
Session storage usage & prerender 
Author: jakearchibald@​

Public copy​

Discussion 

The problem 
When a same-origin page is prerendered (using <link rel=”prerender”> or <portal>), 

it’ll exist in a different browsing context group, and therefore a different process. 

It’ll have storage access, which includes session storage. 

Currently, the only way pages have simultaneous access to session storage is between a 

page and its same-origin frames. The “storage” event can be used to track changes to 

session storage between windows, but this seems uncommon in practice; developers 

often read from session storage on page load, then assume only the current page can make 

changes to that state. 

Bfcache breaks this assumption, as a page could return to active state after another page 

has modified session storage, but users generally expect that clicking back might appear to 

put their app in a previous state, and refresh the page to correct issues like this. 

Prerendering creates a trickier situation where two pages would share session storage at 

the same time, similar to iframes, but the result will impact forward navigation to 

previously unseen pages. Also Chrome and Firefox engineers agree that sharing session 

storage simultaneously across processes would be an implementation challenge. 

Options 
We have a few options: 

https://github.com/whatwg/storage/issues/119#issue-795965877
https://github.com/whatwg/storage/issues/119


A.​ Shared: Make it work similar to iframes by sharing session storage across 

processes. 

B.​ Cloned: Clone session storage for the new prerender context, as we currently do 

with auxiliary browsing contexts. 

C.​ Cloned and swapped: As above, but swap back to the main session storage when 

the prerender becomes the top-level active document. 

D.​ Empty: Associate the prerender context with a fresh empty session storage. 

E.​ Empty and swapped: As above, but swap back to the main session storage when 

the prerender becomes the top-level active document. 

Swap event: The swapping solutions could dispatch an event once the session storage has 

swapped. Maybe the “pageshow” event could be a fit there, since it’d cover bfcache, 

preprender, and portals. 

Review of options against use-cases 
I asked folks on Twitter what they use session storage for. Here’s a review of the options 

above in relation to the use-cases folks gave me. 

Impact of out-of-sync state 
This happens when: 

1.​ Main page is in state 1 

2.​ The prerendered page renders using state 1 

3.​ Actions in the main page put it in state 2 

4.​ The prerendered page activates 

5.​ State 1 appears to have returned 

This could result in: 

https://storage.spec.whatwg.org/#legacy-clone-a-browsing-session-storage-shed
https://twitter.com/jaffathecake/status/1356279540012748806


●​ Inconvenient: State of expanded/collapsed menu items/selected tabs in tab UI 

reverting to some previous state 

●​ Inconvenient: Stale caches. 

●​ Inconvenient but not user-facing: Incorrect analytics 

●​ Potentially very inconvenient: Show-only-once/show-until-dismissed UI 

reappearing intermittently (typically banners or modals) 

●​ Serious issue: user may have logged out in the main page, then appear to be logged 

back in again when the prerendered page activates. 

●​ Serious issue: Items disappear/reappear from shopping cart 

Impact of emptied state 
This could result in: 

●​ Inconvenient: Expanded/collapsed menu items/selected tabs in tab UI reverting to 

initial state 

●​ Inconvenient: Missing caches. 

●​ Inconvenient but not user-facing: Incorrect analytics 

●​ Potentially very inconvenient: Show-only-once/show-until-dismissed UI 

reappearing 

●​ Serious issue: User logged out 

●​ Serious issue: Items disappear from shopping cart 

A. Shared 
Pages that read session storage once during load (which is common) will encounter 

out-of-sync state. It’ll be racey due the timing of the parent page updating state and the 

prerendered page reading it. 

If the pages react to changes in storage via the “storage” event (which is rare), things 

should work pretty well, although there may be some races. For instance, the prerendered 

page could pick up a change in auth state, and fetch relevant data. 



A page refresh would correct any out-of-sync issues, but requiring a refresh kinda defeats 

the point of prerender. 

B. Cloned 
Pages that read session storage once during load (which is common) will encounter 

out-of-sync state. There’ll be some races due to the timing of the clone and the parent 

page updating state. 

The “storage” event doesn’t help in this case. A page refresh wouldn’t correct the 

out-of-sync issues. 

Navigating back would result in a switch of session storage, putting the user in a different 

state, which a refresh wouldn’t correct. 

C. Cloned and swapped 
Pages that read session storage once during load (which is common) will encounter 

out-of-sync state. There’ll be some races due to the timing of the clone and the parent 

page updating state. 

The page could resolve state issues using the swap event. However, since this happens on 

activation, it might mean some data fetches are delayed, which reduces the effectiveness 

of prerendering. For instance, the prerendered page could pick up a change in auth state, 

and fetch relevant user data, but this wouldn’t happen until activation time. 

