
Tugas 15: Python Dasar (Bagian 3)

Nama: Agus Nurwanto
NIM: 20220100027
Program Studi: Informatika

1.​ Buatkan kode program Python dari jawaban algoritma yang anda jawab pada tugas:
1.​ Tugas 11: Studi Kasus Operasi Matriks (soal latihan 10.2 di halaman 83--84)
2.​ Tugas 12: Studi Kasus Shortest Path Problem (soal latihan 11.2 di halaman

92.)
2.​ Buatkan jawabannya ke dalam bentuk PDF, kirim ke kolom File submissions.
3.​ Segera selesaikan agar dapat melanjutkan ke materi di minggu selanjutnya!

Jawaban: Tugas 11: Studi Kasus Operasi Matriks (soal latihan 10.2 di halaman 83--84)

M1 = [[5, 2, 3], [1, 7, 1]]

M2 = [[1, 0], [1, 1], [2, 4]]

print("M1 ", M1)

print("M2 ", M2)

M3 = {}

for i, d in enumerate(M1):

​ M3[i] = {}

​ for ii, dd in enumerate(M1[i]):

​ ​ for j, k in enumerate(M2):

​ ​ ​ for jj, kk in enumerate(M2[j]):

​ ​ ​ ​ M3[i][jj] = 0

for i, d in enumerate(M1):

​ for ii, dd in enumerate(M1[i]):

​ ​ for j, k in enumerate(M2):

​ ​ ​ for jj, kk in enumerate(M2[j]):

​ ​ ​ ​ if(ii == j):

​ ​ ​ ​ ​ M3[i][jj] += M1[i][ii] * M2[j][jj]

​ ​ ​ ​ ​ print(M3[i][jj], '=', M1[i][ii], '*', M2[j][jj])

print("M3", M3)

M4 = []

for i in range(0, len(M3)):

​ M4.append([])

​ for ii in range(0, len(M3[i])):

​ ​ M4[i].append(M3[i][ii])

print("M4", M4)

Tugas 09: Tugas 12: Studi Kasus Shortest Path Problem (soal latihan 11.2 di halaman
92.)

def dijkstra(graph, start, end):
 distances = {node: float('inf') for node in graph}
 distances[start] = 0
 previous_nodes = {node: None for node in graph}
 unvisited_nodes = graph.copy()

 while unvisited_nodes:
 current_node = min(unvisited_nodes, key=lambda x: distances[x])
 if distances[current_node] == float('inf'):
 break
 for neighbor, weight in graph[current_node].items():
 new_distance = distances[current_node] + weight
 if new_distance < distances[neighbor]:
 distances[neighbor] = new_distance
 previous_nodes[neighbor] = current_node
 unvisited_nodes.pop(current_node)

 path = []
 node = end
 while node != start:
 path.append(node)
 node = previous_nodes[node]
 path.append(start)
 path.reverse()

 return path, distances[end]

graph = {1: {2: 1, 3: 3},
 2: {3: 1, 5: 5},
 3: {1: 3, 4: 2},
 4: {5: 1},
 5: {}}

shortest_path, shortest_distance = dijkstra(graph, 1, 5)

print(shortest_path)
print(shortest_distance)

	Tugas 15: Python Dasar (Bagian 3)

