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Sorting and Searching 

Sorting is the process of arranging a list of elements in a particular order (Ascending or Descending). 
There are different types sorting techniques. They are 

 
1.​Selection Sort: 

 
Selection Sort algorithm is used to arrange a list of elements in a particular order (Ascending 

or Descending). In selection sort, the first element in the list is selected and it is compared repeatedly 
with all the remaining elements in the list. If any element is smaller than the selected element (for 
Ascending order), then both are swapped so that first position is filled with the smallest element in the 
sorted order. Next, we select the element at a second position in the list and it is compared with all the 
remaining elements in the list. If any element is smaller than the selected element, then both are 
swapped. This procedure is repeated until the entire list is sorted. 

In selection sort, element at first location (0th location) is considered as least element, and it 
is compared with the other elements of the array. If any element is found to be minimum than the 
element in first location, then that location is taken as minimum and element in that location will 
be the minimum element. 

After completing a set of comparisons, the minimum element is swapped with the element in 
first location (0th location). 

Then again element second location is considered as minimum and it is compared with the 
other 
elements of array and the process continues till the array is sorted in ascending order. 
Note: After first pass, smallest element in given list occupies the first position. After second pass, 
second largest element is placed at second position and so on.. 

 
Step by Step Process: 

 
The selection sort algorithm is performed using the following steps... 

 
Step 1 - Select the first element of the list (i.e., Element at first position in the list). 
Step 2: Compare the selected element with all the other elements in the list. 
Step 3: In every comparison, if any element is found smaller than the selected element (for Ascending 
order), then both are swapped. 
Step 4: Repeat the same procedure with element in the next position in the list till the entire list is 
sorted. 

 
Implementation: 

 
#include<iostream> 
using namespace std; 
int main() 
{ 
int i, j, n, a[100], t, min; 
cout<<"enter range of elements"<<endl; 
cin>>n; 
cout<<"enter elements:"<<endl; 
for(i=0;i<n; i++) 
{ 
cin>>a[i]; 
} 
cout<<"elements before sorting"<<endl; 
for(i=0; i<n; i++) 
{ 
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cout<<" "<<a[i]; 
} 

 
for(i=0; i<n-1; i++) 
{ 
min=i; 
for(j=i+1; j<n; j++) 
{ 
if(a[j]<a[min]) 
min=j; 
} 
if(min!=i) 
{ 
t=a[i]; 
a[i]=a[min]; 
a[min]=t; 
} 
} 
cout<<"\nelements after sorting are"<<endl; 
for(i=0; i<n; i++) 
{ 
cout<<" "<<a[i]; 
} 
cout<<endl; 
} 

 
Complexity of the Selection Sort Algorithm: 

 
To sort an unsorted list with 'n' number of elements, we need to make ((n-1)+(n-2)+(n-3)+.​ +1) = (n 
(n-1))/2 number of comparisons in the worst case. If the list is already sorted then it requires 'n' 
number of comparisons. 

 
Worst Case : O(n2) 
Best Case : Ω(n2) 
Average Case : Θ(n2) 

 
 

2.​Bubble Sort: 
In bubble sort each element is compared with its adjacent element. If first element is larger 

than second one, then both elements are swapped. Otherwise, element are not swapped. Consider the 
following list of numbers. 

 
Algorithm: 
begin BubbleSort(list) 

 
for all elements of list 

if list[i] > list[i+1] 
swap(list[i], list[i+1]) 

end if 
end for 

return list 

end BubbleSort 
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Implementation: 
#include<iostream> 
using namespace std; 
int main() 
{ 
int i, j, n, bubble[20], temp; 
cout<<"enter range of elements"<<endl; 
cin>>n; 
cout<<"enter elements"<<endl; 
for(i=0;i<n; i++) 
{ 
cin>>bubble[i]; 
} 
for(i=0; i<n; i++) 
{ 
for(j=0;j<n-1;j++) 
{ 
if(bubble[j] > bubble[j+1]) 
{ 
temp=bubble[j]; 
bubble[j]=bubble[j+1]; 
bubble[j+1]=temp; 
} 
} 
} 
cout<<"after sorting"<<endl; 
for(i=0; i<n; i++) 
{ 
cout<<" "<<bubble[i]; 
} 
} 

 
Complexity of the Bubble Sort Algorithm: 

 
Worst Case : O(n2) 
Best Case : O(n) 
Average Case : O(n2) 

 
3.​Insertion Sort: 

 
Insertion sort algorithm arranges a list of elements in a particular order. In insertion sort algorithm, 
every iteration moves an element from unsorted portion to sorted portion until all the elements are 
sorted in the list. 

 
Algorithm: 

 
Step 1 - Assume that first element in the list is in sorted portion and all the remaining elements are in 
unsorted portion. 
Step 2: Take first element from the unsorted portion and insert that element into the sorted portion in 
the order specified. 
Step 3: Repeat the above process until all the elements from the unsorted portion are moved into the 
sorted portion. 