This delay in receiving updated state would be more visible with portals. 

Pages built assuming only the page can change session storage might hit bugs due to the 

swap in storage, where in-memory state gets out of sync with session storage. 

D. Empty 
Pages will encounter emptied state. 



The “storage” event doesn’t help in this case. A page refresh wouldn’t correct the 

out-of-sync issues. 

Navigating back would result in a switch of session storage, putting the user in an 

out-of-sync state, which a refresh won’t correct. 

On the up-side, there are no race conditions. 

E. Empty and swapped 
Pages will encounter emptied state. 

The page could resolve state issues using the swap event. However, since this happens on 

activation, it might mean some data fetches are delayed, which reduces the effectiveness 

of prerendering. For instance, the prerendered page could pick up a change in auth state, 

and fetch relevant data, but only at activation time. 

This delay in receiving any session state would be more visible with portals. 

Pages built assuming only the page can change session storage might hit bugs due to the 

swap in storage, where in-memory state gets out of sync with session storage. 

Verdict 
No matter what we do, we’re likely to break developer expectations with session storage. 

However, since prerender is opt-in, it might be ok to expect a little extra effort to 

overcome particular issues. 

If we can’t do “Shared”, then “Cloned and swapped” seems like the next best choice, as it 

provides a reasonable starting point for session storage, and updates at activation time. 



Session storage use-cases 
My analysis of each use-case. I used this to come up with the above recommendation, and 

I’ve left it here for evidence/completion. It isn’t essential reading 😁 

Restoring non-essential UI-state 
Such as: 

●​ Expand/collapse state of menu items 

●​ Selected tab in tab UI 

●​ Search term used to get to page 

●​ Scroll position 

…between navigation & reloads. It feels like a good history API would be a better fit here. 

A.​ Shared: Works if UI reacts to storage events, otherwise UI changes made after the 

prerender loads will be lost. 

B.​ Cloned: UI changes made after the prerender loads will be lost. 

C.​ Cloned and swapped: Works if UI reacts to swap events, otherwise UI changes 

made after the prerender loads will be lost. 

D.​ Empty: All UI changes lost. 

E.​ Empty and swapped: Works if UI reacts to swap events, otherwise UI changes 

made after the prerender loads will be lost. 

The failures feel like inconveniences. 

Tweets: 

●​ https://twitter.com/sirlantis/status/1356342521962618883 

●​ https://twitter.com/_timothee/status/1356285679156617217  

●​ https://twitter.com/reyronald/status/1356309603210956801  

https://twitter.com/sirlantis/status/1356342521962618883
https://twitter.com/_timothee/status/1356285679156617217
https://twitter.com/reyronald/status/1356309603210956801


●​ https://twitter.com/cullylarson/status/1356348880812613632  

●​ https://twitter.com/rkaw92/status/1356308698335993856  

●​ https://twitter.com/denno020/status/1357576528939286530  

●​ https://twitter.com/munawwarfiroz/status/1356307851204034561  

●​ https://twitter.com/nod_/status/1356293356406665216  

●​ https://twitter.com/passle_/status/1356526333602516997  

●​ https://twitter.com/oriSomething/status/1356280078032842759  

●​ https://twitter.com/lagerone/status/1356531239994462208  

Show-once-per-session UI 
Show a marketing/legal information once per session, but only once. 

A.​ Shared: Works if UI reacts to storage events, otherwise UI may appear multiple 

times. 

B.​ Cloned: Race condition. UI may appear multiple times. 

C.​ Cloned and swapped: Works if UI reacts to swap events, otherwise UI may appear 

multiple times due to race conditions. 

D.​ Empty: UI will appear multiple times. 

E.​ Empty and swapped: Works if UI reacts to swap events, otherwise UI will appear 

multiple times. 

Depending on the intrusiveness of the UI, failures could range from inconvenient to very 

annoying. 

Tweets: 

●​ https://twitter.com/Indiequest1/status/1356357421699096576  

●​ https://twitter.com/socalleddom/status/1357083819187265540  

●​ https://twitter.com/oiva/status/1356280650559610886  

●​ https://twitter.com/AhoyLemon/status/1356279949297135620  

●​ https://twitter.com/Indiequest1/status/1356357421699096576  

https://twitter.com/cullylarson/status/1356348880812613632
https://twitter.com/rkaw92/status/1356308698335993856
https://twitter.com/denno020/status/1357576528939286530
https://twitter.com/munawwarfiroz/status/1356307851204034561
https://twitter.com/nod_/status/1356293356406665216
https://twitter.com/passle_/status/1356526333602516997
https://twitter.com/oriSomething/status/1356280078032842759
https://twitter.com/lagerone/status/1356531239994462208
https://twitter.com/Indiequest1/status/1356357421699096576
https://twitter.com/socalleddom/status/1357083819187265540
https://twitter.com/oiva/status/1356280650559610886
https://twitter.com/AhoyLemon/status/1356279949297135620
https://twitter.com/Indiequest1/status/1356357421699096576


