorithm that seeks to find the best action
to take given the current state. It’s considered off-policy because the g-learning function learns
from actions that are outside the current policy, like taking random actions, and therefore a
policy isn’t needed. More specifically, g-learning seeks to learn a policy that maximizes the

total reward.

27

ﬂﬂ-ﬂ-ﬂﬂ-ﬁﬂﬁﬁf

Q Learning

Figure 4.12: Q Learning Model

The ‘g’ in g-learning stands for quality. Quality in this case represents how useful a given action
is in gaining some future reward. In its most simplified form, it uses a table to store all Q-Values
of all possible state-action pairs possible. It updates this table using the Bellman equation, while
action selection is usually made with an g-greedy policy (no uncertainties in state-transitions

and expected rewards), the update rule of Q-Learning is:

s, @) =r(s,a) +'Y max, O(s’, a)

where N is the number of states from state ‘s’ till the terminal state, “y’ is the discount factor and

7°” is the immediate reward received after performing action ‘a’ in state ‘s’
State—action—reward—state—action (SARSA)

* The Markov Property
The Markov Property state that: “Future is Independent of the past given the present”
* Transition: Moving from one state to another is called Transition.

* Transition Probability: The probability that the agent will move from one state to

another is called transition probability.

Mathematically we can express this statement as: S[t] denotes the current state of the agent and
s[t+1] denotes the next state. What this equation means is that the transition from state S[t] to

S[t+1] is entirely independent of the past.

28

State—action—reward—state—action (SARSA) is an algorithm for learning a Markov decision
process policy, used in the reinforcement learning area of machine learning. The main function
for updating the Q-value depends on the current state of the agent "S1", the action the agent
chooses "A1", the reward "R" the agent gets for choosing this action, the state "S2" that the
agent enters after taking that action, and finally the next action "A2" the agent chooses in its

new state. The acronym for the quintuple (s, a, 7, S..;, @) OF (S, @y Vg Sy Qripy) 18 SARSA.

Os, a) UQO(s, a) +af 1, + YO(sii1 arit) — O(5, a)]

A SARSA agent interacts with the environment and updates the policy based on actions taken,
hence this is known as an on-policy learning algorithm. The Q value for a state-action is
updated by an error, adjusted by the learning rate alpha. Q values represent the possible
reward received in the next time step for taking action a in state ‘s’, plus the discounted future

reward received from the next state-action observation.
Difference between Sarsa & Q-Learning

The Sarsa algorithm is pretty much the Q-Learning algorithm with a slight modification in order
to make it an on-policy algorithm. The Q-Learning update rule is based on the Bellman
equation for the optimal Q-Value, and so in the case on no uncertainties in state-transitions and

expected rewards, the Q-Learning update rule is:
0, a) =r(s,a) +Y max, Q(s’, a)
In order to transform this into an on-policy algorithm, the last term is modified:
s, a) =r(s, @) +YQ(s', a’)

when here, both actions a and a’ are chosen by the same policy. The name of the algorithm is

derived from its update rule, which is based on (s,a,7s’,a’), all coming from the same policy.

The difference between these two algorithms is that SARSA chooses an action following the
same current policy and updates its Q-values whereas Q-learning chooses the greedy action, that

is, the action that gives the maximum Q-value for the state, that is, it follows an optimal policy.

29

S. Topic Reference
No
1 Recurrent neural https://www.ibm.com/topics/recurrent-neural-networks
network
2 | Long short-term https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/Ist
memory o
3 | Gated Recurrent Unit https://www.analyticsvidhya.com/blog/2021/03/introduction-to-gated-r
4 | Translation https://leonardoaraujosantos.gitbook.io/artificial-inteligence/machine I
earning/supervised_learning/recurrent_neural networks/machine-transl
ation-using-ron
5 | Beam search and width | https: j int.com/define-beam-search
6 | Bleu score https://towardsdatascience.com/foundations-of-nlp-explained-bleu-scor
e-and-wer-metrics-1a5ba06d812b
7 | Attention model https://in.indeed.com/career-advice/career-development/attention-mode
e — A0, 1onO 0 0 0
%20and%?20processing%20them%20sequentially.
8 | Reinforcement Learning https://www.techtarget.com/searchenterpriseai/definition/reinforcement
-learning
9 | RL-framework https: rin m/k -tools-for-reinforcement-learnin
10 | MDP https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is
-markov-decision-process/#:~:text=A%20Markov%20decision%20pro
cess%20(MDP.makes%?20sequential%20decisions%200ver%20time.
11 | Actor-critic model

