GSoC Proposal- Implementing smarter
boolean operations on vector shapes by
using an efficient algorithm for Bézier
curve intersection

Project for KRrita, under KDE organisation

Tanmay Chavan
Pune, India (+5:30 UTC)

chavantanmayi4o2@gmail.com
Farendil 14 on Freenode IRC

Abstract:

Krita has functionalities where we can perform several boolean
operations like unite, intersect, subtract on two or more vector shapes.
These shapes can contain vertices, segments, and curves. In order to
perform boolean operations on shapes, we need to find their point of
intersection. Now, Qt uses a special kind of curve known as Bézier curve,
which is rather easy to plot. However, finding the intersection points of
these curves can get rather difficult. The default algorithm in Qt does it by
an approximation, where it constructs an (open ended) polygon which
provides a pretty good approximation. But this leads to an excess number
of nodes. I propose to implement another algorithm which involves
finding the roots of the polynomial representing the curves, which will
give us an exact solution.

Goals:

e To reduce the number of nodes generated while performing boolean
operations on vector shapes

e To implement the implicitization algorithm instead of the
pre-existing algorithm

e To modify the way Qt handles intersections for actually computing
urve intersections

With less nodes with more nodes

The polygon formed does not represent a curve The polygon formed is a very good
Properly, but has few nodes. Approximation of the curve, but has
Many nodes.

Above images are screenshots from a toy project i created,
hitps.//invent.kde.org/earendil/bezier-flattening

Relevant bugs/wishes:

https://bugs.kde.ore/show_bue.cgi?id=400521

Concept:

Qt uses Bézier curves to plot all kinds of curves; including elliptical
and hyperbolic curves. Bézier curves can be defined by a parametric
equation of binomial polynomials ,where the coefficients of the terms are
the coordinates of the control points. Control points define the trajectory
of the curve, and are the reason why these curves are used so extensively

https://invent.kde.org/earendil/bezier-flattening
https://bugs.kde.org/show_bug.cgi?id=400521

in Computer Graphics. The extra nodes are generated because of the
default algorithm for finding Bézier curve intersections. It generates near
adjacent points on the curve decided via a threshold. In this case, we could
approximate the curve to be a straight line joined by the start and end
points, and thus reduce the Bézier curve to a simple open (or closed)
polygon. However, as this method converts it to a polygon, it can be
proven that for a finite number of splits on the curve, the intersection
point generated will not lie on the actual curves, unless it is on one of the
vertices of the polygon and there is no point of inflection in between.
(consider two points: the straight line joining them is the shortest possible
path between them. As we are considering a curve, which will not be a
straight line and thus not be the same as the line. Hence, we can assume
that a point lying on the line segment which is not one of the end points
will never coincide with a point on the curve.) We could actually try to
move the curve to pass through the intersection point. But that would
require an efficient offsetting algorithm, which is also a challenge.

There is another method to find the intersections of two Bézier
curves, known as implicitization, which is briefly explained as follows:
We convert the parametric formx = f(t), y = g(¢t) of the equation
representing the curve to an implicit form f(x, y) = 0. To do this, we
basically find the common roots of the two parametric equations by using
the properties of resultant, and then we convert the individual equations
from explicit to implicit form (x = f(¢) into f(x,t) = 0, for both x and
y). Then, for two-curve intersection, we have to plug in the values of the
parametric equation x = f(t), y = g(t) into the implicit form of the
other curve f(x, y) = 0(Note that we only have to implicitize one curve
to find the intersection). Up until this point, we were dealing with exact
values. Now, the resultant polynomial is going to be of oth degree, for

which there is no method to find the exact roots. Hence, we will use
newton’s method to calculate the values of ¢ at which they intersect.

(The necessary proofs and equations along with an example are provided
here, in section 17)

The benefit of using the implicit form is that we can easily find the
roots of the equation using linear algebra. This method is almost twice as
fast as the Bézier clipping method (the predominant algorithm to find
Bézier curve intersection), and ten times faster than the Bézier
subdivision method. However, this algorithm loses its edge when the
degree of Bézier curves cross 3, and obtaining an exact solution becomes
far too strenuous, if not impossible, and we have to use approximations.
However, Qt implements its curves only as cubic Bézier curves (not even
quadratic, it elevates it to a cubic curve), for which our method is efficient
as well as accurate.

Another important point is that if we don’t use Gaussian elimination
for common root finding, the Big-O complexity of the algorithm remains
constant. That is, it won’t increase with the increase in the value of the
coordinates of control points (obviously, this only remains true if we limit
ourselves to cubic curves, which is indeed the case here). So the main
factor regarding complexity will be introduced by the numerical methods
used. This can be optimised by using different strategies according to the
number of intersection points available.