 
Implementation: 
#include<iostream> 
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using namespace std; 
int main() 
{ 
int i, j, key,n, a[20]; 
cout<<"enter range of elements"<<endl; 
cin>>n; 
cout<<"enter elements"<<endl; 
for(i=0;i<n; i++) 
{ 
cin>>a[i]; 
} 
for(i=1; i<n; i++) 
{ 
key=a[i]; 
j=i-1; 
while(j>=0&&a[j]>key) 
{ 
a[j+1]=a[j]
; j=j-1; 
} 
a[j+1]=key; 
} 
cout<<"after sorting"<<endl; 
for(i=0; i<n; i++) 
{ 
cout<<" "<<a[i]; 
} 
cout<<endl; 
} 

 
Complexity of the Insertion Sort Algorithm: 

 
To sort an unsorted list with 'n' number of elements, we need to make (1+2+3+.​ +n-1) = (n 

(n-1))/2 number of comparisons in the worst case. If the list is already sorted then it requires 'n' 
number of comparisons. 

 
Worst Case : O(n2) 
Best Case : Ω(n) 
Average Case : Θ(n2) 

 
4.​Quick Sort: 

 
Quick sort is a fast sorting algorithm used to sort a list of elements. Quick sort algorithm is 

invented by C. A. R. Hoare. 
The quick sort algorithm attempts to separate the list of elements into two parts and then sort 

each part recursively. That means it use divide and conquer strategy. In quick sort, the partition of the 
list is performed based on the element called pivot. Here pivot element is one of the elements in the 
list. 

The list is divided into two partitions such that "all elements to the left of pivot are smaller 
than the pivot and all elements to the right of pivot are greater than or equal to the pivot". 

 
Algorithm: 

 
Step 1 - Consider the first element of the list as pivot (i.e., Element at first position in the list). 
Step 2 - Define two variables i and j. Set i and j to first and last elements of the list respectively. 
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Step 3 - Increment i until list[i] > pivot then stop. 
Step 4 - Decrement j until list[j] < pivot then stop. 
Step 5 - If i < j then exchange list[i] and list[j]. 
Step 6 - Repeat steps 3,4 & 5 until i > j. 
Step 7 - Exchange the pivot element with list[j] element. 

 
Implementation: 

 
#include<iostream> 
using namespace std; 
void QuickSort(int [],int,int); 
int main() 
{ 
int i, n, list[20]; 
cout<<"enter range of elements"<<endl; 
cin>>n; 
cout<<n<<endl; 
cout<<"enter elements"<<endl; 
for(i=0;i<n; i++) 
{ 
cin>>list[i]; 
} 
QuickSort(list,0,n-1); 
cout<<"after sorting"<<endl; 
for(i=0; i<n; i++) 
{ 
cout<<" "<<list[i]; 
} 
} 
void QuickSort(int list[],int first,int last) 
{ 

int pivot,i,j,temp; 
if(first < last) 
{ 

pivot = first; 
i = first; 
j = last; 

 
while(i < j) 
{ 

while(list[i] <= list[pivot] && i < last) 
i++; 

while(list[j] > list[pivot]) 
j--; 

if(i < j) 
{ 

temp = list[i]; 
list[i] = 
list[j]; list[j] 
= temp; 

} 
} 

 

temp = list[pivot]; 
list[pivot] = 

 



list[j]; list[j] = 
temp; 
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QuickSort(list,first,j-1); 
QuickSort(list,j+1,last); 

} 
} 

 

Complexity of the Quick Sort Algorithm: 
 

To sort an unsorted list with 'n'  number of elements, we need to make ((n-1)+(n-2)+(n-     3)+. 
+1) = (n (n-1))/2 number of comparisons in the worst case. If the list is already sorted, then it 
requires 'n' number of comparisons. 

 
Worst Case : O(n2) 
Best Case : O (n log n) 
Average Case : O (n log n) 

 
5.​Merge Sort: 

 
Merge sort is a sorting technique based on divide and conquer technique. With worst-case 

time complexity being Ο(n log n), it is one of the most respected algorithms. Merge sort first divides 
the array into equal halves and then combines them in a sorted manner. 

 
What is the rule of Divide and Conquer? 

If we can break a single big problem into smaller sub-problems, solve the smaller sub- 
problems and combine their solutions to find the solution for the original big problem, it becomes 
easier to solve the whole problem. 

In Merge Sort, the given unsorted array with n elements, is divided into n subarrays, each 
having one element, because a single element is always sorted in itself. Then, it repeatedly merges 
these subarrays, to produce new sorted subarrays, and in the end, one complete sorted array is 
produced. 

 
The concept of Divide and Conquer involves three steps: 

 
1.​ Divide the problem into multiple small problems. 
2.​ Conquer the subproblems by solving them. The idea is to break down the problem into atomic 

subproblems, where they are actually solved. 
3.​ Combine the solutions of the subproblems to find the solution of the actual problem. 
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Algorithm: 
 

Step 1 − if it is only one element in the list it is already sorted, return. 
Step 2 − divide the list recursively into two halves until it can no more be divided. 
Step 3 − merge the smaller lists into new list in sorted order. 