orcement-learning-algorithm-c8095a655¢c14

30

https://www.ibm.com/topics/recurrent-neural-networks
https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/lstm
https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/lstm
https://www.analyticsvidhya.com/blog/2021/03/introduction-to-gated-recurrent-unit-gru/
https://www.analyticsvidhya.com/blog/2021/03/introduction-to-gated-recurrent-unit-gru/
https://leonardoaraujosantos.gitbook.io/artificial-inteligence/machine_learning/supervised_learning/recurrent_neural_networks/machine-translation-using-rnn
https://leonardoaraujosantos.gitbook.io/artificial-inteligence/machine_learning/supervised_learning/recurrent_neural_networks/machine-translation-using-rnn
https://leonardoaraujosantos.gitbook.io/artificial-inteligence/machine_learning/supervised_learning/recurrent_neural_networks/machine-translation-using-rnn
https://www.javatpoint.com/define-beam-search
https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b
https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b
https://in.indeed.com/career-advice/career-development/attention-model#:~:text=An%20attention%20model%2C%20also%20known,attention%20and%20processing%20them%20sequentially
https://in.indeed.com/career-advice/career-development/attention-model#:~:text=An%20attention%20model%2C%20also%20known,attention%20and%20processing%20them%20sequentially
https://in.indeed.com/career-advice/career-development/attention-model#:~:text=An%20attention%20model%2C%20also%20known,attention%20and%20processing%20them%20sequentially
https://www.techtarget.com/searchenterpriseai/definition/reinforcement-learning
https://www.techtarget.com/searchenterpriseai/definition/reinforcement-learning
https://www.turing.com/kb/best-tools-for-reinforcement-learning
https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-markov-decision-process/#:~:text=A%20Markov%20decision%20process%20(MDP,makes%20sequential%20decisions%20over%20time
https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-markov-decision-process/#:~:text=A%20Markov%20decision%20process%20(MDP,makes%20sequential%20decisions%20over%20time
https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-markov-decision-process/#:~:text=A%20Markov%20decision%20process%20(MDP,makes%20sequential%20decisions%20over%20time
https://medium.com/intro-to-artificial-intelligence/the-actor-critic-reinforcement-learning-algorithm-c8095a655c14
https://medium.com/intro-to-artificial-intelligence/the-actor-critic-reinforcement-learning-algorithm-c8095a655c14

12

Q-learning https://www.techtarget.com/searchenterpriseai/definition/Q-learning#:~

;text=0%2Dlearning%20is%20a%20machine.way%?20animals%20or
%20children%20learn.

13

SARSA https://builtin.com/machine-learning/sarsa

Unit-4

Questions Bank (Descriptive) with Answers

Q1. What is Reinforcement learning? Explain the detailed concepts. (May 2022) (May 2023)

Ans. Reinforcement learning is a branch of machine learning that is concerned to take a sequence of

actions in order to maximize some reward. RL does not know anything about the environment, it

learns what to do by exploring the environment. It uses actions, and receive states and rewards. The

agent can only change the environment through actions.

State: s
Reward: r

Reinforcement learning (RL) is a general framework

where agents learn to perform actions in an environment

Environment

actions:a SO as to maximize a reward. The two main components
are the environment, which represents the problem to be
solved, and the agent, which represents the learning

algorithm
The agent and environment continuously interact with each other.

At each time step, the agent takes an action on the environment based on its policy
where S, is the current observation from the environment, and receives a reward r,, and the

next observation S,;; from the environment.

31

https://www.techtarget.com/searchenterpriseai/definition/Q-learning#:~:text=Q%2Dlearning%20is%20a%20machine,way%20animals%20or%20children%20learn
https://www.techtarget.com/searchenterpriseai/definition/Q-learning#:~:text=Q%2Dlearning%20is%20a%20machine,way%20animals%20or%20children%20learn
https://www.techtarget.com/searchenterpriseai/definition/Q-learning#:~:text=Q%2Dlearning%20is%20a%20machine,way%20animals%20or%20children%20learn
https://builtin.com/machine-learning/sarsa

* The goal is to improve the policy so as to maximize the sum of rewards (return).

One of the big difficulties of RL is that some actions take time to create a reward. Also, the
reward received by the environment is not related to the last action, but some action on the past.
We are not told what actions lead to higher rewards. Instead, we learn it from experience. We
repeat try-and-error attempts and observe which action gives us a higher reward and which
gives a lower reward. Moreover, we are not even told when rewards are given in the beginning.