Implementation Plan:
In Krita, the shapes are stored as KoShape objects, which

contain all of the geometric data using the QPainterPath class, which
has 3 elements: moveTo, lineTo, and curveTo. Now, the QPainterPath

https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1000&context=facpub

object is further broken down into QWingedEdge object, which
essentially contains all of the data as ordered lists of vertices and
segments. This is the step where a curve is converted to an open
polygon (in the addPath member function, to be exact). After this
step, it proceeds to perform a procedure to find line-line
intersections. In my method, the Bézier curve will remain a curve,
and I will add another algorithm to the function to find intersections
to find curve-curve as well as line-curve intersections.

I. Main algorithm implementation:

For generating the resultant matrix, some functions need to be
implemented. First, it would be good to know the number of roots,
or if the roots exist (should be rejected as we know the curve we are
plotting exists, and that every parametric curve can be represented
in it’s implicit form). For this, we need to create a 3 x 3matrix with
its elements being generated by the resultant formula through
auxiliary equations, provided by the Eigen library which is already
used in Krita. As we are going to be dealing with only Bézier curves
(and of the third degree), we don’t have to create an algorithm for
the general case; one function to calculate the expression in each
element of the matrix, and another to find the value of it’s
determinant will suffice. (to simplify the process, we could use
Gaussian elimination to get the rank of the matrix, but it would
require some extra code and would introduce another non-constant
factor in the Big-O notation). After that, we need to change the
explicit componentof x = f(t)tof ° (x,t) = 0 (this can be easily
done by subtracting x from the expression containing ¢t in the
elements of the previously calculated determinant). After we
generate the implicit equations and plug them in the parametric

equation of the other curve, we get a polynomial with a pretty high
degree (maximum 9, minimum 4). Finding the exact roots for a
degree 4 polynomial is strenuous but still possible. However, after
degree 5, we cannot find the exact roots via our classic algebraic
methods. To tackle this, we need to use numerical methods, which
provide a reasonably good estimation of the actual roots. However,
as we're dealing with Bézier curves, the variable parameter ¢ will
vary from o to 1. Now, for most of the cases the number of
intersections will be 1 or 2, and rarely 9. Hence, we could use Sturm’s
theorem to calculate the number of roots in the period . For
Strurm’s theorem, we will have to calculate the derivatives of the
initial polynomial until we reach a constant value, then plug in the
values of the limits (0 and 1). The number of roots can be evaluated
by checking the number of times the sign of the If there is only one
root, we could use Newton’s method. If there are two or three roots
(relatively evenly spaced, might be apparent in Sturm’s chain), we
could use exclusion and eliminate intervals with no roots. Finally, if
there are too many roots, like a 9 degree polynomial, we could use
Aberth’s method which is readily implemented in the C library
MPSolver, However, rather than adding a new dependency, we could
as well use GSL, which also has functions to find all the roots Both
the libraries use different algorithms to tackle the problem. The QR

reduction in GSL is of time complexityO(n3)and space complexity

O(nz), while MPSolver hasO(nz) andO(n) respectively . However, for
smaller orders, one can expect better performance from GSL due to
optimisations. Some research would be required to determine
whether we can rely on the GSL implementation, and decide
accordingly. Knowing the number of roots beforehand and given
they are one or two would significantly reduce the computation

https://numpi.dm.unipi.it/software/mpsolve
https://numpi.dm.unipi.it/software/mpsolve

needed, and if they fail to find a solution, we could always use the
libraries mentioned above.

As a lot of the above code will have to be written mainly from
scratch and by reusing Krita code, a new class must be added to
handle the intersections (KoIntersections, maybe?) This class will
handle the matrices and subsequent methods to generate implicit
equations. Apart from this, it would be useful to include all of the
numerical methods in a separate class (KoNumericalMethods), for
better modularity. We will have to implement two different unit tests
for the individual classes as well.

II. New intersection algorithm implementation

Qt uses the tree data structure to implement intersections, via
a multitude of functions and a few classes. However, the base for
determining the initial intersections lies by constructing a rectangle
around the element and checking for overlaps. We can use the same
bounding box method for finding intersections with other elements.
The krita class KoRTree has already implemented an R-tree which is
suitable to find intersections via an efficient BoundingBox method.
The class mentioned above would help implement the Ot code inside
Krita and might as well get rid of the need to use most of the Qt
intersection code. Hence, in the algorithm, the only main change
we’d need to introduce is to curve-line and curve-curve
intersections. For this purpose, we could add a new ID element
(similar to ID in QPainterPath). Hence, we could add another class
containing (but not limited to) curveCurvelntersections() and

curveLinelntersections(), and merge them easily with the
intersection algorithms in QPathClipper.