●​ https://twitter.com/DillonHeadley/status/1356600299616686080  

●​ https://twitter.com/agronmurtezi/status/1356707086550376448  

Storing important app state 
Such as: 

●​ Shopping cart contents - for cases where a cart could be different per session 

●​ Authentication tokens - folks seem to want this to be per session to work around 

GPDR, or for strict security reasons. 

●​ Progress in multi-step form 

Issues: 

A.​ Shared: Works if the page reacts to storage events, otherwise if state changes in 

the parent page that change will not be reflected in the prerender. In the worst 

case, a user may have logged out but appear to be logged back in again. 

B.​ Cloned: Works if auth data is present and valid when the prerender is created and 

continues to be fresh when the page becomes active. Otherwise auth state will be 

out of sync. In the worst case, a user may have logged out but appear to be logged 

back in again. 

C.​ Cloned and swapped: Works if the page reacts to swap events, otherwise if auth 

state changes in the parent page that change will not be reflected in the prerender. 

In the worst case, a user may have logged out but appear to be logged back in again. 

D.​ Empty: Auth data lost, user will be logged out in the next page. 

E.​ Empty and swapped: Works if the page reacts to swap events, otherwise auth data 

will be absent/invalid when page activates. In the worst case, the user will appear 

logged out. 

The failures seem pretty severe. 

Tweets: 

https://twitter.com/DillonHeadley/status/1356600299616686080
https://twitter.com/agronmurtezi/status/1356707086550376448


●​ https://twitter.com/SwiftOneSpeaks/status/1356283621556903936 

●​ https://twitter.com/pselas/status/1356538104354603011  

●​ https://twitter.com/jwktje/status/1356284482580586498  

●​ https://twitter.com/markoilic96/status/1356320253358321669  

●​ https://twitter.com/theluk246/status/1356321056093593601  

●​ https://twitter.com/micha149/status/1356504324273278976  

●​ https://twitter.com/nhardy96/status/1356346750844366850  

●​ https://twitter.com/jshado1/status/1356382130499170307  

●​ https://twitter.com/humansJS/status/1356483017682808832  

●​ https://twitter.com/adrjohnston/status/1356297312428040193  

●​ https://twitter.com/PaulieScanlon/status/1356281617048862720  

●​ https://twitter.com/blue2blond/status/1356282535647604742  

●​ https://twitter.com/kennieOutHere/status/1356325015478792195  

●​ https://twitter.com/Fdecampredon/status/1356344507361595393  

●​ https://twitter.com/trammellwebdev/status/1356418006247686153  

Identifying a session for analytics 
I’m assuming that session storage will be read just before sending some kind of analytics 

beacon. 

A.​ Shared: Just works. 

B.​ Cloned: There’s likely to be a race where the main page and prerendered page 

think they’re in different sessions. 

C.​ Cloned and swapped: There’s likely to be a race where the main page and 

prerendered page think they’re in different sessions, but this will be resolved on 

activation. 

D.​ Empty: The prerendered page will think it’s in a different session to the main page, 

even after activation, which is pretty broken. 

E.​ Empty and swapped: The prerendered page will think it’s in a different session to 

the main page, but this will be resolved on activation. 

https://twitter.com/SwiftOneSpeaks/status/1356283621556903936
https://twitter.com/pselas/status/1356538104354603011
https://twitter.com/jwktje/status/1356284482580586498
https://twitter.com/markoilic96/status/1356320253358321669
https://twitter.com/theluk246/status/1356321056093593601
https://twitter.com/micha149/status/1356504324273278976
https://twitter.com/nhardy96/status/1356346750844366850
https://twitter.com/jshado1/status/1356382130499170307
https://twitter.com/humansJS/status/1356483017682808832
https://twitter.com/adrjohnston/status/1356297312428040193
https://twitter.com/PaulieScanlon/status/1356281617048862720
https://twitter.com/blue2blond/status/1356282535647604742
https://twitter.com/kennieOutHere/status/1356325015478792195
https://twitter.com/Fdecampredon/status/1356344507361595393
https://twitter.com/trammellwebdev/status/1356418006247686153


The failures feel like minor inconveniences, and not user-visible. 

