Optimizing Summer Hydration For More Sweating

Winter might be a time for saunas and cold showers, but the growing season is a time to sweat a lot more ... to get a lot more exercise ... in order to sweat out all kinds of poisons.

The backgrounder is unique for the profile of an old geezer who maximizes his gardenering/landscapering game by performing strenuous outdoor labor in summer ... consumes the bulk of vegetable intake raw from the garden while working ... and otherwise adheres to the One-Meal-A-Day (OMAD) regimen predominantly composed of meat and protein ... sounds simple enough, but can present a complex challenge for maintaining optimal hydration.

This backgrounder will evaluate the distinct physiological demands, analyze the hydration dynamics influenced by this specific lifestyle, and propose creative, evidence-based strategies and rituals to enhance summer hydration resilience.

I. The Gardener's Crucible: Evaluating the Unique Physiological Demands of Summer Landscaping

Strenuous outdoor labor during summer months subjects the human body to significant physiological stress, primarily related to thermoregulation and the maintenance of fluid and electrolyte balance. For the gardener/landscaper, these demands are amplified by prolonged exposure and high work intensity.

A. Deconstructing the Impact of Heat and Exertion on Fluid and Electrolyte Homeostasis

The human body meticulously regulates its internal temperature. During physical exertion, contracting muscles generate substantial heat. In a hot summer environment, additional heat is gained from the surroundings. The primary physiological mechanisms for dissipating this heat are increased blood flow to the skin (cutaneous vasodilation) and sweating. The evaporation of sweat from the skin surface is a highly effective cooling process, with approximately 580 kcal of heat lost for every kilogram of sweat evaporated.

Sweat rates during prolonged, high-intensity work in hot conditions can be considerable, often exceeding 1.5 liters per hour ² and potentially ranging from 0.5 to 2.0 L/h.³ Over an extended workday, total sweat loss can reach 10 to 12 liters under extreme circumstances.² It is crucial to recognize that sweat rates exhibit significant inter-individual variability.¹ This variation is influenced by numerous factors including

the intensity of the exercise or work, environmental conditions (ambient temperature, humidity, solar radiation, wind), an individual's body mass, and even the type of clothing or protective equipment worn.¹ This inherent variability implies that standardized hydration recommendations may not be universally applicable. An individual's specific circumstances and physiological responses dictate their precise fluid needs, necessitating a more personalized approach to hydration rather than reliance on generic guidelines.

Sweat is not merely water; it contains essential electrolytes. The primary electrolytes lost are sodium (Na+) and chloride (Cl-), with smaller amounts of potassium (K+), magnesium (Mg2+), and calcium (Ca2+) also present.¹ Sodium loss is particularly significant due to its primary role in maintaining body fluid balance and plasma volume.¹ While primary sweat, as it is initially secreted by the sweat glands, is nearly isotonic with blood plasma, the reabsorption of sodium in the sweat duct means that the final concentration of sodium in sweat can vary considerably.¹ Studies have shown sweat sodium concentrations ranging from less than 200 mg/L to over 2,300 mg/L, with an average often cited around 950 mg/L.⁶ For individuals engaged in moderately hot work for a 10-hour shift, sodium loss can amount to 4.8 to 6 grams (equivalent to 12 to 15 grams of sodium chloride, or table salt).²

Failure to adequately replace these fluid and electrolyte losses leads to dehydration, which has multifaceted physiological consequences:

- Impaired Cardiovascular Function: Dehydration reduces plasma volume, leading to an increased heart rate, decreased stroke volume (the amount of blood pumped per heartbeat), and diminished blood flow to working muscles, particularly during high-intensity exercise. This occurs because a greater proportion of blood volume is directed to the skin to facilitate cooling, thereby reducing oxygen and nutrient delivery to the muscles. This places considerable strain on the cardiovascular system and can elevate the risk of tachycardia and other heart-related problems. The competition for blood flow between the demands of muscle work and skin cooling creates a critical physiological bottleneck. Dehydration intensifies this issue by shrinking the available blood volume, thereby compromising both the body's cooling capacity and the oxygen supply to muscles, accelerating fatigue and heightening the risk of heat-related illness.
- Quicker Muscle Fatigue: Dehydration and heat stress accelerate the breakdown
 of muscle glycogen (stored carbohydrate), increase the production of muscle
 lactate (which lowers pH and contributes to fatigue), and elevate the generation
 of free radicals within skeletal muscles.⁷ These metabolic changes collectively