They might be given immediately or might be given after a few time steps after we take action.
Q2. Describe the concept of MDP. (May 2022)

Ans. MDP (Markov Decision Process) is a framework that can solve most Reinforcement Learning
problems with discrete actions. With the Markov Decision Process, an agent can arrive at an
optimal policy for maximum rewards over time. The Markov decision process (MDP), is an
approach in reinforcement learning to take decisions in a grid world environment.

A grid world environment consists of states in the form of grids. The MDP tries to capture a world
in the form of a grid by dividing it into states, actions, models/transition models, and rewards. The
solution to an MDP is called a policy and the objective is to find the optimal policy for that MDP
task.

An MDP consists of two elements; the agent and

| Agent] the environment. The agent is a learner or

state| |reward ;
action . . .
S| IR A decision-maker. In the above example, the agent is
T

R
“s.. | Environment \4_ the rabbit. The environment is everything

surrounding the agent. In the example, the

environment includes everything in the field where the rabbit is with food and the tiger. After the
agent taking an action, we face a different situation. We call these different situations states. For
example, the situation where the rabbit has not moved yet is considered as a state, and the situation
where the rabbit is between the broccoli and the tiger after she eats the carrot is considered as

another state.

Q3. Explain Q learning algorithm assuming deterministic rewards and actions. (May 2022)

Ans. Q-learning is a model-free reinforcement learning algorithm to learn the value of an action in a

particular state. It does not require a model of the environment (hence "model-free"), and it can

32

handle problems with stochastic transitions and rewards without requiring adaptations.
Approximate the state-action pairs Q-function from the samples of O(s, a) that we observe during

interaction with the environment. This approach is known as Time-Difference Learning.

Q-learning is an off-policy reinforcement learning algorithm that seeks to find the best action to
take given the current state. It’s considered off-policy because the g-learning function learns from
actions that are outside the current policy, like taking random actions, and therefore a policy isn’t

needed.

Specifically for deterministic rewards and actions, g-learning seeks to learn a policy that maximizes
the total reward. The ‘q’ in gq-learning stands for quality. Quality in this case represents how useful a
given action is in gaining some future reward. In its most simplified form, it uses a table to store all
Q-Values of all possible state-action pairs possible. It updates this table using the Bellman equation,
while action selection is usually made with an e-greedy policy. (no uncertainties in state-transitions
and expected rewards), the update rule of Q-Learning is:

O(s, a) = r(s.a) + ymax O(s', a)

el

where N is the number of states from state ‘s’ till the terminal state, y is the discount factor and r° is

the immediate reward received after performing action a in state s.

| Q Tabls
State-Action

Q Leérning

Q4. Explain the following term: Attention Model. (May 2022)

Ans. In ANN, attention is a technique that is meant to mimic cognitive attention. The effect
enhances some parts of the input data while diminishing other parts — the motivation being that the

network should devote more focus to the small, but important, parts of the data.Learning which part

33

of the data is more important than another depends on the context, and this is trained by gradient
descent. Attention models involve focusing on the most important components while perceiving
some of the additional information. This is similar to the visual attention mechanism that the human

brain uses.

For example, the human brain may initially focus on a particular aspect image with a higher
resolution focus and view the surrounding areas with a lower resolution. However, as the brain

begins to understand the image, it adjusts the focal point to understand all aspects thoroughly.

e The aim of attention models is to reduce larger, more complicated tasks into smaller, more
manageable areas of attention to understand and process sequentially.

e The models work within neural networks.

e Using attention models enables the network to focus on a few particular aspects at a time
and ignoring the rest.

e This allows for efficient and sequential data processing, especially when the network needs

to categorize entire datasets.

34

QS. What are the structural and operational differences between a feed-forward network and

a recurrent neural network? Identify the difference between LSTM, GRU and Vanilla-RNN.

(May 2023)

Feed-forward Neural

Comparison Attribute Networks Recurrent Neural Networks
Signal flow direction Forward only Bidirectional

Delay introduced No Yes

Complexity Low High

Neuron independence in the Yes No

same layer

Speed High slow

Commonly used for

Pattern recognition, speech
recognition, and character

recognition

Language translation,
speech-to-text conversion, and

robotic control.

Vanilla RNN, also known as simple RNN, processes inputs sequentially, maintaining the hidden

state that encodes information about the inputs it has processed. At each step, the RNN does a series

of calculations before producing an output. For classification tasks, a single output is needed. For

text generation based on the previous word, an output is required at every time step.This iterative

generation process allows the model to progressively generate a coherent sequence of words,

building upon the context provided by the preceding words.

