Сложение и вычитание векторов.

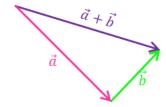
Сумма двух векторов. Законы сложения векторов. Правило параллелограмма.

Представим себе такую ситуацию. Направляясь из школы домой, вам захотелось пить и вы решили зайти сначала в магазин, а затем уже домой. Цель достигнута: вы из школы добрались домой. Сейчас мы описали принцип первого правила сложения векторов.

Правило треугольника.

Чтобы найти вектор суммы двух векторов \vec{a} и \vec{b} , нужно:

- 1) совместить параллельным переносом начало вектора \vec{b} с концом вектора \vec{a} ;
- 2) провести вектор из начала вектора \vec{a} в конец вектора \vec{b} ;
- 3) получившийся вектор и есть вектор суммы: $\vec{a} + \vec{b}$.



Если к вектору \vec{a} прибавить нулевой вектор $\vec{0}$ по правилу треугольника, то получим вектор \vec{a} , т.е. справедливо равенство: $\vec{a} + \vec{0} = \vec{a}$.

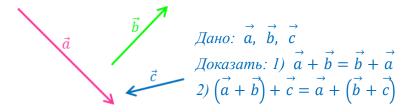
Утверждение. Если A, B и C – произвольные точки, то $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

Например,
$$\vec{EF} + \vec{FK} = \vec{EK}$$
, $\vec{PR} + \vec{RS} + \vec{ST} + \vec{TQ} = \vec{PQ}$.

Сложение векторов подчиняется алгебраическим законам.

ТЕОРЕМА. Для любых векторов $\vec{a}, \ \vec{b}$ и \vec{c} справедливы равенства:

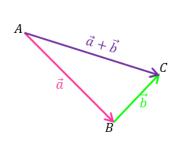
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
 (переместительный закон) $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$ (сочетательный закон).

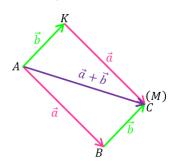


Доказательство.

Доказательство теоремы в случае, когда векторы коллинеарны достаточно простое. Его вы можете провести самостоятельно. Мы рассмотрим случай, когда данные векторы неколлинеарны.

1). Отметим произвольную точку A и отложим от этой точки вектор $\overrightarrow{AB} = \overrightarrow{a}$. Воспользуемся правилом треугольника и прибавим к нему вектор $\overrightarrow{BC} = \overrightarrow{b}$. Вектором суммы этих двух векторов является вектор $\overrightarrow{AC} = \overrightarrow{a} + \overrightarrow{b}$. (Рисунок слева).

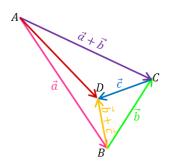




Теперь от точки A и отложим вектор $\vec{AK} = \vec{b}$. По правилу треугольника прибавим κ нему вектор $\vec{KM} = \vec{a}$. Вектором суммы этих двух векторов является вектор $\vec{AM} = \vec{b} + \vec{a}$. (Рисунок справа).

 $\vec{AK} = \vec{BC} = \vec{b}$, значит, они сонаправлены и длины у них равны; $\vec{KM} = \vec{AB} = \vec{a}$, значит, – параллелограмм и точка М совпадает с точкой С. Значит, $\vec{AC} = \vec{AM}$, т.е. $\vec{a} + \vec{b} = \vec{b} + \vec{a}$.

2). От точки A отложим вектор $\overrightarrow{AB} = \overrightarrow{a}$, от точки B отложим вектор $\overrightarrow{BC} = \overrightarrow{b}$, a от точки C



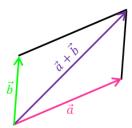
- вектор $\vec{CD} = \vec{c}$. Найдём суммы векторов по правилу треугольника. $(\vec{a} + \vec{b}) + \vec{c} = (\vec{AB} + \vec{BC}) + \vec{CD} = \vec{AC} + \vec{CD} = \vec{AD}; \ \vec{a} + (\vec{b} + \vec{c}) = \vec{AB} + (\vec{BC} + \vec{CD}) = \vec{AB} + \vec{BD} = \vec{AD};$ Теорема доказана.

При доказательстве первой формулы получился параллелограмм, причём, из точки \overrightarrow{A} выходят два вектора \overrightarrow{a} и \overrightarrow{b} , а вектор их суммы является диагональю параллелограмма. На основе этого возникает второе правило геометрического сложения векторов.

Правило параллелограмма.

Чтобы найти вектор суммы двух векторов $\stackrel{\rightarrow}{a}$ и $\stackrel{\rightarrow}{b}$, нужно:

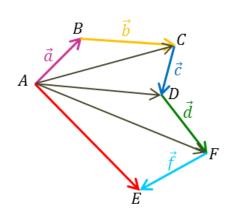
- 1) совместить параллельным переносом начала векторов $\stackrel{\rightarrow}{\alpha}$ $\stackrel{\rightarrow}{u}$ $\stackrel{\rightarrow}{b}$;
- 2) на этих векторах достроить параллелограмм;
- 3) вектором суммы a+b является вектор, который лежит на диагонали параллелограмма, имеющий своё начало в начале исходных векторов.



Сумма нескольких векторов.

Сложение нескольких векторов происходит по принципу правила треугольника. Складываются два вектора, к вектору суммы прибавляется следующий вектор и т.д. Приведём пример.

Сложить векторы a, b, c, d, f.



Отметим точку A и отложим от неё вектор $\overrightarrow{AB} = \overrightarrow{a}$. Прибавим к нему вектор $\vec{BC} = \vec{b}$ по правилу треугольника. $\vec{AB} + \vec{BC} = \vec{AC}$. Теперь к вектору \vec{AC} прибавим вектор $\vec{CD} = \vec{c}. \ \vec{AC} + \vec{CD} = \vec{AD}. \ K$ вектору \vec{AD} прибавляем вектор $\vec{DF} = \vec{d}$. $\vec{AD} + \vec{DF} = \vec{AF}$. Осталось к вектору \vec{AF} прибавить вектор $\vec{FE} = \vec{f} \cdot \vec{AF} + \vec{FE} = \vec{AE}$.

Итак, $\vec{AB} + \vec{BC} + \vec{CD} + \vec{DF} + \vec{FE} = \vec{AE}$. Значит, суммой векторов $\vec{a} + \vec{b} + \vec{c} + \vec{d} + \vec{f}$ является вектор, с началом в

начале первого вектора и концом – в конце последнего. Такое сложение векторов называется правилом многоугольника.

Правило многоугольника.

Чтобы найти вектор суммы нескольких векторов, нужно:

- 1) последовательно совместить параллельным переносом начало последующего вектора с концом предыдущего;
- 2) вектором суммы всех векторов является вектор, с началом в начале первого вектора и концом – в конце последнего.

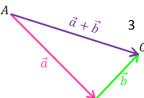
$$\vec{A_1}\vec{A_2} + \vec{A_2}\vec{A_3} + \vec{A_3}\vec{A_4} + \vec{A_4}\vec{A_5} + \dots + \vec{A_{n-2}}\vec{A_{n-1}} + \vec{A_{n-1}}\vec{A_n} = \vec{A_1}\vec{A_n}$$

Вычитание векторов.

Определение. Разностью двух векторов а и в называется такой вектор с, что при сложении его с вектором $\stackrel{\rightarrow}{b}$ получается вектор $\stackrel{\rightarrow}{a}$. $\stackrel{\rightarrow}{a} - \stackrel{\rightarrow}{b} = \stackrel{\rightarrow}{c} \Longrightarrow \stackrel{\rightarrow}{c} + \stackrel{\rightarrow}{b} = \stackrel{\rightarrow}{a}$

$$\vec{a} - \vec{b} = \vec{c} \Longrightarrow \vec{c} + \vec{b} = \vec{a}$$

Вычитание векторов можно производить, руководствуясь двумя понятиями: следствием из правила треугольника сложения векторов; определением разности двух чисел. Разберём каждое из них.



Сложим векторы \vec{a} и \vec{b} по правилу треугольника. По рисунку видно, что $\vec{AB} + \vec{BC} = \vec{AC}$. Отсюда, $\vec{BC} = \vec{AC} - \vec{AB}$ и $\vec{AB} = \vec{AC} - \vec{BC}$. Значит, разность двух векторов можно составить, совмещая их начала, либо совмещая их концы. Отсюда два правила:

I правило вычитания векторов.

Чтобы найти вектор разности двух векторов, нужно:

- 1) совместить параллельным переносом начала этих векторов;
- 2) вектором разности является вектор с началом в конце второго вектора и концом в конце первого вектора.

$$\vec{BC} = \vec{AC} - \vec{AB}$$

II правило вычитания векторов.

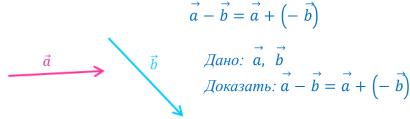
Чтобы найти вектор разности двух векторов, нужно:

- 1) совместить параллельным переносом концы этих векторов;
- 2) вектором разности является вектор с началом в начале первого вектора и концом в начале второго вектора.

$$\overrightarrow{AB} = \overrightarrow{AC} - \overrightarrow{BC}$$

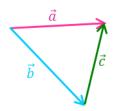
Далее, из алгебры мы знаем, что для того, чтобы из числа a вычесть число b, нужно κ числу a прибавить число, противоположное числу b, т.е. a-b=a+(-b). Такое же правило справедливо и для векторов.

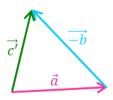
ТЕОРЕМА. Для любых векторов \vec{a}, \vec{b} справедливо равенство:



Доказательство.

1. Найдём разность векторов $\vec{a} - \vec{b}$ по I правилу. Вектором разности является вектор \vec{c} (рисунок слева). А теперь найдём сумму векторов $\vec{a} + (-\vec{b})$ по правилу треугольника, где $-\vec{b}$ — вектор, противоположный вектору \vec{b} . Вектором суммы является вектор \vec{c} (рисунок справа). Не трудно заметить, что $\vec{c} = \vec{c}$. Они сонаправлены и имеют одинаковые модули.





2. А теперь докажем то же самое аналитически. По определению разности векторов,

$$\left(\vec{a} - \vec{b}\right) + \vec{b} = \vec{a}$$

$$(\vec{a} - \vec{b}) + \vec{b} + (-\vec{b}) = \vec{a} + (-\vec{b})$$
$$(\vec{a} - \vec{b}) + \vec{0} = \vec{a} + (-\vec{b})$$
$$\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$$

Что и требовалось доказать.

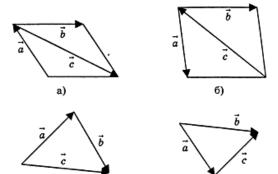
Из этой теоремы следует третье правило вычитания векторов.

III правило вычитания векторов.

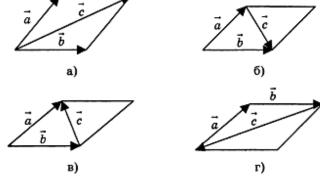
Чтобы найти вектор разности двух векторов, нужно к первому вектору прибавить вектор, противоположный второму.

Используя это правило вычитания векторов, способ сложения векторов выбирается произвольно.

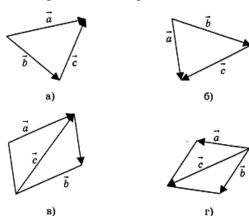
1. Вектор \vec{c} является суммой векторов \vec{a} и \vec{b} . Определите, какой из четырёх рисунков верный.



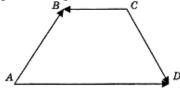
- 2. Проведите векторы \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CD} , \overrightarrow{DA} . Какая геометрическая фигура у вас получилась?
- 3. Вектор \vec{c} является разностью векторов \vec{a} и \vec{b} . Определите, какой из четырёх рисунков верный.



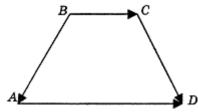
4. Вектор \vec{c} является суммой векторов \vec{a} и \vec{b} . Определите, какой из четырёх рисунков верный.



5. Выразите вектор \overrightarrow{AB} через векторы \overrightarrow{AD} , \overrightarrow{CD} , \overrightarrow{CB} , используя рисунок.



6. Выразите вектор \overrightarrow{BC} через векторы \overrightarrow{BA} , \overrightarrow{AD} , \overrightarrow{CD} , используя рисунок.



7. Упростите выражения:

1)
$$\overrightarrow{AC} + \overrightarrow{HK} + \overrightarrow{CH}$$
;

2)
$$\overrightarrow{AM} - \overrightarrow{KM} - \overrightarrow{AP} + \overrightarrow{KP}$$
;

3)
$$\overrightarrow{AB} + \overrightarrow{CM} + \overrightarrow{BC}$$
;

4)
$$\overrightarrow{AM} - \overrightarrow{NM} - \overrightarrow{AP}$$
;

5)
$$\vec{CM} + \vec{PA} + \vec{MP}$$
;

6)
$$\overrightarrow{AM} - \overrightarrow{HK} - \overrightarrow{AK}$$
.

- 8. Длина вектора \vec{a} равна 5, а длина вектора \vec{c} равна 11. Сколько различных целых значений может принимать длина вектора $(\vec{a} + \vec{c})$?
- 9. Длина вектора \vec{a} равна 3, а длина вектора \vec{m} равна 7. Сколько различных целых значений может принимать длина вектора $(\vec{a} + \vec{m})$?
- Длина вектора \vec{a} равна 2, а длина вектора $(\vec{a} + \vec{m})$ равна 10. Сколько различных целых 10. значений может принимать длина вектора \vec{m} ?
- Длина вектора \vec{a} равна 1, а длина вектора \vec{m} равна 9. Сколько различных целых 11. значений может принимать длина вектора (a + m)?
- Длина вектора \vec{a} равна 4, а длина вектора $(\vec{a} + \vec{m})$ равна 11. Сколько различных целых 12. значений может принимать длина вектора т?
- ABCD проведены диагонали AC и BD. Укажите номера верных 13. В квадрате утверждений.

1)
$$\overrightarrow{AD} + \overrightarrow{DC} = \overrightarrow{AC}$$
;

1)
$$\overrightarrow{AD} + \overrightarrow{DC} = \overrightarrow{AC}$$
; 2) $\overrightarrow{AD} + \overrightarrow{DC} = \overrightarrow{DB}$; 3) $\overrightarrow{DA} + \overrightarrow{DC} = \overrightarrow{AC}$;

3)
$$\vec{DA} + \vec{DC} = \vec{AC}$$

4)
$$\overrightarrow{DA} + \overrightarrow{DC} = \overrightarrow{DB}$$
; 5) $\overrightarrow{AB} = \overrightarrow{DC}$; 6) $\overrightarrow{AB} = \overrightarrow{BC}$;

5)
$$\vec{AB} = \vec{DC}$$

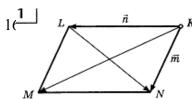
$$\vec{AB} = \vec{BC};$$

7)
$$\overrightarrow{AC} = \overrightarrow{DB}$$

7)
$$\vec{AC} = \vec{DB}$$
; 8) $|\vec{AC}| = |\vec{DB}|$

- KMNP параллелограмм. Найдите сумму векторов $\overrightarrow{MK} + \overrightarrow{MN}$; $\overrightarrow{PN} + \overrightarrow{PK}$; $\overrightarrow{PM} + \overrightarrow{MK}$. 14.
- ABCD прямоугольник. Диагонали AC и BD пересекаются в точке O. Укажите номера 15. верных утверждений.
- 1) $\overrightarrow{AD} \overrightarrow{CD} = \overrightarrow{AC}$; 2) $\overrightarrow{AD} \overrightarrow{BD} = \overrightarrow{AB}$; 3) $\overrightarrow{AD} \overrightarrow{BD} = \overrightarrow{BA}$;
- 4) $\overrightarrow{AB} + \overrightarrow{BO} + \overrightarrow{OD} = \overrightarrow{AD}$; 5) $\overrightarrow{DA} + \overrightarrow{DC} = \overrightarrow{DB}$; 6) $\overrightarrow{AO} \overrightarrow{CO} + \overrightarrow{CB} = \overrightarrow{BA}$;

- 7) $\overrightarrow{AO} = \overrightarrow{OC}$; 8) $\overrightarrow{AC} = \overrightarrow{BD}$; 9) $\overrightarrow{BA} = \overrightarrow{CD}$; 10) $|\overrightarrow{BO}| = |\overrightarrow{DO}|$

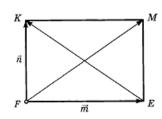


 $\stackrel{K}{\longrightarrow}$ імм. Выразите векторы $\stackrel{\rightarrow}{LN}$ и $\stackrel{\rightarrow}{KM}$ через

1길

пограмм. Выразите векторы \overrightarrow{BD} и \overrightarrow{CA} через

FKME — прямоугольник. Выразите векторы \overrightarrow{EK} и \overrightarrow{FM} через 18. векторы m и n.



TMNS — параллелограмм. Выразите векторы \vec{TM} и \vec{ST} через \vec{M} 19. векторы \vec{a} и \vec{b} .



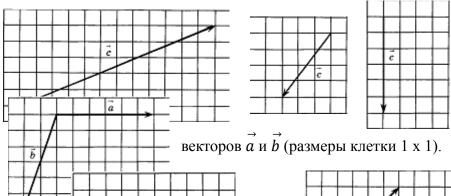
Найдите длины векторов а, b, c, изображённых на 20. клетчатой бумаге с размерами клетки 1 х 1.

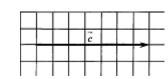
21. Две стороны прямоугольника АВСО равны 20 и 21. Найдите длину суммы векторов \overrightarrow{AB} и \overrightarrow{AD} .

21

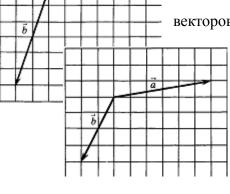
Две стороны прямоугольника ABCD равны 7 и 24. Найдите 22. длину разности векторов \overrightarrow{AB} и \overrightarrow{AD} .

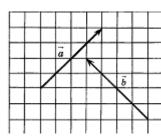
23. На каждом рисунке найдите длину вектора \vec{c} (размеры клетки 1 х 1).

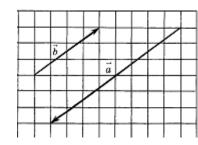


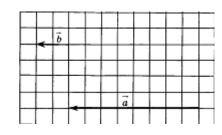


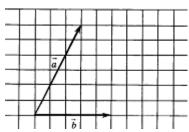
24. На каждом рисунке найдите длину суммы

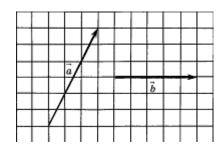












25. На каждом рисунке найдите длину разности векторов \vec{a} и \vec{b} , изображённых на клетчатой бумаге с размерами клетки 1 х 1.