- contribute to a more rapid onset of muscle fatigue. Dehydration can also exacerbate muscle cramping.⁸
- Impaired Central Nervous System (CNS) Function: Both hyperthermia (elevated body temperature) and dehydration can adversely affect the CNS, leading to a reduced neural drive for motor unit recruitment. This can manifest as cognitive dysfunction, poor focus and concentration, diminished alertness, and impaired coordination all of which can compromise work safety and efficiency.

B. Heat Acclimation: Your Body's Adaptive Shield and Its Hydration Implications

Heat acclimation is a complex physiological adaptation that occurs when an individual repeatedly exercises or works in a hot environment.⁷ This adaptive process enhances the body's ability to cope with heat stress. Key physiological changes associated with heat acclimation include:

- An increase in plasma volume.
- An earlier onset of sweating.
- A higher overall sweat rate.
- A reduction in the concentration of salt (sodium chloride) lost in sweat, primarily due to increased secretion of the hormone aldosterone, which promotes sodium reabsorption.
- Reduced blood flow to the skin (reflecting more efficient heat dissipation).
- Increased synthesis of heat shock proteins, which protect cells from stress.

These adaptations collectively result in lower core body temperature and heart rate responses during submaximal exercise in the heat, as well as a decreased perception of exertion.⁷ The timeline for these changes varies: decreased heart rate can be observed within 3-7 days, increased plasma volume within 3-6 days, decreased perceived exertion within 5-9 days, and an increased sweat rate typically within 8-14 days.⁷ For unacclimatized individuals starting work in hot conditions, a period of 10 days or more is recommended before undertaking heavy manual labor.²

While heat acclimation significantly improves thermoregulatory efficiency and electrolyte conservation, it is paramount to understand that it does not eliminate the need for diligent fluid replacement. The earlier onset and higher rate of sweating in acclimated individuals ⁷, although beneficial for cooling, mean that fluid losses commence sooner and can accumulate more rapidly throughout a workday. This necessitates a proactive approach to hydration, starting fluid intake before significant work begins and maintaining frequent consumption during labor, even if the perceived effort feels lower. Furthermore, the physiological "cost" of achieving and maintaining heat acclimation—that is, the requirement to exercise or work in the heat ⁷—itself

imposes a hydration demand. If the gardener's work intensity or exposure to heat diminishes during cooler months, some degree of acclimation may be lost. Consequently, the transition into the summer season, particularly the initial weeks of hot weather work when full re-acclimation may not yet be complete, represents a period of heightened vulnerability. During this phase, sweat electrolyte conservation might not be at its peak, and perceived exertion could be higher for a given workload, demanding increased vigilance regarding hydration and electrolyte intake.

C. Beyond Thirst: Synthesizing Early Warning Systems for Dehydration in Active Individuals

Thirst is a relatively insensitive and delayed indicator of the body's fluid needs. By the time an individual feels thirsty, they are often already dehydrated by 1-2% of their body weight, and some sources suggest even 2-3%. Relying solely on thirst to guide fluid intake, especially during strenuous work in the heat, can lead to progressive dehydration and its associated impairments. Therefore, recognizing more subtle, earlier warning signs is critical for proactive hydration.

Early warning signs can be categorized as follows:

• Subtle Early Physical Signs:

- Dry or sticky mouth ⁹
- o Dry or flushed skin 12
- Loss of skin elasticity (skin "tenting" when pinched, slow to return to normal) 12
- Headache (often one of the first noticeable symptoms)
- Unexplained fatigue, tiredness, lethargy, or an increased perception of effort for usual tasks ⁸
- \circ Dizziness or lightheadedness, especially when standing up quickly 8
- Muscle cramps ⁸
- Loss of appetite or, paradoxically, a craving for sugar ¹¹
- \circ Bad breath (due to reduced saliva production) 12

• Performance and Cognitive Cues:

- Reduced alertness or difficulty maintaining focus ⁸
- Impaired coordination or fine motor skills ⁸
- Slower reaction times ¹⁶
- Irritability, mood swings, or difficulty concentrating ¹⁵