35

RN L5TM GRU
Structure Simple More complex sSmmplerthan LSTM
T'raining Canbe difficult Canbemore difficult |Easierthan LSTM
Good for complex Canbe ntermediate
Performance Good for simple tasks) 3 between simple and
tasks
complex tasks
Hidden state Simngle Multiple (memory cell)] Single
Gates None Input, output. forget |Update, reset
i_mﬂlq'- to refain imited g Intermediate between
ong-term Lirmite trong RNNsand LSTMs
dependencies

Q6. What do you mean by Recurrent Neural Network? Explain with the help of diagram. In
which cases this model is suitable. (Dec 2020)

Ans. The recurrent neural network is a special type of neural network which not just looks at the

current input being presented to it but also the previous input. So instead of
Input — Hidden — Output
it becomes

Input + Previous Hidden — Hidden — Output

P
L H - A

/S S S S

* RNNs can take one or more input vectors and produce one or more output vectors and the

®)
I
A

v

v

.
>

output(s) are influenced not just by weights applied on inputs like a regular NN, but also by

a “hidden” state vector representing the context based on prior input(s)/output(s).

* So, the same input could produce a different output depending on previous inputs in

the series

36

* The current state can be written as ht = f(ht-iJ Xt)

. Here, ht is the new state, ht-1 is the previous state while xt is the current input. Because the
input neuron would have applied the transformations on our previous input. So each successive

input is called as a time step.

* Let’s say that the activation function is tanh, the weight at the recurrent neuron is Whh and

the weight at the input neuron is Wxh, we can write the equation for the state at time t as —

ht =tanh (Whhht-1+ thxt)

Y Y i
Wy Wy Wy
Wy Wy Wp
i A, . A,
W, W, Wy
Xy Xz X3

The model is suitable for wide range of applications such as:

1. Natural Language Processing (NLP): (i) Language Modeling: RNNs can predict the next word in
a sentence, useful for tasks like text generation and autocomplete. (i) Machine Translation: RNNs
can be used for translation tasks, with one RNN encoding the input sentence and another decoding
it in the target language. (iii) Sentiment Analysis: RNNs can analyze text sentiment by capturing

contextual information from words in a sequence.

2. Speech Recognition and Synthesis: (i) Speech-to-Text: RNNs are employed to convert spoken
language into written text, making them the backbone of speech recognition systems. (ii)
Text-to-Speech: RNNs can generate human-like speech from text input, improving voice assistants

and accessibility tools.

3. Time-Series Analysis and Forecasting: (i) Financial Forecasting: RNNs can predict stock prices,
currency exchange rates, and other financial variables. (ii) Weather Prediction: RNNs can analyze

historical weather data to forecast future weather conditions.

37

4. Music Generation: RNNs can generate music sequences, learning patterns from existing music

compositions and producing new compositions.

5. Video Analysis and Action Recognition: (i) Video Understanding: RNNs can process frames in a

video sequence to understand actions, objects, and activities.

Gesture Recognition: RNNs can recognize hand gestures and movements in videos for applications

like sign language translation.

6. Robotics and Autonomous Systems: (i) Path Prediction: RNNs can help robots predict the paths
of moving objects and plan their actions accordingly. (i1) Gesture Control: RNNs enable natural

interaction with robots through gesture recognition.

7. Language Generation and Dialogue Systems: (i) Chatbots: RNNs power chatbots and virtual
assistants by generating coherent responses in conversations. (ii) Storytelling: RNNs can create

stories or narratives based on input prompts.

Q7. Explain Actor-Critic model. List down what are its advantages in reinforcement learning.

(Dec 2020)

Ans. Actor-Critics aim to take advantage of all the good stuff from both value-based and

policy-based while eliminating all their drawbacks. And how do they do this?
The principal idea is to split the model in two: (i) one for computing an action based on a state and
(i1) another one to produce the Q values of the action.

The “Actor” updates the policy distribution in the direction suggested by the Critic (such as with
policy gradients). The “Critic” estimates the value function. This could be the action-value (the Q
value) or state-value (the V value). And both the Critic and Actor functions are parameterized with

neural networks.
Actor-Critic algorithms combine the two methods in order to create a more robust method.

* The Actor takes as input the state and outputs the best action.

38

» It essentially controls how the agent behaves by learning the optimal policy

(policy-based).

* The Critic, on the other hand, evaluates the action by computing the value function (value

based).
* They both get better in their own role as the time passes.