As mentioned in the algorithm, only one curve needs to be
implicitized. We could implement the implicitization on a
“need-to-know basis”, where we will implicitize the curve only if it’s
bounding box has intersected with another element’s bounding box.
Then, we could simply add the implicit equation to a register, so we
could use it directly for future purposes.

Also, if we were to import Qt code within Krita, I'd have to
implement another set of unit tests where it verifies if the
intersection points_are generated correctly and all the corner cases

are covered. Apart from this, some checks are necessary to verify if

the numerical methods are capable of doing the job in some

situations; for example, if Newton’s method fails and keeps
converging to a root found previously, we could set a limit on
time/iterations to notify whether we should move on to Aberth’s
method. As the exact nature of these cases cannot be determined
with full confidence before implementing the code, some unit tests
would provide a safety-net to switch to a different approach. Apart
from this, as Qt doesn’t truly support boolean operations on curves,
I'd have to set up some more unit tests to verify if the boolean

operations work as expected.
II1. 2t Modifications:
Most of the code to be modified lies in two classes:

gpathclipper and gpainterpath, and it might as well be possible to
achieve our goal by modifying only two files (thus making it easier to

add the patch to Qt itself). For further speeding up the process, we
could use the bounding box method to verify if the two boxes
intersect; if not, we can move on (the bounding box will always be
larger than or equal to the convex hull of the curve, which in turn
always contains the entire Bézier curve). Also, a lot of code
regarding the above method is already implemented in Krita
KisBezierUtils, which could be reused.

Regarding the unit tests, as most of the code for intersections
lies behind the Qt API, new unit tests will have to be written.
However,as we aim to replace the features behind the Qt API, it is
highly probable that the external unit tests may perform in the same
manner as before, with the notable exception of extra nodes being
generated and their associated actions. So, I'll mainly need to write
new unit tests for the internal code, which although might be
needed to be written roughly from scratch, should be fairly
contained, and would work without much further refactoring.
Amongst these, I'll have to add unit tests for_tst _gpainterpath, where

I’ll have to add tests for curve-curve and line-curve intersections.
More importantly, tst _gpathclipper tests are crucial to verify if the

algorithm truly works, as it contains several tests for Bézier curve
implementation directly as well as indirectly (to plot ellipses, and
composite shapes) . It also contains functions to verify if filling
algorithms work correctly.

For the above approach, I was planning to copy the two files
(gpainterpath.cpp and gpathclipper.cpp) in the Krita codebase, keep
the relevant code and remove the ones not needed for our current
task and let them use the original Qt modules. However, the problem
with this approach is that the code relies on further Qt private

10

modules, which are subject to change at their discretion; thus it is
not really reliable, and could potentially add further load for
maintenance.

Another approach would be to eliminate the need for using
gpainterpath itself. This is possible, as KoShapes contain almost all
of the necessary data required to perform boolean operations. For
this, I'd have to set up new code to find the intersections, and set up
a new method to get the shapes converted to another form which
would be efficient for finding intersections and other boolean
operations (For this purpose, trees seem to be used; it can be
created by reusing KoRTree as well as by modifying Qt’s own
QWingedEdge). The former step is easy, however the latter could
potentially be a problem. Krita’s method of storing data of the
shapes is different from Qt. However, as all the necessary
information is contained in KoShapes, it might be a better solution,
although it would require more time. However, copying Qt code and
managing the dependencies would work perfectly for our purposes,
and we need not create another intersection algorithm. Hence, we’ll
proceed with the former method.

IV, ‘lesting:

I am going to be writing documentation and creating unit tests
simultaneously while writing the code, so most of the problems will
be seen and solved in the initial stages. However, this phase will
include testing the modifications rigorously from the perspective of
the user. It is important to verify if the added code plays well with
the Krita codebase and does not generate any errors or conflicts. I'll

11

also check if all of the documentation makes sense and if any further
unit tests are to be added (for verifying the new algorithm works
properly with other features).

Rough Timeline:

(As the working time period for GSoC has been reduced to half, I'm
planning to start two weeks earlier)

24 -30 May Interact with the community and the dev team.
Discuss and create a proper strategy to tackle the
problem with my mentor. Start writing about my
progress and the status of the project on my blog
linked to PlanetKDE.

31 May - 6 June | Start implementing the implicitization and root
finding algorithm:

Resultant matrices and generating the implicit
functions, and write documentation for the same.

