Introduction to Energy

Energy – what is it? the ability to do work

Law of Conservation of Energy:

energy cannot be created or destroyed – it can only be changed from 1 form to another.

Forms of Energy:

Chemical:

energy stored in the bonds of molecules; e.g. food, fossil fuels, wood, alcohol

• Kinetic/Motion:

energy of objects in motion, usually due to the force of gravity; e.g. wind, falling water for hydroelectric power, tides

• Nuclear:

energy that comes from joining or splitting atoms; e.g. the Sun - nuclear fusion reactor, nuclear power plant – fission reactor

• Heat and Light:

comes primarily from the sun, often "unusable" energy from chemical reactions

Sound:

energy transferred as waves through collision of air particles

All energy on Earth comes directly or indirectly from the Sun.

Example 1: Light energy to heat and motion energy

Sun (light energy) \rightarrow

plants make sugar molecules through photosynthesis (chemical energy) →

humans and animals eat and digest plants (heat energy, motion energy)

Example 2: Light energy to electricity through wind turbines

Sun (light energy) \rightarrow

Earth's surface and atmosphere warm and cool (heat energy) \rightarrow

Air currents move due to convection (wind energy) \rightarrow

Wind turbines turn generators (electrical energy)

Main Uses of Energy

Three main purposes of energy in industrialized societies:

- ♦ Transportation: oil, gas, diesel for vehicles, trains, planes
- ♦ Heating and cooling of buildings: electricity, gas, oil
- ♦ Providing power for machinery and appliances: electricity

Measuring Energy and Power

Power:

The <u>rate</u> at which work is done (how much work is done every second), measured in <u>watts (W)</u>

Energy:

To find energy used, multiply the power rating (in watts) of an appliance by the number of hours that the appliance is used, to get watt-hours (Wh), or kilowatt-hours (kWh).

Example:

100 W light bulb used for 24 hours uses $100 \times 24 = 2400$ watt-hours (Wh) Since there are 1000 watt-hours in 1 kilowatt hour, this is $2400 \div 1000 = 2.4$ kilowatt hours (kWh)

The average Canadian household uses about 35 kilowatt hours (kWh) a day.

Three Main Ways to Improve Energy Use:

- 1. Conservation:
- ♦ design systems to use <u>less</u> energy, e.g. electronics without standby power (aka "vampire power" or "phantom load"
- ♦ e.g. appliances with remote controls, LED displays standby power accounts for up to 10% of household use
- 2. Efficiency:
- ♦ make <u>better use</u> of energy (get more from the same amount of energy)
- ♦ e.g. incandescent light bulbs uses 10% of its energy to produce light, 90% to produce heat
- 3. Renewable Energy Sources:
- ♦ use "green", sustainable energy instead of non-renewable resources
- ♦ need to "kick our oil addiction"

Introduction to Energy Energy – what is it? Law of Conservation of Energy:

Forms of Energy:

- Chemical:
- Kinetic/Motion:
- Nuclear:
- Heat and Light:
- Sound:

All energy on Earth comes directly or indirectly from the Sun.

Example 1: Light energy to heat and motion energy

Sun (light energy) \rightarrow

plants make sugar molecules through photosynthesis (chemical energy) → humans and animals eat and digest plants (heat energy, motion energy)

Example 2: Light energy to electricity through wind turbines

Sun (light energy) \rightarrow

Main Uses of Energy
Three main purposes of energy in industrialized societies:
\Diamond
\Diamond
\Diamond
Measuring Energy and Power
Power:
Energy:
Example:
100 W light bulb used for 24 hours uses $100 \times 24 = 2400$ watt-hours (Wh) Since there are 1000 watt-hours in 1 kilowatt hour, this is $2400 \div 1000 = 2.4$ kilowatt hours (kWh)
The average Canadian household uses
Three Main Ways to Improve Energy Use:
1. Conservation:
♦ design systems to use <u>less</u> energy, e.g. electronics without standby power (aka "vampire power" or "phantom load"
\Diamond
2. Efficiency:
♦ make <u>better use</u> of energy (get more from the same amount of energy)
\Diamond
3 Renewable Energy Sources:

 \Diamond

 \Diamond

Activity: Measuring the Power Rating of Electrical Devices

Measure the power ratings for the following devices when in use, and in standby/sleep mode where appropriate.

Device	Power When in Use (W)	Power When in Standby (W)
Computer, notebook		
Microwave		
Charger, mobile phone		
Game console		
Surge Protector		
Game Console		
TV		

List 2 more items that you or a family member uses.

Device	Power When in Use (W)	Power When in Standby (W)