* The overall architecture will work more efficiently than the two methods separately.

Q8. Describe Q-Learning in brief. What is SARSA algorithm? Explain this. (Dec 2020)

Ans. Q-learning is a model-free reinforcement learning algorithm to learn the value of an action in
a particular state. It does not require a model of the environment (hence "model-free"), and it can
handle problems with stochastic transitions and rewards without requiring adaptations.
Approximate the state-action pairs Q-function from the samples of QO(s, a) that we observe during

interaction with the environment. This approach is known as Time-Difference Learning.

Q-learning is an off-policy reinforcement learning algorithm that seeks to find the best action to
take given the current state. It’s considered off-policy because the g-learning function learns from
actions that are outside the current policy, like taking random actions, and therefore a policy isn’t

needed.

State—action—reward—state—action (SARSA) is an algorithm for learning a Markov decision

process policy, used in the reinforcement learning area of machine learning.

The main function for updating the Q-value depends on the current state of the agent "S1", the
action the agent chooses "A1", the reward "R" the agent gets for choosing this action, the state "S2"
that the agent enters after taking that action, and finally the next action "A2" the agent chooses in its

new state.
The acronym for the quintuple (s, at, rt, st+1, at+1) or (st, at, rt+1, st+1, at+1) is SARSA.

A SARSA agent interacts with the environment and updates the policy based on actions taken,
hence this is known as an on-policy learning algorithm. The Q value for a state-action is updated by

an error, adjusted by the learning rate alpha. Q values represent the possible reward received in the

39

next time step for taking action a in state ‘s’, plus the discounted future reward received from the

next state-action observation.

Q9. Explain the difference between Value iteration and Policy iteration. What is Markov

Decision Process (MDP)? (Dec 2020)

Ans. Policy iteration and value iteration are both dynamic programming algorithms that find an
optimal policy 7« in a reinforcement learning environment. They both employ variations of

Bellman updates and exploit one-step look-ahead:

e In policy iteration, we start with a fixed policy. Conversely, in value iteration, we begin by
selecting the value function. Then, in both algorithms, we iteratively improve until we reach
convergence.

e The policy iteration algorithm updates the policy. The value iteration algorithm iterates over
the value function instead. Still, both algorithms implicitly update the policy and state value
function in each iteration.

e [n each iteration, the policy iteration function goes through two phases. One phase evaluates
the policy, and the other one improves it. The value iteration function covers these two

phases by taking a maximum over the utility function for all possible actions.

The value iteration algorithm is straightforward. It combines two phases of the policy iteration into
a single update operation. However, the value iteration function runs through all possible actions at
once to find the maximum action value. Subsequently, the value iteration algorithm is

computationally heavier.

Both algorithms are guaranteed to converge to an optimal policy in the end. Yet, the policy iteration
algorithm converges within fewer iterations. As a result, the policy iteration is reported to conclude

faster than the value iteration algorithm.

Policy Tteration Value Iteration
Starts with a random policy Starts with a random value lunction
Algorithm is more complex Algorithim is simpler
Guaranteed to converge Guaranteed to converge
Cheaper to compute More expensive to compute
Requires few iterations to converge | Hequires more iterations to converge
Faster Slower

40

Markov Decision Process (MDP): MDP is a framework that can solve most Reinforcement Learning
problems with discrete actions. With the Markov Decision Process, an agent can arrive at an optimal
policy for maximum rewards over time. The Markov decision process (MDP), is an approach in
reinforcement learning to take decisions in a grid world environment. A grid world environment

consists of states in the form of grids.

The MDP tries to capture a world in the form of a grid by dividing it into states, actions,
models/transition models, and rewards. The solution to an MDP is called a policy and the objective

is to find the optimal policy for that MDP task.

41

Unit-4

MCQ/ Quiz Practice Set

1. What is the primary purpose of a Recurrent Neural Network (RNN)?
a) Image classification

b) Text generation

c¢) Reinforcement learning

d) Object detection

Answer: b) Text generation

2. Which layer type is typically used to capture sequential dependencies in an RNN?
a) Input layer

b) Hidden layer

c¢) Output layer

d) Activation layer

Answer: b) Hidden layer

3. What is the advantage of using recurrent layers in an RNN?
a) They can capture temporal dependencies in the input data
b) They can handle variable-length inputs

c) They can generate synthetic data

d) They can handle non-linear transformations

Answer: a) They can capture temporal dependencies in the input data

4. What is the purpose of the hidden state in an RNN?
a) To store the information from the previous time step
b) To adjust the learning rate during training

c¢) To compute the gradients for backpropagation

42

d) None of the above

Answer: a) To store the information from the previous time step

5. Which activation function is commonly used in the recurrent layers of an RNN?
a) ReLU (Rectified Linear Unit)

b) Sigmoid

c¢) Tanh (Hyperbolic Tangent)

d) Softmax

Answer: ¢) Tanh (Hyperbolic Tangent)

