

Darkness Sensor (2.0! Now with more LEDs)

Final Report

Aashima Mehta, Anh Phan and Taylor Matthew

Due: December 14, 2018

1

​

Summary:

Our project is about sensing the darkness in a room and turning a number

of LEDs on according to it. Our intent is that if the room is bright then no LEDs

will light up. If the room is a little dark then two LEDs will turn on, and if the room

is very dark then all four LEDs will turn on. Our project is basically a light sensor

and will light up the circuit, depending upon the readings from the photoresistor.

From this project we learned how to combine several previously known

circuits together, and had to work to utilize space on the board appropriately. We

also integrated loops, assigned variables and boolean statements, as well as the

return function, to create a working circuit.

2

Table of Contents:
​

Introduction & Theory . Page 3

Design & Experimental Setup Page 4 - 7

Code & Comments . Page 7 - 11

Scoping . Page 12

Resources . Page 13

Peer Reviews . Page 14

3

​ Introduction:
​ ​

We all have seen light sensors in our everyday life, and this project

is also about creating a light sensor at a circuit python programming level.

By using the microcontrollers we can upload any python based code

directing the circuit to do things for us..This project is an attempt to create

a light sensor that can detect the brightness level in the room and can turn

a specified number of LEDs on depending upon how dark the room really

is. We can setup the threshold level by setting the values that would

determine which LED to light and how many.

​ Theory:
​ ​ The key components of our project are:

●​ The Photoresistor
●​ LEDs
●​ Usage of a while loop
●​ Variable assignment
●​ The return function

The photoresistor is used to receive input that dictates the number of

LEDs lit on the board. This is essential to our project as it is a “darkness sensor”.

The LEDs are important as the indicate the readings received from the

photoresistor. We use the while loop to run our program continuously, to keep

reading the photoresistors input and adjust accordingly. Variable assignment is

especially important in our code as it allows us to set the thresholds for when

each LED needs to be lit, and also assigns the different ports and pins on our

board and gadgets for integration in the program. Finally, the return function is

useful because it ‘saves’ the value given from the photoresistor at a given time

and allows us to call on it in our while loop, to keep our code continuous and

constant.

4

Design & Experimental Setup:
​ ​ ​
​ Circuit Python Microcontroller Wiring:
​ ​ Wire your breadboard & M0 Express just like the diagram below:

​
Figure 1: Fritz Diagram
Be really careful when it comes to using the right ports, it often helps to read the code as you wire, paying
extreme attention to details helps minimize frustration and confusion later.
 Note: the board shown in the picture above is “Redboard” whereas we will be using Metro M0
board for our experiment. Both of these boards are physically very similar to one another so the
wiring is going to be exactly like as shown above.

​ Parts Needed:

●​ Adafruit Metro M0 Express Board
●​ Breadboard
●​ Photoresistor

○​ The readings produced from this will determine how many
LEDs will be lit at a time.

○​ In our code we can indicate the threshold for the sensor,
which in turn will directed towards how many LEDs should
be turned on at that time.

5

○​ In our code, we suggested the time.sleep to be for two
seconds. Meaning that our sensor will check for how bright
the room is after every two seconds.

●​ 13 cables
●​ 4 330Ω Resistors

○​ The resistors will help proving the resistance for our LED’s,
so they won’t burst off because of the direct flow of the
current towards them.

○​ Resistor helps determine and control the flow of the current
for each Led.

○​ We will be using four LED’s in our experiment therefore we
will need four resistors.