• More Obvious (but still relatively early) Signs:

- o Dark-colored urine (deep yellow, amber) 10
- \circ Urinating less frequently than usual or a noticeable reduction in urine output 9
- Faster breathing and an elevated pulse rate at rest or during mild exertion 14

It is important to note that many early dehydration symptoms, such as fatigue, headache, irritability, and poor focus ⁸, are non-specific and can easily be misattributed to other common stressors like insufficient sleep, general work-related stress, or even hunger—a particularly relevant consideration for an individual following an OMAD dietary pattern. This potential for misattribution can delay crucial rehydration efforts. A conscious mental shift to consider dehydration as a primary suspect when these symptoms arise during summer work is therefore advisable. When uncertain, adopting a "hydrate first" policy can be a valuable rule of thumb. Furthermore, the symptom of "craving sugar" ¹¹ could be especially misleading for an individual on a high-protein, OMAD diet who is likely managing carbohydrate intake carefully. Misinterpreting this as a need for caloric energy rather than a hydration signal could lead to suboptimal choices, such as consuming sugary beverages that may not effectively rehydrate and could be counterproductive. ⁹ Recognizing this specific craving as a *potential hydration signal* is critical to ensure the first response is to reach for water or an appropriate electrolyte solution.

Table 1: Dehydration Warning Signals: From Subtle Cues to Critical Alerts

Category	Early/Subtle Symptoms	Moderate Symptoms	Severe Symptoms (Seek Medical Attention)
Cognitive	Difficulty concentrating, reduced alertness, mild irritability, slower reaction times ⁸	Poor focus, increased irritability, mental fog	Confusion, delirium, disorientation, severe neurological disturbances ⁸
Performance	Increased perception of effort, slight decrease in endurance or strength, quicker muscle fatigue ⁷	Noticeable decline in work capacity, impaired coordination ⁸	Inability to continue work, significant weakness, collapse ⁸
Physical	Thirst (often mild initially), dry mouth, sticky saliva, bad breath, slight	Intense thirst, very dry mouth, dizziness, lightheadedness, muscle cramps,	Sunken eyes, inability to sweat (anhidrosis) despite heat, rapid/weak pulse, low blood pressure,

	headache ⁹	flushed skin, fatigue ⁸	fainting, organ failure (heat stroke) ⁸
Urine	Urine may start to darken slightly from very pale yellow ¹⁰	Dark yellow or amber-colored urine, decreased frequency of urination ¹⁰	Very dark or brown urine, no urine output for several hours ¹³

II. The OMAD Paradox: Analyzing Hydration Dynamics in a High-Protein, Single-Meal Regimen During Strenuous Work

The adoption of a One-Meal-A-Day (OMAD) dietary pattern, particularly one that is high in protein, introduces unique variables into the hydration equation for an individual engaged in strenuous summer landscaping. This section will evaluate these interactions.

A. The Metabolic Tightrope: Fluid and Electrolyte Shifts During Prolonged Daily Fasting

The OMAD diet involves consuming all daily caloric intake within a very narrow window, typically one hour, followed by approximately 23 hours of fasting.²⁰ During this extended fasting period, only non-caloric beverages such as water, black coffee, or herbal teas are generally permitted.²⁰

This dietary structure presents inherent hydration challenges:

- Limited Intake Window for Electrolyte-Containing Fluids: The most significant challenge is the restricted timeframe for consuming fluids that also provide electrolytes or calories. This makes the continuous sipping of traditional sports drinks or electrolyte solutions throughout a long workday problematic if a strict interpretation of OMAD (no calories outside the single meal) is maintained.
- Increased Risk of Dehydration and Electrolyte Imbalance: These are
 recognized concerns associated with prolonged fasting periods.²⁵ Symptoms such
 as headaches and fatigue, often experienced during the adaptation phase to
 OMAD, can be directly linked to inadequate hydration and insufficient electrolyte
 intake, particularly sodium.²⁷
- Exacerbation by Hot Climates and Physical Demands: Undertaking extended fasting in hot, humid conditions, especially when combined with high physical exertion, can feel significantly more draining and increase dehydration risk.²¹
 Caution is advised for individuals with high physical demands, such as manual laborers, when considering an OMAD approach.²⁸