6. What is the purpose of the time step parameter in an RNN?
a) To determine the number of recurrent layers in the network
b) To adjust the learning rate during training

c) To specify the length of the input sequence

d) None of the above

Answer: ¢) To specify the length of the input sequence

7. Which layer type is commonly used to initialize the hidden state in an RNN?
a) Input layer

b) Hidden layer

c¢) Output layer

d) Activation layer

Answer: b) Hidden layer

8. What is the purpose of the bidirectional RNN architecture?

a) To handle sequential data in both forward and backward directions

b) To reduce the computational complexity of the network

¢) To adjust the learning rate during training

d) None of the above

Answer: a) To handle sequential data in both forward and backward directions

9. Which layer type is responsible for making final predictions in an RNN?

43

a) Input layer

b) Hidden layer

c¢) Output layer

d) Activation layer
Answer: ¢) Output layer

10. What is the purpose of the recurrent connection in an RNN?
a) To propagate the hidden state across different time steps

b) To adjust the weights and biases of the network

c¢) To reduce the dimensionality of the input data

d) None of the above

Answer: a) To propagate the hidden state across different time steps

11. Which layer type is commonly used in RNNs for sequence-to-sequence tasks?
a) Input layer

b) Hidden layer

c¢) Output layer

d) Attention layer

Answer: d) Attention layer

12. What is the purpose of the backpropagation through time (BPTT) algorithm in RNN training?
a) To compute the gradients and update the network's parameters

b) To adjust the learning rate during training

c) To prevent overfitting by regularizing the model

d) None of the above

Answer: a) To compute the gradients and update the network's parameters

13. Which layer type is commonly used in RNNs to handle variable-length inputs?
a) Input layer

b) Hidden layer

c) Output layer

44

d) None of the above

Answer: a) Input layer

14. What is the purpose of the initial hidden state in an RNN?
a) To provide the starting point for the recurrent computation
b) To adjust the learning rate during training

c¢) To compute the gradients for backpropagation

d) None of the above

Answer: a) To provide the starting point for the recurrent computation

15. Which layer type is responsible for handling the output at each time step in an RNN?
a) Input layer

b) Hidden layer

c) Output layer

d) Activation layer

Answer: ¢) Output layer

16. What is the purpose of the teacher forcing technique in RNN training?
a) To adjust the learning rate during training

b) To propagate the gradients through time

¢) To reduce the computational complexity of the network

d) None of the above

Answer: b) To propagate the gradients through time

17. Which layer type is commonly used in RNNs for language modeling tasks?
a) Input layer

b) Hidden layer

c) Output layer

d) None of the above

45

Answer: ¢) Output layer

18. What is the purpose of the sequence-to-vector architecture in an RNN?
a) To process an input sequence and produce a fixed-length representation
b) To adjust the weights and biases of the network

c¢) To reduce the dimensionality of the input data

d) None of the above

Answer: a) To process an input sequence and produce a fixed-length representation

19. Which layer type is responsible for introducing non-linearity in an RNN?
a) Input layer

b) Hidden layer

c¢) Output layer

d) Activation layer

Answer: d) Activation layer

20. What is the purpose of the forget gate in a Gated Recurrent Unit (GRU)?
a) To control the flow of information from the previous hidden state

b) To adjust the learning rate during training

c¢) To compute the gradients for backpropagation

d) None of the above

Answer: a) To control the flow of information from the previous hidden state

21. Which layer type is commonly used in RNNs for machine translation tasks?
a) Input layer

b) Hidden layer

¢) Output layer

d) Attention layer

Answer: d) Attention layer

46

22. What is the purpose of the peephole connections in a Long Short-Term Memory (LSTM)
network?

a) To allow the cell state to influence the gating mechanisms

b) To adjust the learning rate during training

c¢) To introduce non-linearity to the network

d) None of the above

Answer: a) To allow the cell state to influence the gating mechanisms

23. Which layer type is responsible for handling variable-length outputs in an RNN?
a) Input layer

b) Hidden layer

c¢) Output layer

d) None of the above

Answer: c¢) Output layer

24. What is the purpose of the cell state in an LSTM network?
a) To store long-term dependencies in the input sequence

b) To adjust the learning rate during training

c¢) To compute the gradients for backpropagation

d) None of the above

Answer: a) To store long-term dependencies in the input sequence

25. Which layer type is commonly used in RNNs for speech recognition tasks?
a) Input layer

b) Hidden layer

¢) Output layer

d) None of the above

Answer: c¢) Output layer

47

26. What is the purpose of the input gate in an LSTM network?
a) To control the flow of information from the current input