 
Implementation: 

 
#include<iostream> 
using namespace std; 
void mergesort(int a[],int lb,int mid, int ub) 
{ 
int i=lb,j=mid+1,k=0,b[50]; 

while(i<=mid&&j<=ub) 
{ 

if(a[i]<a[j]) 
{ 

b[k++]=a[i++]; 
} 
else 
{ 
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b[k++]=a[j++]; 
} 

} 
while(i<=mid) 
{ 
b[k++]=a[i++]; 
} 
while(j<=ub) 
{ 
b[k++]=a[j++]; 
} 
for(k=0;k<=ub-lb;k++) 
{ 
a[k+lb]=b[k]; 
} 

} 
void merge(int a[],int low,int high) 
{ 
int mid; 

if(low<high) 
{ 
mid=(low+high)/2; 
merge(a,low,mid); 
merge(a,mid+1,high); 
mergesort(a,low,mid,high); 
} 

} 
int main() 
{ 
int i, a[30],n; 
cout<<"Enter the number of elements:"; 
cin>>n; 
cout<<"Enter elements:"<<endl; 
for(i=0;i<n;i++) 
{ 

cin>>a[i]; 
} 
cout<<"\n\nBefore sorting:"; 
for(i=0;i<n;i++) 
{ 

cout<<a[i]<<" "; 
} 
merge(a,0,n-1); 
cout<<"\n\nAfter sorting:"; 
for(i=0;i<n;i++) 
{ 

cout<<a[i]<<" "; 
} 
return 0; 
} 

 
Complexity of the Merge Sort Algorithm: 
Worst Case Time Complexity : O(n*log n) 
Best Case Time Complexity : O(n*log n) 

 



Average Time Complexity : O(n*log n) 

 



UNIT-V 
 

6.​Heap Sort: 
Heap sort is one of the sorting algorithms used to arrange a list of elements in order. Heapsort 

algorithm uses one of the tree concepts called Heap Tree. In this sorting algorithm, we use Max Heap 
to arrange list of elements in Descending order and Min Heap to arrange list elements in Ascending 
order. 

 
Algorithm: 

 
Step 1 - Construct a Binary Tree with given list of Elements. 
Step 2 - Transform the Binary Tree into Min Heap. 
Step 3 - Delete the root element from Min Heap using Heapify method. 
Step 4 - Put the deleted element into the Sorted list. 
Step 5 - Repeat the same until Min Heap becomes empty. 
Step 6 - Display the sorted list. 

 
Implementation: 
For example please go through the heap tree concept... 

 
#include <iostream> 
using namespace std; 
void heapify(int arr[], int n, int i) 
{ 

int smallest = i; 
int l = 2 * i + 1; 
int r = 2 * i + 2; 

if (l < n && arr[l] < arr[smallest]) 
smallest = l; 

if (r < n && arr[r] < arr[smallest]) 
smallest = r; 

if (smallest != i) { 
swap(arr[i], arr[smallest]); 
heapify(arr, n, smallest); 

} 
} 
void heapSort(int arr[], int n) 
{ 
for (int i = n / 2 - 1; i >= 0; i--) 

heapify(arr, n, i); 
for (int i = n - 1; i >= 0; i--) { 

swap(arr[0], arr[i]); 
heapify(arr, i, 0); 

} 
} 

 

int main() 
{ 
int a[50],n,i; 
cout<<"Enter the size of the array:"; 
cin>>n; 
cout<<"\nEnter the elements:"; 
for(i=0;i<n;i++) 
cin>>a[i]; 
cout<<"\nThe list before sorting:"; 
for(i=0;i<n;i++) 
cout<<a[i]<<" "; 
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heapSort(a,n); 
cout<<"\nThe list after sorting:"; 
for(i=0;i<n;i++) 
cout<<a[i]<<" "; 
cout<<"\n\n"; 
} 

 
Complexity of the Heap Sort Algorithm: 
To sort an unsorted list with 'n' number of elements, following are the complexities... 
Worst Case : O(n log n) 
Best Case : O(n log n) 
Average Case : O(n log n) 

 
Comparison among all the sorting techniques: 

 
 

 
Time 

 

Sort Average Best Worst Space Stability Remarks 
Bubble 
sort O(n2) O(n2) O(n2) Constant Stable Always use a modified bubble 

sort 

Selection 
Sort 

 
O(n2) 

 
O(n2) 

 
O(n2) 

 
Constant 

 
Stable 

Even a perfectly sorted input 
requires scanning the entire 
array 

Insertion 
Sort 

 
O(n2) 

 
O(n) 

 
O(n2) 

 
Constant 

 
Stable 

In the best case (already sorted), 
every insert requires constant 
time 

 
Heap Sort 

 
O(n*log(n)) 

 
O(n*log(n)) 

 
O(n*log(n)
) 

 
Constant

 
Instable 

By using input array as storage 
for the heap, it is possible to 
achieve constant space 

 
Merge 
Sort 

 
O(n*log(n)) 

 
O(n*log(n)) 

 
O(n*log(n)
) 

 
Depends 

 
Stable 

On arrays, merge sort requires 
O(n) space; on linked lists, 
merge sort requires constant 
space 

 
 
Quicksort 

 
 
O(n*log(n))

 
 
O(n*log(n))

 
 
O(n^2) 

 
 
Constant 

 
 
Stable 

Randomly picking a pivot value 
(or shuffling the array prior to 
sorting) can help avoid worst 
case scenarios such as a 
perfectly sorted array. 

