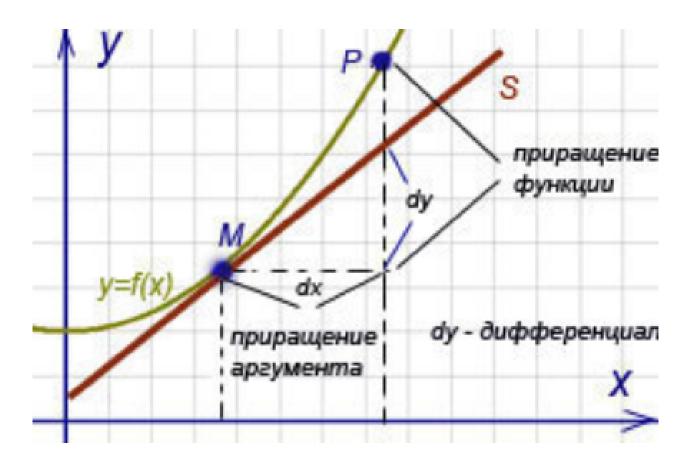
Записать теорию и примеры в тетрадь.

Понятие дифференциала.

Определение. Дифференциалом функции в некоторой точке *х* называется главная, линейная часть приращения функции.



Дифференциал функции y = f(x) равен произведению её производной на приращение независимой переменной x (аргумента).

Это записывается так:

$$dy = y \, \Delta x$$

или $df(x) = f'(x) \Delta x$

Использование дифференциала в приближенных вычислениях.

При малых значениях $\triangle x$ (и при $y' \neq 0$) приращение функции можно приближенно заменить его главной частью $y' \triangle x$, т.е.

$$\Delta y \approx y' \Delta x |_{\mathsf{или}} \Delta y = dy,$$

что позволяет использовать дифференциал для приближенных вычислений значений функции.

Для приближенных вычислений используется формула:

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \Delta x \tag{1}$$

Пример 1. Пользуясь понятием дифференциала, вычислить приближенно $\frac{1}{\sqrt{1.005}}$.

Решение. Число $\frac{1}{\sqrt{1,005}}$ является одним из значений функции у = $\frac{1}{\sqrt{x}}$.

Так как производная этой функции $y' = \frac{-1}{2x\sqrt{x}}$, то формула (1) примет вид

$$\frac{1}{\sqrt{x_0 + \Delta x}} \approx \frac{1}{\sqrt{x_0}} - \frac{1}{2x_0\sqrt{x_0}} \Delta x.$$

Возьмем $x_0 = 1$ и $\Delta x = 0,005$

Получаем

$$\frac{1}{\sqrt{1,005}} \approx \frac{1}{\sqrt{1}} - \frac{1}{2 \cdot 1 \cdot 1 \sqrt{1}} \cdot 0,005 =$$

$$= 1 - 0,5 \cdot 0,005 \approx 0,9975 \approx 0,998$$

Пример 2. Пользуясь понятием дифференциала, вычислить приближенно In 1,01.

Решение. Число $\ln 1,01$ является одним из значений функции $y = \ln x$. Формула (1) в данном случае примет вид

$$\ln(x_0 + \Delta x) \approx \ln x_0 + \frac{\Delta x}{x_0}.$$

возьмем
$$x_0 = 1$$
, и $\Delta x = 0,01$.

Следовательно,

$$\ln(1,01) = \ln(1+0,01) \approx \ln 1 + \frac{0,01}{1} = 0,01,$$