b) To adjust the learning rate during training

c¢) To introduce non-linearity to the network

d) None of the above

Answer: a) To control the flow of information from the current input

27. Which layer type is responsible for handling variable-length inputs and outputs in an RNN?

a) Input layer

b) Hidden layer

c) Output layer

d) None of the above

Answer: d) None of the above

28. What is the purpose of the output gate in an LSTM network?
a) To control the flow of information to the current output

b) To adjust the learning rate during training

¢) To introduce non-linearity to the network

d) None of the above

Answer: a) To control the flow of information to the current output

29. Which layer type is commonly used in RNNs for time series prediction tasks?
a) Input layer

b) Hidden layer

¢) Output layer

d) None of the above

Answer: ¢) Output layer

30. What is the purpose of the reset gate in a Gated Recurrent Unit (GRU)?
a) To reset the hidden state based on the current input
b) To adjust the learning rate during training

c¢) To introduce non-linearity to the network

48

d) None of the above

Answer: a) To reset the hidden state based on the current input

31. What sets Reinforcement Learning apart from other machine learning paradigms?
a) Pre-trained models

b) Supervised labeling

¢) Interaction with an environment

d) Batch processing

Answer: ¢) Interaction with an environment

32. What term describes the strategy of choosing actions to maximize cumulative rewards over
time?

a) Hyperparameter tuning

b) Feature extraction

c¢) Reinforcement learning

d) Policy optimization

Answer: d) Policy optimization

33. In Reinforcement Learning, what does the term “agent” refer to?
a) A person supervising the learning process

b) A software program making decisions

c) A labeled data point

d) A neural network architecture

Answer: b) A software program making decisions

34. What are the numerical values used to evaluate the outcomes of actions taken by an agent?
a) Observations

b) Rewards

c) Policies

d) Loss functions

Answer: b) Rewards

49

35. The “reward function” in RL is used for:
a) Defining the neural network architecture
b) Calculating the probability of actions

c¢) Evaluating the quality of an agent’s actions
d) Filtering noisy observations

Answer: c¢) Evaluating the quality of an agent’s actions

36. Balancing between trying new actions and exploiting known actions is known as:
a) Exploration vs. exploitation

b) Model validation

c) Feature extraction

d) Dimensionality reduction

Answer: a) Exploration vs. exploitation

37. Which algorithm is particularly well-suited for environments with continuous action spaces?
a) Q-Learning

b) Deep Q-Network (DQN)

¢) Policy Gradient

d) Monte Carlo Tree Search (MCTS)

Answer: ¢) Policy Gradient

38. How do Double Q-Learning and target network updates address training instabilities in deep
RL?

a) By reducing the size of the neural network

b) By updating the target network more frequently

c¢) By using dropout regularization

d) By mitigating overestimation of action values

Answer: d) By mitigating overestimation of action values

39. What challenge does sparse rewards pose in Reinforcement Learning?

50

a) Agents become too greedy

b) Agents stop exploring new actions

c) Agents focus only on exploitation

d) Agents struggle to learn effective strategies

Answer: b) Agents stop exploring new actions

40. Which real-world applications benefit from Reinforcement Learning?
a) Image classification

b) Text generation

c¢) Autonomous driving

d) Data clustering

Answer: ¢) Autonomous driving

51

Unit-4
Unit wise list of previous year questions
Q1. What is Reinforcement learning? Explain the detailed concepts. (May 2022) (May 2023)
Q2. Describe the concept of MDP. (May 2022)
Q3. Explain Q learning algorithm assuming deterministic rewards and actions. (May 2022)
Q4. Explain the following term: Attention Model. (May 2022)

Q5. What are the structural and operational differences between a feed-forward network and a
recurrent neural network? Identify the difference between LSTM, GRU and Vanilla-RNN. (May
2023)

Q6. What do you mean by Recurrent Neural Network? Explain with the help of diagram. In which
cases this model is suitable. (Dec 2020)