 
 

Searching: 
 

Search is a process of finding a value in a list of values. In other words, searching is the 
process of locating given value position in a list of values. 
Gathering any information (or) trying to find any data is said to be a Searching process. 
Searching technique can be used more efficiently if the data is present in an ordered manner. 
Most widely used Searching methods are:- 
1) Linear Search (Sequential Search)​ 2) Binary Search 

 

https://www.cprogramming.com/tutorial/computersciencetheory/sorting1.html
https://www.cprogramming.com/tutorial/computersciencetheory/sorting1.html
https://www.cprogramming.com/tutorial/computersciencetheory/sorting2.html
https://www.cprogramming.com/tutorial/computersciencetheory/sorting2.html
https://www.cprogramming.com/tutorial/computersciencetheory/sorting2.html
https://www.cprogramming.com/tutorial/computersciencetheory/sorting2.html
https://www.cprogramming.com/tutorial/computersciencetheory/heapsort.html
https://www.cprogramming.com/tutorial/computersciencetheory/mergesort.html
https://www.cprogramming.com/tutorial/computersciencetheory/mergesort.html
https://www.cprogramming.com/tutorial/computersciencetheory/quicksort.html
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1.​Linear Search: 
 

Suppose an array is given, which contains „n‟ elements. If no other information is given and 
we are asked to search for an element in array, than we should compare that element, with all the 
elements present in the array. This method which is used to Search the element in the array is 
known as Liner Search. Since the key element/ the element which is to be searched in array, if 
found out by comparing with every element of array one-by-one, this method is also known as 
Sequential Search. 

 
Algorithm: 

 
Step 1 - Read the search element from the user. 
Step 2 - Compare the search element with the first element in the list. 
Step 3 - If both are matched, then display "Given element is found!!!" and terminate the function 
Step 4 - If both are not matched, then compare search element with the next element in the list. 
Step 5 - Repeat steps 3 and 4 until search element is compared with last element in the list. 
Step 6 - If last element in the list also doesn't match, then display "Element is not found!!!" and 
terminate the function. 

 
Implementation: 

 
#include<iostream> 
using namespace std; 
int main() 
{ 
int linear[20],n,i,k,temp=0; 
//clrscr(); 
cout<<"enter range of elements"<<endl; 
cin>>n; 
cout<<"enter elements into array"<<endl; 
for(i=0; i<n; i++) 
{ 
cin>>linear[i]; 
} 
cout<<"enter search key:"<<endl; 
cin>>k; 
for(i=0;i<n; i++) 
{ 
if(k==linear[i]) 
{ 
temp=1; 
cout<<k<<"is found at location"<<i+1<<endl; 
break; 
} 
} 
if(temp!=1) 
{ 
cout<<"element not found"<<endl; 
} 
} 

●​ The time complexity of Linear search is: 
a.​Best case = O(1) 
b.​Average case = n(n+1)/2n = O(n) 
c.​Worst case = O(n) 

 



●​ The space complexity of Linear Search is O(1). 
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2.​Binary Search: 
Efficient search method for large arrays. Liner search, will required to compare the key 

element, with every element in array. If the array size is large, liner search requires more time for 
execution. 
In such cases, binary search technique can be used. 

 
To perform binary search:- 
i)​Elements should be entered into array in Ascending Order 
ii)​Middle element of the array must be found. This is done as follows 

 
Find the lowest position & highest position of the array i.e., if an array contains „n‟ elements 
then:- 
Low=0 
High =n-1 
Mid =(low+high)/2 

 
Note: We are calculating mid position of the array not the middle element. The element present in the 
mid position is considered as middle element of array. 

Now the search key element is compared with middle element of array. Three cases arises 
Case 1 : If middle element is equal to key, then search is end. 
Case 2 : If middle element is greater than key, then search is done, before the middle element 
of array. 
Case 3 : If middle element is less than key, then search is done after the middle 
element of array. 

This process is repeated till we get the key element (or) till the search comes to an end, since 
key element is not in the list. 

 
Algorithm: 

 
Step 1 - Read the search element from the user. 
Step 2 - Find the middle element in the sorted list. 
Step 3 - Compare the search element with the middle element in the sorted list. 
Step 4 - If both are matched, then display "Given element is found!!!" and terminate the function.  
Step 5 - If both are not matched, then check whether the search element is smaller or larger than the 
middle element. 
Step 6 - If the search element is smaller than middle element, repeat steps 2, 3, 4 and 5 for the left 
sublist of the middle element. 
Step 7 - If the search element is larger than middle element, repeat steps 2, 3, 4 and 5 for the right 
sublist of the middle element. 
Step 8 - Repeat the same process until we find the search element in the list or until sublist contains 
only one element. 
Step 9 - If that element also doesn't match with the search element, then display "Element is not found 
in the list!!!" and terminate the function. 