The 23-hour fasting window characteristic of OMAD, if interpreted strictly as permitting zero electrolyte intake outside the meal, creates a direct physiological conflict. The body's need for continuous electrolyte replacement during prolonged sweating, as often recommended for individuals engaged in long-duration work in the heat ²⁹, is not met. This necessitates a carefully considered, nuanced approach. Options include consuming electrolyte-only solutions during the fasting period (some sources suggest electrolyte powders or tablets are acceptable if they are calorie-free and devoid of artificial sweeteners ²⁵), or relying on an exceptionally well-formulated single meal to both pre-load and aggressively replenish electrolytes. Given the extreme physiological demands faced by the gardener, prioritizing electrolyte repletion over absolute adherence to a strict zero-calorie fast during work hours is physiologically more sound. The advice to use electrolyte powders, tablets, or even a pinch of salt in water during the fasting period ²⁵ becomes critically important.

Furthermore, the metabolic shift towards ketosis, which occurs during prolonged fasting as the body depletes glycogen stores and increasingly relies on fat oxidation and ketone body production for energy ²⁷, can itself influence fluid balance. The initial phases of adopting a ketogenic state are often associated with a diuretic effect. This can lead to increased urinary output of both water and electrolytes, further compounding the dehydration risk already posed by profuse sweating. This "keto-diuresis" adds another layer to the fluid loss equation, particularly concerning sodium and potassium, reinforcing the imperative for aggressive and consistent water and electrolyte replacement, especially during the OMAD adaptation phase and on an ongoing basis if ketosis is maintained.

B. Protein Power and Water Demand: Evaluating the Hydration Cost of a High-Protein OMAD Meal

A diet high in protein significantly increases the body's demand for water. The metabolism of protein generates nitrogenous waste products, primarily urea, which must be filtered by the kidneys and excreted in urine.³³ A higher intake of protein leads to greater urea production, which consequently requires a larger volume of water for efficient flushing from the system.³³ Quantitative estimates suggest that individuals on high-protein diets should aim to increase their daily water intake from a general recommendation of 2-3 liters to approximately 3-4 liters.³³ A commonly cited rule of thumb is to consume an additional 0.5 to 1 liter of water for every 50 grams of protein ingested.³³

Beyond its impact on kidney function, protein metabolism has a higher thermic effect compared to carbohydrates or fats. This means that digesting and processing protein

generates more heat (thermogenesis), which can slightly elevate the body's core temperature.³³ In a hot environment, this additional internal heat load necessitates more efficient cooling mechanisms, potentially leading to increased sweat rates or a greater demand for hydration to support circulatory adjustments for heat dissipation. When the entire day's protein intake is consumed in a single large OMAD meal, this metabolic water demand and thermic effect are concentrated into a shorter post-meal period.

The timing of this high-protein OMAD meal relative to the next day's strenuous work schedule is a critical factor. If the meal is consumed late in the evening, the peak period of urea production and the associated heightened water demand for its excretion might coincide with sleep (a period of no fluid intake) and the early hours of work the following day. This scenario could result in the gardener commencing their workday in a suboptimal hydration state, even before significant sweating begins due to labor and heat exposure. This underscores the importance of aggressive pre-hydration upon waking and careful consideration of the OMAD meal timing, or at least an acute awareness of this increased morning fluid requirement.

Similarly, the pronounced thermic effect of consuming a large bolus of protein in one sitting ³³ could subtly elevate core body temperature or place a greater demand on thermoregulatory systems during the post-meal rest period. If this period occurs in a warm ambient environment (e.g., a summer evening without air conditioning), it might slightly increase insensible water losses (e.g., through respiration) or marginally reduce the body's capacity to cool down efficiently before the subsequent day's heat exposure. While likely a minor factor compared to exertional heat stress, it represents another small contribution to the overall hydration challenge.