Q7. Explain Actor-Critic model. List down what are its advantages in reinforcement learning. (Dec

2020)
Q8. Describe Q-Learning in brief. What is SARSA algorithm? Explain this. (Dec 2020)

Q9. Explain the difference between Value iteration and Policy iteration. What is Markov Decision

Process (MDP)? (Dec 2020)

52

Unit-4

Assignment-1V

Q. No Question CcO Learning
Level
What is Recurrent Neural Network? Explain with the
Q-1 | N cos L3
help of a diagram? Also write applications of RNN.
Q-2 Explain the working of LSTM and GRU. CO4 L2
Discuss Actor critic model. List down its advantages in
Q-3 . . Cco4 L4
reinforcement learning?
Describe Q-learning in brief. What is SARSA
Q4 . . CO4 L2
Algorithm? Explain
Explain the difference between Value iteration and
Q-5 Policy iteration. What is Markov Decision Process CO4 L2

(MDP)?

53

Unit-4
Placement Specific Questions & Answers

What is the primary purpose of a Recurrent Neural Network (RNN)?

Ans. Text generation

Which layer type is typically used to capture sequential dependencies in an RNN?
Ans. Hidden layer

What is the advantage of using recurrent layers in an RNN?

Ans. They can capture temporal dependencies in the input data

What is the purpose of the hidden state in an RNN?

Ans. To store the information from the previous time step

Which activation function is commonly used in the recurrent layers of an RNN?

Ans. Tanh (Hyperbolic Tangent)

What is the purpose of the time step parameter in an RNN?
Ans. To specify the length of the input sequence

Which layer type is commonly used to initialize the hidden state in an RNN?
Ans. Hidden layer

What is the purpose of the bidirectional RNN architecture?

Ans. To handle sequential data in both forward and backward directions

54

10.

11.

12.

13.

14.

15.

16.

17.

Which layer type is responsible for making final predictions in an RNN?
Ans. Output layer

What is the purpose of the recurrent connection in an RNN?

Ans. To propagate the hidden state across different time steps

What is the purpose of the backpropagation through time (BPTT) algorithm in RNN training?

Ans. To compute the gradients and update the network's parameters

What is the purpose of the initial hidden state in an RNN?

Ans. To provide the starting point for the recurrent computation

What is the purpose of the teacher forcing technique in RNN training?
Ans. To propagate the gradients through time

What is the purpose of the sequence-to-vector architecture in an RNN?

Ans. To process an input sequence and produce a fixed-length representation

What is the purpose of the forget gate in a Gated Recurrent Unit (GRU)?

Ans. To control the flow of information from the previous hidden state

Which layer type is responsible for handling variable-length outputs in an RNN?
Ans. Output layer

What is the purpose of the cell state in an LSTM network?

Ans. To store long-term dependencies in the input sequence

55

18.

19.

20.

21.

Which layer type is commonly used in RNNs for speech recognition tasks?

Ans. Output layer

What is the purpose of the cell state in an LSTM network?

Ans. To store long-term dependencies in the input sequence

Which layer type is commonly used in RNNs for machine translation tasks?

Ans. Attention layer

What is the purpose of the input gate in an LSTM network?

Ans. To control the flow of information from the current input

56

1.

Reference Books

Deep Learning (Adaptive Computation and Machine Learning series) 18 November 2016,
by Aaron Courville, lan Goodfellow

Introduction to Machine Learning with Python: A Guide for Data Scientists (Greyscale
Indian Edition) Paperback — 1 January 2016, by Andreas Mulle

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools,
and Techniques to Build Intelligent Systems, Third Edition (Full Colour Print), by Aurélien
Géron O’Reilly-Media-2019

57

Content Beyond Syllabus

Workshop on Artificial Intelligence & Machine Learning

ailczia

xpert Tallk/Workshop =

Workshop on AIML

Glad to share that a Workshop on AIML has been organized on 21 February 2024 for
CSE/AIML/DS/IT/EC/ME Students.

The workshop was conducted by experienced professionals of the field Mr. Faizal Ali, Mr. Rajitram

singh and Mr. Bhimesh Verma from Mind Coders, Indore.

During the workshop students gained insights of Artificial Intelligence, Machine Learning, Deep
Learning, Big Data.

Students got to know development of live projects and working with clients.
Highlight of the workshop was hands-on project and assignments related to latest technology.
Special Thanks to Respected Director Dr. P. S. Chauhan sir, for his constant Support.
Coordinators

Dr. Praveen Patidar

Ms. Manisha Kadam

58

59