Tweets: 

●​ https://twitter.com/jkarttunen/status/1356283243537063944 

●​ https://twitter.com/prestomation/status/1356299616388411393  

●​ https://twitter.com/marcpicaud/status/1356286843893985280  

●​ https://twitter.com/brandon_duffany/status/1358444486993596417  

●​ https://twitter.com/krogovoy/status/1356322794452168710  

Caching 
A.​ Shared: Works if the page reacts to storage events, otherwise could result in cache 

inefficiency. General races could also result in cache inefficiency. 

B.​ Cloned: Race condition when cloning, plus loss of things cached between clone & 

activation lead to cache inefficiency. 

C.​ Cloned and swapped: Race condition when cloning could lead to cache inefficiency. 

Swap event isn’t a lot of help here. 

D.​ Empty: Cache gone. 

E.​ Empty and swapped: Cache gone during load. Swap event isn’t a lot of help here. 

Tweets: 

●​ https://twitter.com/crouchy/status/1356317356323205120  

●​ https://twitter.com/MattiasBuelens/status/1356309581383794688  

●​ https://twitter.com/warpech/status/1356332649774796806  

●​ https://twitter.com/jeremenichelli/status/1356282299105554435  

●​ https://twitter.com/derSchepp/status/1356292757401251841  

Discounted use cases 
I think these use-cases aren’t impacted by our changes, or are already broken: 

https://twitter.com/jkarttunen/status/1356283243537063944
https://twitter.com/prestomation/status/1356299616388411393
https://twitter.com/marcpicaud/status/1356286843893985280
https://twitter.com/brandon_duffany/status/1358444486993596417
https://twitter.com/krogovoy/status/1356322794452168710
https://twitter.com/crouchy/status/1356317356323205120
https://twitter.com/MattiasBuelens/status/1356309581383794688
https://twitter.com/warpech/status/1356332649774796806
https://twitter.com/jeremenichelli/status/1356282299105554435
https://twitter.com/derSchepp/status/1356292757401251841


●​ “To save something when you are offline and later send it to a server as soon as the 

network returns.”​

https://twitter.com/thradams/status/1356281550237794305​

Session storage seems too easily lost for this to be a good usage. Also cloning 

creates issues. 

●​ “We have a requirement to "lock" an article when in use using a nonce generated 

per session. Using session storage allows the nonce to remain alive per tab, but will 

prevent the nonce from being the same in another tab/session”​

https://twitter.com/sirjamespants/status/1356295731032846339​

Cloning already breaks this use-case 

●​ As a fallback if localstorage is disabled​

https://twitter.com/kddnewton/status/1356307071738765314​

Not an issue here 

●​ State used for page refresh​

https://twitter.com/theoomoregbee/status/1356316323547123712​

https://twitter.com/sennevdb/status/1356311230806454275 ​

https://twitter.com/basketball_gm/status/1356303310203006977 ​

https://twitter.com/senorflor/status/1356308832201420801 ​

https://twitter.com/JeddFenner/status/1356420703273299968 ​

https://twitter.com/actualcactuar/status/1356676702894702598 ​

https://twitter.com/ZMYaro/status/1356520976284934145 ​

If it’s only used for refresh, it isn’t an issue here, since we’re only worried about 

forward navigations. 

●​ Short-term storage for login-flow​

https://twitter.com/gaforres/status/1356328475901227008 ​

https://twitter.com/DenisTRUFFAUT/status/1356281317579698178 ​

We’re unlikely to impact this. 

 

https://twitter.com/thradams/status/1356281550237794305
https://twitter.com/sirjamespants/status/1356295731032846339
https://twitter.com/kddnewton/status/1356307071738765314
https://twitter.com/theoomoregbee/status/1356316323547123712
https://twitter.com/sennevdb/status/1356311230806454275
https://twitter.com/basketball_gm/status/1356303310203006977
https://twitter.com/senorflor/status/1356308832201420801
https://twitter.com/JeddFenner/status/1356420703273299968
https://twitter.com/actualcactuar/status/1356676702894702598
https://twitter.com/ZMYaro/status/1356520976284934145
https://twitter.com/gaforres/status/1356328475901227008
https://twitter.com/DenisTRUFFAUT/status/1356281317579698178

	Session storage usage & prerender 
	The problem 
	Options 
	Review of options against use-cases 
	Impact of out-of-sync state 
	Impact of emptied state 
	A. Shared 
	B. Cloned 
	C. Cloned and swapped 
	D. Empty 
	E. Empty and swapped 

	Verdict 
	Session storage use-cases 
	Restoring non-essential UI-state 
	Show-once-per-session UI 
	Storing important app state 
	Identifying a session for analytics 
	Caching 
	Discounted use cases 