 
Implementation: 

 
#include<iostream> 
using namespace std; 
int main() 
{ 
int binary[20],n, i, k, low, mid, high; 
cout<<"enter range of elements"<<endl; 
cin>>n; 
cout<<"enter elements into array"<<endl; 
for(i=0;i<n; i++) 
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{ 
cin>>binary[i]; 
} 
cout<<"enter search key"<<endl; 
cin>>k; 
low=0; 
high=n-1; 
while(low<=high) 
{ 
mid=(low+high)/2; 
if(binary[mid]<k) 
{ 
low=mid+1; 
} 
else if(binary[mid]>k) 
{ 
high=mid-1; 
} 
else 
break; 
} 
if(binary[mid]==k) 
{ 
cout<<"element is found at location"<<mid+1<<endl; 
} 
else 
cout<<"element not found"<<endl; 
} 

 

●​ The time complexity of Linear search is: 
 

a.​Best case = O(1) 
b.​Average case = O(logn) 
c.​Worst case = O(logn) 

●​ The space complexity of Binary Search is O(1). 
 

Hashing: 
 

In all search techniques like linear search, binary search and search trees, the time required to 
search an element depends on the total number of elements present in that data structure. In all these 
search techniques, as the number of elements increases the time required to search an element also 
increases linearly. 

Hashing is another approach in which time required to search an element doesn't depend on 
the total number of elements. Using hashing data structure, a given element is searched with constant 
time complexity. Hashing is an effective way to reduce the number of comparisons to search an 
element in a data structure. 

Hashing is defined as follows... 
“Hashing is the process of indexing and retrieving element (data) in a data structure  to 

provide a faster way of finding the element using a hash key”. 
Here, the hash key is a value which provides the index value where the actual data is likely to 

be stored in the data structure. 
In this data structure, we use a concept called Hash table to store data. All the data values are 

inserted into the hash table based on the hash key value. The hash key value is used to map the data 
with an index in the hash table. And the hash key is generated for every data using a hash function. 
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That means every entry in the hash table is based on the hash key value generated using the hash 
function. 

Hash Table is defined as follows... 
“Hash table is just an array which maps a key (data) into the data structure with the help of 

hash function such that insertion, deletion and search operations are performed with constant time 
complexity (i.e. O(1))”. 

Hash tables are used to perform insertion, deletion and search operations very quickly in a 
data structure. Using hash table concept, insertion, deletion, and search operations are accomplished 
in constant time complexity. Generally, every hash table makes use of a function called hash function 
to map the data into the hash table. 

A hash function is defined as follows... 
“Hash function is a function which takes a piece of data (i.e. key) as input and produces an 

integer (i.e. hash value) as output which maps the data to a particular index in the hash table”. 
Basic concept of hashing and hash table is shown in the following figure... 

 
Collision: 

 
Since a hash function gets us a small number for a key which is a big integer or string, there is 

possibility that two keys result in same value. 
The situation where a newly inserted key maps to an already occupied slot in hash table is 

called collision and must be handled using some collision handling technique. 
There are mainly two methods to handle collision: 
1.​Separate Chaining 
2.​Open Addressing 

 
1.​Separate Chaining: 

Separate Chaining is also called as closed addressing and open hashing. Separate chaining is 
one of the most commonly used collision resolution techniques. It is usually implemented using 
linked lists. In separate chaining, each element of the hash table is a linked list. To store an element in 
the hash table you must insert it into a specific linked list. If there is any collision (i.e. two different 
elements have same hash value) then store both the elements in the same linked list. 
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The cost of a lookup is that of scanning the entries of the selected linked list for the required 
key. If the distribution of the keys is sufficiently uniform, then the average cost of a lookup depends 
only on the average number of keys per linked list. For this reason, chained hash tables remain 
effective even when the number of table entries (N) is much higher than the number of slots. 

For separate chaining, the worst-case scenario is when all the entries are inserted into the 
same linked list. The lookup procedure may have to scan all its entries, so the worst-case cost is 
proportional to the number (N) of entries in the table. 

Let us consider a simple hash function as “key mod 7” and sequence of keys as 50, 700, 76, 
85, 92, 73, 101. 

 
 

 
Advantages: 

 
●​ Simple to implement. 
●​ Hash table never fills up, we can always add more elements to chain. 
●​ Less sensitive to the hash function or load factors. 
●​ It is mostly used when it is unknown how many and how frequently keys may be inserted or 

deleted. 
 

Disadvantages: 
 

●​ Cache performance of chaining is not good as keys are stored using linked list. Open 
addressing provides better cache performance as everything is stored in same table. 

●​ Wastage of Space (Some Parts of hash table are never used) 
●​ If the chain becomes long, then search time can become O(n) in worst case. 
●​ Uses extra space for links. 

 



UNIT-V 
 

2.​Open Addressing: 
Like separate chaining, open addressing is a method for handling collisions. In Open 

Addressing, all elements are stored in the hash table itself. In open addressing, instead of in linked 
lists, all entry records are stored in the array itself. When a new entry has to be inserted, the hash 
index of the hashed value is computed and then the array is examined (starting with the hashed index). 
If the slot at the hashed index is unoccupied, then the entry record is inserted in slot at the hashed 
index else it proceeds in some probe sequence until it finds an unoccupied slot. 

 
Open addressing is again three types: 

 
a.​Linear probing: 

 
When searching for an entry, the array is scanned in the same sequence until either the target 

element is found or an unused slot is found. This indicates that there is no such key in the table. The 
name "open addressing" refers to the fact that the location or address of the item is not determined by 
its hash value. 

Linear probing is when the interval between successive probes is fixed (usually to 1). Let’s 
assume that the hashed index for a particular entry is index. The probing sequence for linear probing 
will be: 

index = index % hashTableSize 
index = (index + 1) % hashTableSize 
index = (index + 2) % hashTableSize 
index = (index + 3) % hashTableSize 

In such a case, we can search the next empty location in the array by looking into the next cell until 
we find an empty cell. This technique is called linear probing. 

Let us consider a simple hash function as “key mod 7” and sequence of keys as 50, 700, 76, 
85, 92, 73, 101. 

 
While inserting 85,there is a collision with slot 1,so we are using linear probing approach, 

index = (index + 1) % hashTableSize 
i.e., index=(85+1)%7 

=86%7 
=2 so now 85 will insert in slot 2 which is empty. 

Next element 92, While inserting 92,there is a collision with slot 1so again we are using linear 
probing approach 
index = (index + 1) % hashTableSize=(92+1)%7=1, there is a collision with slot 2 
index = (index + 2) % hashTableSize=(92+2)%7=3 so now 92 will insert in slot 3 which is empty. 

​  
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b.​Quadratic probing: 
Quadratic probing is similar to linear probing and the only difference is the interval between 

successive probes or entry slots. Here, when the slot at a hashed index for an entry record is already 
occupied, you must start traversing until you find an unoccupied slot. The interval between slots is 
computed by adding the successive value of an arbitrary polynomial in the original hashed index. 

 
Let us assume that the hashed index for an entry is index and at index there is an occupied slot. The 
probe sequence will be as follows: 

 
index = index % hashTableSize 
index = (index + 12) % hashTableSize 
index = (index + 22) % hashTableSize 
index = (index + 32) % hashTableSize 
and so on… 

Let us consider a simple hash function as “key mod 7” and sequence of keys as 50, 700, 76, 
85, 92, 73, 101. 

 

 
While inserting 85,there is a collision with slot 1,so we are using quadratic probing approach, 

index = (index + 12) % hashTableSize 
i.e., index=(85+12)%7=(85+1)%7 

=86%7 
=2 so now 85 will insert in slot 2 which is empty. 

 
 

Next element 92, While inserting 92,there is a collision with slot 1so again we are using linear 
probing approach 
index = (index + 12) % hashTableSize=(92+12)%7=1, there is a collision with slot 2. 
index = (index + 22) % hashTableSize=(92+22)%7==(92+4)%7=5 so now 92 will insert in slot 5 
which is empty. 

0 700 
1 50 
2 85 
3  
4  
5 92 
6 76 
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Next element 73, 
index = index % hashTableSize 
index=73%7=3, so now 73 will insert in slot 3 which is empty. 

0 700 
1 50 
2 85 
3 73 
4  
5 92 
6 76 

Next element 101, 
index = index % hashTableSize=101%7=3, there is a collision with slot 3. 
index = (index + 12) % hashTableSize=(101+12)%7=4, so now 101 will insert in slot 4 which is 
empty. 

0 700 
1 50 
2 85 
3 73 
4 101 
5 92 
6 76 

​
 

c.​Double Hashing: 
Double hashing is a collision resolving technique in Open Addressed Hash tables. Double 

hashing is similar to linear probing and the only difference is the interval between successive probes. 
Here, the interval between probes is computed by using two hash functions. Double hashing uses the 
idea of applying a second hash function to key when a collision occurs. 

Double hashing can be done using : 
(hash1(index) + i * hash2(index)) % hashTableSize 
Here hash1() and hash2() are hash functions and hashTableSize is size of hash table. 
(We repeat by increasing i when collision occurs) 

 
First hash function is typically hash1(index) = index % hashTableSize 
Second hash function is : hash2(index) = PRIME – (index % PRIME) where PRIME is a prime 
smaller than the hashTableSize. 

 
There are a couple of requirements for the second function: 

●​ It must never evaluate to 0 
●​ Must make sure that all cells can be probed 

 
Let us consider a simple hash function as “key mod 13” and sequence of keys as 19,27,36,10. 

Assume size of the hash table is 13. 
Let say Hash1(index)=index%13 

Hash2(index)=7-(index%7) ,where 7 is the random prime number. 
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The hash table is 
0  
1 27 
2  
3  
4  
5 10 
6 19 
7  
8  
9  
10 36 
11  
12  
13  

​
 
 

Graphs: 
 

Graph is a non-linear data structure. It contains a set of points known as nodes (or vertices) 
and a set of links known as edges (or Arcs). Here edges are used to connect the vertices. A graph is 
defined as follows... 

“Graph is a collection of vertices and arcs in which vertices are connected with arcs” or 
“Graph is a collection of nodes and edges in which nodes are connected with edges”. 
Generally, a graph G is represented as G = ( V , E ), where V is set of vertices and E is set of edges. 

 
Example: 

 
The following is a graph with 5 vertices and 6 edges. 
This graph G can be defined as G = ( V , E ) 
Where V = {A,B,C,D,E} and E = {(A,B),(A,C)(A,D),(B,D),(C,D),(B,E),(E,D)}. 
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Basic Graph Terminologies: 
 

1.​ Vertex: 
Individual data element of a graph is called as Vertex. Vertex is also known as node. In 

above example graph, A, B, C, D & E are known as vertices. 
2.​ Edge: 

An edge is a connecting link between two vertices. Edge is also known as Arc. An edge is 
represented as (startingVertex, endingVertex). For example, in above graph the link between 
vertices A and B is represented as (A,B). In above example graph, there are 7 edges (i.e., (A,B), 
(A,C), (A,D), (B,D), (B,E), (C,D), (D,E)). 

 

�​ Edges are three types. 
 

3.​ Undirected Graph: A graph with only undirected edges is said to be undirected graph. 

4.​ Directed Graph: A graph with only directed edges is said to be directed graph. 

5.​ Mixed Graph: A graph with both undirected and directed edges is said to be mixed graph. 

7.​ Origin: If a edge is directed, its first endpoint is said to be the origin of it. 

8.​ Destination: If a edge is directed, its first endpoint is said to be the origin of it and the other 

endpoint is said to be the destination of that edge. 

9.​ Adjacent: If there is an edge between vertices A and B then both A and B are said to be adjacent. 

In other words, vertices A and B are said to be adjacent if there is an edge between them. 

 
12.​Incoming Edge: A directed edge is said to be incoming edge on its destination vertex. 

13.​ Degree: Total number of edges connected to a vertex is said to be degree of that vertex. 

14.Indegree: Total number of incoming edges connected to a vertex is said to be indegree of that 

vertex. 

15.​Outdegree: Total number of outgoing edges connected to a vertex is said to be outdegree of that 

vertex. 

 
16.​Parallel edges or Multiple edges: If there are two undirected edges with same end vertices and 

two directed edges with same origin and destination, such edges are called parallel edges or 

multiple edges. 

 
17.​Self-loop: Edge (undirected or directed) is a self-loop if its two endpoints coincide with each other. 
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18.​Simple Graph: A graph is said to be simple if there are no parallel and self-loop edges. 

19.​Path: A path is a sequence of alternate vertices and edges that starts at a vertex and ends at other 

vertex such that each edge is incident to its predecessor and successor vertex. 

 
Graph Representations: 
Graph data structure is represented using following representations... 

 
1.​ Adjacency Matrix 
2.​ Incidence Matrix 
3.​ Adjacency List 

 
1.​ Adjacency Matrix: 

In this representation, the graph is represented using a matrix of size total number of vertices 
by a total number of vertices. That means a graph with 4 vertices is represented using a matrix of 
size 4X4. In this matrix, both rows and columns represent vertices. This matrix is filled with either 1 
or 0. Here, 1 represents that there is an edge from row vertex to column vertex and 0 represents that 
there is no edge from row vertex to column vertex. 

 
For example, consider the following undirected graph representation... 

 

 
Directed graph representation... 
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2.​ Incidence Matrix 
In this representation, the graph is represented using a matrix of size total number of vertices 

by a total number of edges. That means graph with 4 vertices and 6 edges is represented using a 
matrix of size 4X6. In this matrix, rows represent vertices and columns represents edges. This matrix 
is filled with 0 or 1 or -1. Here, 0 represents that the row edge is not connected to column vertex, 1 
represents that the row edge is connected as the outgoing edge to column vertex and -1 represents that 
the row edge is connected as the incoming edge to column vertex. 

 
For example, consider the following directed graph representation... 

 

 
3.​ Adjacency List: 

In this representation, every vertex of a graph contains list of its adjacent vertices. 
For example, consider the following directed graph representation implemented using linked list... 

 
This representation can also be implemented using an array as follows.. 

 
 

Graph Search and traversal algorithms: 
 

Graph traversal is a technique used for a searching vertex in a graph. The graph traversal is 
also used to decide the order of vertices is visited in the search process. A graph traversal finds the 
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edges to be used in the search process without creating loops. That means using graph traversal we 
visit all the vertices of the graph without getting into looping path. 