●​ 1 10K Ω Resistor
●​ 4 LEDs of various colors

Hookup Table:

Component M0 Metro Board Breadboard Breadboard

Jumper Wire 5V 5V Rail (+)

Jumper Wire GND GND Rail (-)

LED A1 LED (-) A2 LED (+)

330Ω Resistor

(orange, orange, brown)

 E2 F2

Jumper Wire E1 GND Rail (-)

6

Jumper Wire Digital Pin 13 J2

Photoresistor A26 B25

10kΩ Resistor

(brown, black, orange)

 C26 D27

Jumper Wire Analog Pin 0 (A0) E26

Jumper Wire E25 5V Rail (+)

Jumper Wire E27 GND Rail (-)

330Ω Resistor

(orange, orange, brown)

 E4 F4

330Ω Resistor

(orange, orange, brown)

 E6 F6

330Ω Resistor

(orange, orange, brown)

 E8 F8

Jumper Wire E3 GND Rail (-)

Jumper Wire E5 GND Rail (-)

7

Jumper Wire E7 GND Rail (-)

Jumper Wire Digital Pin 12 J4

Jumper Wire Digital Pin 11 J6

Jumper Wire Digital Pin 10- J8

LED A3 LED (-) A4 LED (+)

LED A5LED (-) A6 LED (+)

LED A7 LED (-) A8 LED (+)

Code & Comments:

Python Usage:
​ ​ Below we’re going to go through the code utilized step by step, for clarity.

​ First, we’ll need to initialize the program. To do this, import board at the top

of your code, and to define all of our connecting ports and pins, import digitalio .

Our other required libraries are analogio and time , which will allow us to use a

while loop effectively, so we need to import these as well.

​ ​ import board

import digitalio

import analogio

import time

8

​ Next, we’ll set the values for which each step of the program will be activated.

​ ​ threshold_1 = 1

threshold_2 = 2.3

threshold_3 = 3

These variable values are based on the reading received from the photoreceptor.

​ For our pins and ports, we need to assign more variables, that connect the board

to our code, so that we can call upon them as needed.

​ ​ led = digitalio.DigitalInOut(board.D13)

led.direction = digitalio.Direction.OUTPUT

##This connects an LED to the board’s pin D13##

led_1 = digitalio.DigitalInOut(board.D12)

led_1.direction = digitalio.Direction.OUTPUT

led_2 = digitalio.DigitalInOut(board.D11)

led_2.direction = digitalio.Direction.OUTPUT

led_3 = digitalio.DigitalInOut(board.D10)

led_3.direction = digitalio.Direction.OUTPUT

volts = analog_voltage(photoresistor)

photoresistor = analogio.AnalogIn(board.A0)

To define our function, where the real action happens, we need to use the def

function, and give our function a name like analog_voltage. This takes in the

values from the photoresistor, as a parameter. Then, we’ll return the value

from the photoresistor, but edited so that the program can read it with ease,

as we did in the first photoresistor project.

9

​ We used 65535 value because it represents the maximum value of the

voltage. We are dividing it with the photoresistor.value and multiplying with

the reference voltage because it will give us the value of the resistance of

the current flowing through our circuit. Also the reference volatage for our board

was 3.3 but it was better to write it as reference voltage as it just makes it more

general, our boards can only understands the resistance values.

 ​ def analog_voltage(photoresistor):

 return (photoresistor.value / 65535 *

photoresistor.reference_voltage)

​ To keep our program continuous, we use a while loop for our different
threshold values and our number of LEDs used.

​ ​ while True:

​

​ Using if statements, we will set the different levels of darkness, with the

different threshold variable titles:

 if (volts/6) > threshold_3:

 ​ (led.value = True)

Using an elif statement is best here, because it does not ‘stop’ the value​

received, but moves it along through the other conditionals until a condition is met.

 ​ elif (volts/3)> threshold_2:

 ​ (led.value = True) and (led_2.value = True)

 ​ elif (volts/2) > threshold_1:

 ​ led.value = 1

 ​ led.value_1 = 1

 ​ led.value_2 = 1

 ​ led.value_3 = 1

10

​ Finally, an else statement is used as the last resort, a default for what happens

when none of the other conditions are met. In this case, the else statement is for when

the room is bright, and so none of the LEDs are turned on.

​ else:

 ​ led.value = False

 ​ led.value_1 = False

 ​ led.value_2 = False

 ​ led.value_3 = False

And as a final note, a print statement is used to show the coder what values

are being received. Also, the sleep function is used here to reinitialize the code every

2 seconds.

