CSE 344 Section 2 Worksheet Solutions

Joins Examples

Given tables created with these commands:
CREATE TABLE A (a INT);
INSERT INTO A VALUES (1), (2), (3), (4);
CREATE TABLE B (b INT);
INSERT INTO B VALUES (3), (4), (5), (6);
What’s the output for each of the following:

SELECT * FROM A INNER JOIN B ON A.a=B.Db;
alb

313

414

SELECT * FROM A INNER JOIN B;
113

114

115

116

213

214

215

216

313

314

315

316

413

414

415

416

SELECT * FROM A LEFT OUTER JOIN B ON A.a=B.b;
alb
313
414
1
2
SELECT * FROM A RIGHT OUTER JOIN B ON A.a=B.b;
alb
|5
| 6
313
414
SELECT * FROM A FULL OUTER JOIN B ON A.a=B.b;
alb
|5
| 6
1
2
313
414

*** ADDITIONAL INFO BELOW ***

sglite3 supports neither RIGHT OUTER JOIN nor FULL OUTER JOIN.

RIGHT OUTER JOIN can be implemented with SELECT * FROM B LEFT OUTER
JOIN A ON A.a=B.b;

FULL OUTER JOIN can be implemented with (SELECT * FROM A LEFT OUTER
JOIN B ON A.a=B.b) UNION (SELECT * FROM B LEFT OUTER JOIN A ON
A.a=B.b);

UNION is a set union that eliminates duplicates;
UNION ALL is a multiset (or bag) union that keeps duplicates.

SQL Practice (Movie-Actor)

CREATE TABLE Movies (id int, name varchar (30), budget int,
gross int, rating int, year int, PRIMARY KEY (id));

CREATE TABLE Actors (id int, name varchar (30), age int, PRIMARY
KEY (id));

CREATE TABLE ActsIn (mid int, aid int, FOREIGN KEY (mid)
REFERENCES Movies (id), FOREIGN KEY (aid) REFERENCES Actors (id)

) ;

(a) What is the number of movies, and the average rating of all movies that the actor ’Patrick
Stewart” has appeared in?

SELECT count(*), avg(rating) FROM Movies as M, Actsln as Al, Actors as A
WHERE M.id = ALLmid AND A.id = Al.aid AND A.name = “Patrick Stewart’’;
(bonus) What movies have no actors? Return movie names of those movies.

select M.name from Movies M left outer join ActsIn I on M.id = I.mid where
I.mid is null;

Or, for another approach,

select M.name from Movies M where not exists (select * from ActsIn I where
L.mid = M.id);

(b) What is the minimum age of an actor who has appeared in a movie where the gross of the
movie has been over $1,000,000,000?

SELECT min(age) FROM Movies as M, Actsln as Al, Actors as A
WHERE M.id = ALLmid AND Al.aid = A.id AND M.gross > 1,000,000,000;

(c) What 1s the budget of each movie released in 2017 whose oldest actor is less than 30?7
SELECT M.name, M.budget FROM Movies as M, Actsln as Al, Actors as A

WHERE M.id = Al.mid AND Al.aid = A.id AND M.year = 2017

GROUP BY M.id, M.name, M.budget

HAVING max(A.age) < 30;

Some code for testing...

insert
insert
insert
insert
insert
insert
insert
insert

insert

into
into
into
into
into
into
into
into
into

Movies
Movies
ActsIn
ActsIn
ActsIn
ActsIn
Actors
Actors
Actors

values
values
values
values
values
values
values
values
values

(1,'MA',100,0,0,2017);
(2,'MB',200,0,0,2017);
(1,11);

(1,12);

(2,11);

(2,13);

(11, 'AA',20) ;

(12, 'AB',35);

(13, 'AC',21);

Self Join

Consider the following over-simplified Employee table, listing employees and their boss (if any):
CREATE TABLE Employees (id int, bossOf int);

Suppose all employees have an id which is not null. How would we find all distinct pairs of
employees with the same boss?

SELECT El1.bossOf, E2.bossOf FROM Employee AS E1, Employee AS E2
WHERE E1.id > E2.id AND E1.bossOf = E2.bossOf;

Sidenote: The predicate “E1.id > E2.id” could also be written as “E1l.id < E2.id”. We cannot use

plain inequality as the predicate condition because this would lead to duplicate pairs.

Additional Movie & Director Practice

Movies and Directors

CREATE TABLE Director (
id INT PRIMARY KEY,
name VARCHAR(75),
country VARCHAR(75));

CREATE TABLE Movie (

id INT PRIMARY KEY,

name VARCHAR (75),

did INT REFERENCES Director,
year INT,

budget INT);

Find the id and name of all directors who have directed more than 20 movies.

e \We see that we want the property of the “count of movies” associated with that director
being > 20. Associating movies to a director lends itself naturally to categorization over
director_id so a GROUP BY is needed.

e The conditional property we want is over groups of movies (associated with a director),
so a HAVING clause is also needed.

SELECT D.id, D.name

FROM Director D, Movie M

WHERE D.id = M.did
GROUP BY D.name, D.id
HAVING COUNT (*) > 20;

Additional Self Join Practice

Consider the following over-simplified Employee table
CREATE TABLE Employees (
id int NOT NULL,
bossOf int
)i

Note that all employees have an id that is not null, but they may have a null “bossOf” entry, or
the bossOf entry may refer to employees already left the company. How do we find the id of all
employees who are the boss of at least one other employee? Ensure that the bossOf value
refers to a current employee in the Employees relation.

SELECT DISTINCT el.id
FROM Employees AS el, Employees AS e2
WHERE el.bossOf=e2.1id;

We need to use self-join in order to ensure that the “bossOf” id refers to an actual employee id,
as opposed to an employee who left the company.

Consider the Employees relation {(1, NULL), (2, NULL), (5, 1), (5, 2), (5, NULL), (3, NULL)}.
How many current employees is the employee with id=5 boss of? (i.e. how many employees
works for employee with id=5)

Since we do not count the null entry, two employees.

Write a query that returns a relation with the id of each employee and the count of how many
employees (i.e., any non-null id) they are the boss of.

SELECT id, COUNT (bossOf)
FROM Employees
GROUP BY id;

Note that we need to use COUNT(bossOf) as opposed to COUNT(*) so that we do not count
null entries.

	CSE 344 Section 2 Worksheet Solutions
	Additional Movie & Director Practice
	Additional Self Join Practice