7 - 13 June Start implementing the implicitization and root
finding algorithm:

setting up numerical methods for finding the roots,
and adding unit tests for implicitization and
root-finding. Finish documentation for root-finding.

14 - 20 June Start implementing the new/modified intersection
finding algorithm:

Create a proper plan to merge pre-existing line-line
intersection code with new code. Starting to write the
documentation regarding new intersection functions.

12

21 - 27 June

Start implementing the new/modified intersection
finding algorithm:

Implement the modified manner in which the
intersections will be calculated, especially
curve-curve ones.

28 June - 4 July

Start implementing the new/modified intersection
finding algorithm:

Add a bounding box method to reduce calculations.
Add relevant unit tests. finish documentation for
bounding box as well as the entire new approach.

5 - 11 July

First evaluation.

Start integrating the implemented functions in the
main codebase:

Start planning on how to integrate the intersection
algorithm with the codebase, and to select the proper
approach for the same.

12 - 18 July

Start integrating the implemented functions in the
main codebase:

Implement a stable method to manage private
libraries used by the Qt intersection functions. Write
unit tests to test if the modifications in the Qt code
would work as expected with Krita. Write
documentation on how to work with the new
approach.

19 - 25 July

Check if all the documentation written is complete
and is easy to understand. If not, improve it. Try
running all the unit tests and check whether the code
works as expected and if not, add some more unit

13

tests accordingly.
26 July -1 Test the code rigorously via using the feature along
August with other functions like brushes and layer
mechanisms.
2 - 8 August Test the code. Extra time, if need occurs
0 - 16 August Test the code. Extra time, if need occurs
Personal Details:

Hi! I'm Tanmay Chavan (earendli_14 on the IRC), from Pune,India.
I’'m currently in my sophomore year pursuing a Bachelor’s degree in
Computer Engineering, at Pune Institute of Computer Technology
(Affiliated to Savitribai Phule Pune University). I have a profound interest
in coding, and love the concept of open source programs for the benefit of
the community.

I recently took a course in Computer Graphics, where we had to
learn and implement several basic Computer Graphics programs like
midpoint circle drawing algorithm, various clipping algorithms, optimised
filling methods, and transformation of 3D shapes using homogenous
matrix transformations. More importantly, we also studied interpolations

14

and approximation methods regarding B-spline and Bézier curves (a copy
of the syllabus can be found here). As a plus, we were asked to implement
all of the above codes in Qt, to make us learn the platform and produce
modular code. Because of this, I chose this project, as I would be able to
apply my skills learned at university. I also have extensively examined the
way Ot handled intersections, and spent a lot of time exploring the perfect
algorithm for our purposes.

I have not applied to any other organisation than Krita, nor do I plan
to send a proposal to a different organisation.

As for the time conflict, our end semester exams will be conducted
in the first two weeks of may, and will be free after that. So there shouldn’t
be any conflict during the time period.

Prior Contributions:

https://invent.kde.ore/eraphics/krita/-/merge requests/757

I plan on being active with the Krita community after GSoC as well,
as it is a really good learning experience : rarely does a student get a
chance to be involved with a software with such a huge codebase. I'd also
give my full effort for the project, and regularly keep in touch with the
mentor and push MRs as well for smooth evaluation.I will also add my
blog to PlanetKDE and update it regularly. I'd really like to work on the
project. I believe I have understood the topic quite well and would be able
to implement the required functionality in the given time frame.

15

http://collegecirculars.unipune.ac.in/sites/documents/Syllabus2020/SE%20Computer%20Engg.%202019%20%20Patt_03.072020.pdf
https://invent.kde.org/graphics/krita/-/merge_requests/757

References and links:

1. Sederberg, Thomas W., "Computer Aided Geometric Design', (2012)
https:/scholarsarchive.bvu.edu/facpub/1/

2. MPSolve, https:/numpi.dm.unipi.it/software/mpsolve

Bini, Dario A., Fiorentino, Giuseppe, Design, analysis, and
implementation of a multiprecision polynomial rootfinder.
Numerical Algorithms 23.2-3 (2000): 127-173.

Bini, Dario A., and Robol, Leonardo. Solving secular and
polynomial equations: A multiprecision algorithm. Journal of
Computational and Applied Mathematics 272 (2014): 276-292.

3. Pomax, A Primer on Bezier Curves,
https://pomax.github.io/bezierinfo/#reordering

16

https://scholarsarchive.byu.edu/facpub/1/
https://numpi.dm.unipi.it/software/mpsolve
https://pomax.github.io/bezierinfo/#reordering

17