There are two graph traversal techniques and they are as follows... 
1.​ DFS (Depth First Search) 
2.​ BFS (Breadth First Search) 

 
1.​DFS (Depth First Search): 

DFS traversal of a graph produces a spanning tree as final result. Spanning Tree is a graph 
without loops. We use Stack data structure with maximum size of total number of vertices in the 
graph to implement DFS traversal. 

 
Algorithm: 

Step 1 - Define a Stack of size total number of vertices in the graph. 
Step 2 - Select any vertex as starting point for traversal. Visit that vertex and push it on to the 

Stack. 
Step 3 - Visit any one of the non-visited adjacent vertices of a vertex which is at the top of 

stack and push it on to the stack. 
Step 4 - Repeat step 3 until there is no new vertex to be visited from the vertex which is at the 

top of the stack. 
Step 5 - When there is no new vertex to visit then use back tracking and pop one vertex from 

the stack. 
Step 6 - Repeat steps 3, 4 and 5 until stack becomes Empty. 
Step 7 - When stack becomes Empty, then produce final spanning tree by removing unused 

edges from the graph. 
 

“Back tracking is coming back to the vertex from which we reached the current vertex”. 
 

Implementation: 
 

#include<iostream> 
using namespace std; 
class graph 
{ 

 
int cost[10][10],i,j,k,n,m,stack[10],top,v; 
bool visited[10]; 
public: 

graph() 
{ 

top=-1; 
for ( int i=1;i<=10;i++) visited[i]=false; 
for (int i=0;i<10;i++) 
for(j=0;j<10;j++) 

cost[i][j]=0; 
} 

void accept(); 
void DFS(); 

}; 
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void graph::accept() 
{ 

cout<<"enter the no of vertices"<<endl; 
cin>>n; 
cout<<"enter the no of edges"<<endl; 
cin>>m; 
cout<<"\nEnter EDGES"<<endl; 
for(k=1;k<=m;k++) 

{ 
cin>>i>>j; 
cost[i][j]=1; 
cost[j][i]=1; 

} 
} 
void graph::DFS() 
{ 

cout<<"enter the initial vertex"<<endl; 
cin>>v; 
cout<<"visited vertices\n"; 
stack[++top]=v; 
while(top!=-1) 
{​  

v=stack[top--]; 
if(visited[v]==false) 
{ 
cout<<v; 
visited[v]=true; 

} 
else 
continue; 
for(j=n;j>=1;j--) 
if(!visited[j]&& cost[v][j]==1) 

stack[++top]=j; 
} 

} 
int main() 
{ 
graph ob; 
ob.accept(); 
ob.DFS(); 
return 0; 

} 
 

Complexity: 
Time complexity O(V+E), when implemented using an adjacency list. 

 
2.​BFS (Breadth First Search): 

BFS traversal of a graph produces a spanning tree as final result. Spanning Tree is a graph 
without loops. We use Queue data structure with maximum size of total number of vertices in the 
graph to implement BFS traversal. 

 
Algorithm: 

Step 1 - Define a Queue of size total number of vertices in the graph. 
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Queue. 

Step 2 - Select any vertex as starting point for 

traversal. Visit that vertex and insert it into the Step 3 

- Visit all the non-visited adjacent vertices of the 

vertex which is at front of the Queue 

and insert them into the Queue. 
Step 4 - When there is no new vertex to be visited from the vertex which is at front of the 

Queue then delete that vertex. 
Step 5 - Repeat steps 3 and 4 until queue becomes empty. 
Step 6 - When queue becomes empty, then produce final spanning tree by removing unused 

edges from the graph. 
 

Implementation: 
#include<iostream> 
using namespace std; 
class graph 
{ 

 
int cost[10][10],i,j,k,n,m,queue[10],front,rear,v; 
bool visited[10]; 
public: 

graph() 
{ 

front=-1;rear=-1; 
for ( int i=1;i<=10;i++) visited[i]=false; 
for (int i=0;i<10;i++) 
for(j=0;j<10;j++) 

cost[i][j]=0; 
} 

 

void accept(); 
void BFS(); 

}; 
 

void graph::accept() 
{ 

cout<<"enter the no of vertices"<<endl; 
cin>>n; 
cout<<"enter the no of edges"<<endl; 
cin>>m; 
cout<<"\nEnter EDGES"<<endl; 
for(k=1;k<=m;k++) 

{ 
cin>>i>>j; 
cost[i][j]=1; 
cost[j][i]=1; 

} 
} 

 

void graph::BFS() 
{ 

cout<<"enter the initial vertex"<<endl; 
cin>>v; 

 



cout<<"visited vertices\n"; 
 

visited[v]=true; 
queue[++rear]=v; 
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while(front!=rear) 
{ 

v=queue[++front]; 
cout<<v; 
for(j=1;j<=n;j++) 
if(!visited[j]&& cost[v][j]==1) 

{ 
queue[++rear]=j; 
visited[j]=true; 

} 
} 

} 
 

int main() 
{ 
graph ob; 
ob.accept(); 
ob.BFS(); 
return 0; 

} 
 

Complexity: 
The time complexity of BFS is O(V + E), where V is the number of nodes and E is the 

number of edges. 
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