​ print(volts)

time.sleep(2)

Just the Code:

import board
import digitalio
import analogio
import time
#we establish different-different values for our threshold. These
will detect how bright the room is and will determine voltage our
circuit has to light up the LEDs.

threshold_1 = 1
threshold_2 = 2.3
threshld_3 = 3

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

led_1 = digitalio.DigitalInOut(board.D12)
led_1.direction = digitalio.Direction.OUTPUT

led_2 = digitalio.DigitalInOut(board.D11)

11

led_2.direction = digitalio.Direction.OUTPUT

led_3 = digitalio.DigitalInOut(board.D10)
led_3.direction = digitalio.Direction.OUTPUT

volts = analog_voltage(photoresistor)
photoresistor = analogio.AnalogIn(board.A0)

def analog_voltage(photoresistor):
 return (photoresistor.value / 65535 *
photoresistor.reference_voltage)

while True:
 if (volts/6) > threshold_3:
 (led.value = True)
 elif (volts/3)> threshold_2:
 (led.value = True) and (led_2.value = True)
 elif (volts/2) > threshold_1:
 led.value = 1
 led.value_1 = 1
 led.value_2 = 1
 led.value_3 = 1
 else:
 led.value = False
 led.value_1 = False
 led.value_2 = False
 led.value_3 = False

print(volts)
time.sleep(2)

12

Scoping:
​ ​ For scoping, we chose to add features from two other chapters to a two

star problem from the back of any chapter.

​ We chose problem 4.4 from the end of Chapter 4.

(Game: learn addition) Write a program that generates two integers under 100 and

prompts the user to enter the sum of these two integers. The program then reports

true if the answer is correct, false otherwise. The program is similar to Listing 4.1.

To complicate this problem even further we chose to add a loop into the problem, and

integrate a list of responses for correct answers, that we can pull from randomly.

​ import random

comments = ["Nice job, you did it!", "Great!", "Woohoo! Next!",

"You're super smart.", “Wow, whiz kid!”, “Gee, are you Einstein or

something?”]

def learn_addition():

 print("Welcome to the learning addition game! /n Get ready!")

 a = random.randint(1,101)

 b = random.randint(1,101)

 answer = input("What is " + str(a) + " + " + str(b) + " ?")

 ​ if int(answer) == (int(a) + int(b)):

 ​ ​ ​ print(random.choice(comments))

 ​ else:

 ​ ​ ​ print("I'm sorry, that's not correct!")

learn_addition()

13

Bibliography:

Resources:

●​ JOEL_E_B (n.d.). SparkFun Inventor's Kit Experiment Guide - v4.0: Circuit

1C: Photoresistor. Retrieved from

https://learn.sparkfun.com/tutorials/sparkfun-inventors-kit-experiment-guid

e---v40/circuit-1c-photoresistor

●​ http://fritzing.org/learning/tutorials

●​ JOEL_E_B (n.d.). SparkFun Inventor's Kit Experiment Guide - v4.0: Project

1: Light. Retrieved from

https://learn.sparkfun.com/tutorials/sparkfun-inventors-kit-experiment-guid

e---v40/project-1-light

●​ Liang, Y. D. (2012). Introduction to programming using Python

http://fritzing.org/learning/tutorials
https://learn.sparkfun.com/tutorials/sparkfun-inventors-kit-experiment-guide---v40/project-1-light
https://learn.sparkfun.com/tutorials/sparkfun-inventors-kit-experiment-guide---v40/project-1-light

14

Peer Reviews:

Taylor I think Aashima and I worked equally on the project, on top of

editing each other’s work we worked really well together.

I got stuck on the sensor part as the design wasn’t correct.

But Aashima and Anh figured it out. We both worked on the

poster in both format and content.

Aashima I also think that we both worked equally hard on this project. I
personally think that working with a partner was a better idea
for final or in general for all projects, as most of the times if
someone would have been stuck at a point then the other
would have some solution and visa versa.

Anh Taylor & Aashima both worked on the project the same
amount. They collaborated on many parts of the project too to
work together. Both of them also helped me figure out the
code for my motion project.

	Hookup Table:

