
I am a grade ten student taking part in a stem based course in which we’ve been assigned to
create a piece of code including the basic statements featured in modern day coding.

What are some ideas of 5 beginner projects I could attempt to tackle

Here are some easy coding projects perfect for complete beginners, designed to help you
grasp fundamental concepts and build confidence:

1. "Hello, World!" Variations
This is the classic starting point for any programming language. It teaches you basic output
and how to run a program.

2. Simple Calculator
Build a program that can perform basic arithmetic operations. This project helps you learn
about input/output, variables, and conditional statements.

3. Number Guessing Game
A fun and interactive project that reinforces loops and conditional logic. The computer
"thinks" of a random number, and you try to guess it.

4. To-Do List Application
A practical project that introduces data structures and basic data management. You learn
how to add, remove, and display items in a list.

5. Text-Based Adventure Game
Unleash your creativity and build a simple story-driven game. This project teaches you
conditional statements, loops, and string manipulation.

Could you expand on number 3 and break it down into segments and teach me in a slow
manner that allows me to learn individual statements one by one.

Step 1: The Goal The goal is simple: the computer thinks of a number, and the player tries
to guess it.

None

None

None

Step 2: The Code We'll need two things: a secret number and a way to get a guess from
the player. For now, let's use a fixed number.

Python

secret_number = 7
guess = int(input("Guess a number: "))

Here, we've created two variables: secret_number holds the number 7, and guess holds
whatever number the user types in. We use int() to make sure the user's text input is
treated as a number.

Step 3: Comparing the Numbers Now we'll use an if statement to check if the guess is
correct.

Python

if guess == secret_number:
 print("You win!")

The == operator checks for equality. If the condition is true, the indented line runs.

How do I add if and else statements to this project and do not just give me the code teach
me how to implement them?

Step 1: Adding the else Statement The else statement runs its code only if the if
statement is false.

Python

if guess == secret_number:
 print("You win!")
else:
 print("Sorry, that's not it.")

Now, the player gets feedback even if they're wrong.

None

None

None

Step 2: Adding a while Loop A while loop keeps running its code as long as a
condition is true. We want the game to continue as long as the player's guess is not
correct.

Python

secret_number = 7
guess = 0 # Initialize the guess

while guess != secret_number:
 guess = int(input("Guess a number: "))
 # We will add our hints here soon!
 # The loop stops when guess == secret_number

print("You win!")

The != operator means "is not equal to". The loop will repeat until the player gets the right
number.

How do I make it so that a random number is generated every time?

Step 1: Import the random module Python has a built-in module called random that
contains tools for this. You need to tell your program to use it with an import statement at
the very top.

Python

import random

Step 2: Use random.randint() The random.randint() function takes two numbers
and returns a random whole number between them (including both numbers). We'll use it to
pick our secret number.

Python

import random

secret_number = random.randint(1, 10)

Every time you run your program, secret_number will be different!

None

How do I make it so that it will tell you whether your guess is lower or higher than what you
guesses? Don’t edit my code but break down the steps?

Here's the new core logic:

Python

import random

secret_number = random.randint(1, 10)

while True: # We'll use an infinite loop and 'break' to win

 guess = int(input("Guess a number between 1 and 10: "))

 if guess < secret_number:

 print("Too low! Try again.")

 elif guess > secret_number:

 print("Too high! Try again.")

 else:

 print("You win! The number was indeed", secret_number)

 break # This command exits the loop

●​ ​
while True: creates a loop that runs forever until we use break.

●​ elif (short for "else if") lets us check a second condition if the first one was false.
●​ The break command is how the program knows to stop the game when the player

wins.

None

None

None

How do I add a limit of guesses?

Step 1: Initialize a counter We'll create a variable called guesses_used and set it to 0
before the loop starts.

Python

guesses_used = 0

Step 2: Update the loop condition The loop should now continue as long as
guesses_used is less than 3.

Python

while guesses_used < 3:

Step 3: Increment the counter Inside the loop, after each guess, we'll add 1 to our counter.
guesses_used += 1 is a shortcut for guesses_used = guesses_used + 1.

Step 4: Handle "Game Over" We'll add an if statement after the loop to check if the
player lost.

Python

if guess != secret_number:

 print("Game over! You ran out of guesses.")

This code only runs if the loop ended because the guess limit was reached.

How do I make it show how many guesses you have left step by step

Step 1: Use total_guesses We'll create a variable for our limit, which makes it easier to
change later.

Python

None

None

None

total_guesses = 3

guesses_used = 0

Step 2: Calculate and print remaining guesses Inside the loop, after incrementing
guesses_used, we can calculate how many guesses are left and print it using an f-string.

Python

guesses_used += 1

guesses_left = total_guesses - guesses_used

print(f"You have {guesses_left} guess(es) left.")

The f before the quotes lets you easily put the value of a variable right into your text.

I want to expand my game even further and make different modes.

This is a big step! We'll use a new if/elif/else block at the beginning to set our game's
variables.

Python

import random

print("Welcome to Will's Number Game!")

mode = input("Please select your mode: Easy or Hard? (e/h):
").lower()

None

if mode == 'h':

 total_guesses = 10

 number_range = 100

 print("\nHard mode selected...")

elif mode == 'e':

 total_guesses = 3

 number_range = 10

 print("\nEasy mode selected...")

else:

 print("\nInvalid mode. Defaulting to Easy.")

 total_guesses = 3

 number_range = 10

This code sets the total_guesses and number_range variables before the game even
starts, based on the player's choice.

How do I make another mode on top of the first 2 and give custom text for completing hard.

Here is the full, corrected code that combines all the features we've discussed. This code is
robust and includes a check for beating Hard mode.

Python

import random

print("Welcome to Will's Number Game!")

mode = input("Please select your mode: Easy or Hard? (e/h):
").lower()

if mode == 'h':

 total_guesses = 5

 number_range = 100

 print("\nHard mode selected! You have 5 guesses to find a
number between 1 and 100.")

elif mode == 'e':

 total_guesses = 3

 number_range = 10

 print("\nEasy mode selected! You have 3 guesses to find a
number between 1 and 10.")

else:

 print("\nThat's not a mode, silly. Defaulting to Easy
mode.")

 total_guesses = 3

 number_range = 10

secret_number = random.randint(1, number_range)

guesses_used = 0

guess = None # Initializes guess to prevent errors

while guesses_used < total_guesses:

 try:

 guess = int(input("Enter your guess: "))

 guesses_used += 1

 if guess == secret_number:

 break

 elif guess < secret_number:

 print("Too low!")

 else:

 print("Too high!")

 if guesses_used < total_guesses:

 guesses_left = total_guesses - guesses_used

 print(f"You have {guesses_left} guess(es) left.")

 except ValueError:

 print("That's not a valid number. Please enter a whole
number.")

if guess == secret_number:

 print(f"\n🎉 You got it! The number was {secret_number} in
{guesses_used} guesses.")

 if mode == 'h':

 print("\n👑 You beat hard mode!")

else:

 print("\nGame over! You ran out of guesses.")

 print(f"The correct number was {secret_number}.")

None

How do I make it so I can loop and play again without restarting the code?

The Play Again Loop

To make the game repeatable, you'll use a while True: statement, which creates an
infinite loop. This loop will run forever unless you explicitly tell it to stop.

At the very end of your code, after the win/loss message is displayed, you'll add an input()
statement to ask the player if they want to play again.

If the player's answer is not "yes," you'll use a break command. The break command
immediately exits the while True: loop, which ends the program. If they type "yes," the
loop will simply start over, and a new game will begin.

Can you expand on this?

The Play Again Loop

You can make your game repeatable by putting all of your existing code inside a while
loop. This loop will run the entire game from start to finish and then ask the player if they
want to go again.

1.​ Wrap the Game Code: Enclose all the main game logic in a while True:
statement. This creates an infinite loop that will keep the program running until you
tell it to stop.

2.​ Add a break Condition: At the very end of your code, after the win or lose
messages are displayed, you'll ask the player if they want to play again.

Python

 # Ask the user if they want to play again
 play_again = input("\nDo you want to play again? (yes/no):
").lower()
 if play_again != 'yes':
 print("Thanks for playing! Goodbye.")
 break # This command exits the loop and ends the
program

If the user types anything other than "yes," the break command will be executed, and the
program will end. Otherwise, the loop will automatically restart from the top, beginning a new
game.

Thanks gemini

	1. "Hello, World!" Variations
	2. Simple Calculator
	3. Number Guessing Game
	4. To-Do List Application
	5. Text-Based Adventure Game
	The Play Again Loop
	The Play Again Loop