C. Kidney Considerations: Mitigating Risks Associated with High Protein Intake and Potential Dehydration

The kidneys play a vital role in filtering metabolic waste products, such as urea from protein metabolism, and in regulating the body's fluid and electrolyte balance.³³ Diets high in protein can impose an increased workload on the kidneys. Some research suggests that high dietary protein intake can lead to intraglomerular hypertension (increased pressure within the kidney's filtering units), which may potentially result in kidney hyperfiltration, glomerular injury, and proteinuria (protein in the urine).³⁴ There is some concern that long-term high protein intake *might* contribute to the development of de novo Chronic Kidney Disease (CKD) in susceptible individuals, and animal protein sources may pose a comparatively higher risk than plant-based proteins.³⁴ However, it's also noted that in healthy individuals with normal kidney

function, short-term high protein intake (less than 6 months) does not typically demonstrate adverse effects on kidney health markers.³⁵

Dehydration significantly compounds the potential strain on the kidneys. Inadequate water intake, especially when combined with a high-protein diet, can lead to an excessive buildup of nitrogenous waste products, placing further stress on the kidneys and increasing the risk of kidney stone formation.³³ Dehydration itself can cause low blood pressure and reduced blood flow to the kidneys, impairing their function; severe heat illness can even precipitate acute kidney failure.³⁶

The combination of a high protein intake (which increases the kidneys' filtration workload) and the potential for significant dehydration from strenuous work in hot conditions (which reduces kidney perfusion and leads to more concentrated urine) presents a synergistic risk to kidney health. The OMAD dietary pattern, by concentrating the entire protein load into a single meal and inherently limiting opportunities for fluid intake throughout the remainder of the day, could potentially exacerbate this risk. The gardener's OMAD approach, delivering the day's total protein in one go, creates a periodic, high-intensity demand on the kidneys in terms of solute load. If this is consistently paired with even mild, chronic underhydration due to the inherent difficulties in fully replacing substantial sweat losses during the long fasting and working period, the cumulative risk of gradual kidney stress or stone formation could be elevated compared to a dietary pattern with more distributed protein intake, even if the total daily protein consumption remains the same.

The long-term sustainability of this combined dietary and occupational lifestyle, without exceptionally meticulous hydration and electrolyte management, is a point of concern from a kidney health perspective. While many studies on high-protein diets in healthy individuals show limited short-term adverse effects ³⁵, these studies typically do not account for the concurrent stressors of an OMAD regimen, extreme physical labor, and significant heat exposure. The gardener is, in effect, navigating a unique physiological landscape. Therefore, a proactive stance on kidney health, which includes maintaining consistently superior hydration levels and potentially considering regular medical check-ups with a focus on kidney function markers, should be viewed as a prudent long-term strategy.

D. The Grazing Gardener: Assessing the True Hydration Contribution of Raw Garden Vegetables

Many common garden vegetables are characterized by a high water content. For instance, cucumbers can be up to 97% water, iceberg lettuce 96%, celery and tomatoes around 95%, zucchini between 93-95%, bell peppers 92%, and watermelon

91%.³⁷ These vegetables also contribute some electrolytes.

- Potassium: Found in cucumbers, tomatoes, zucchini, bell peppers, spinach, kale, sweet potatoes, and potatoes.³⁷
- Magnesium: Present in cucumbers, zucchini, spinach, kale, and potatoes.³⁷
- **Sodium:** Generally very low in most fresh, raw vegetables.⁴¹ Celery contains some sodium but is still classified as a "low sodium" food.
- Calcium: Found in leafy greens like spinach, kale, and collard greens.³⁹

While the consumption of these raw vegetables throughout the workday undoubtedly contributes to overall fluid intake and provides some valuable electrolytes, particularly potassium and magnesium, their role in offsetting the substantial fluid and electrolyte losses incurred during heavy sweating must be realistically evaluated. To replace sweat losses that can easily reach 1-2 liters per hour, along with the significant accompanying electrolyte deficits (especially sodium), an individual would need to consume an immense and likely impractical volume of raw vegetables while simultaneously performing demanding physical labor. Thus, while beneficial as a supplement, raw vegetable grazing cannot serve as the primary strategy for rehydration and electrolyte replenishment.

A critical point to consider is the sodium content. While grazing on raw vegetables provides fluids and certain electrolytes like potassium and magnesium, these foods are notably deficient in sodium, which is the electrolyte lost in the greatest quantity through sweat. Attempting to rely on such grazing for comprehensive electrolyte repletion would inevitably lead to a significant sodium imbalance, further highlighting the need for targeted sodium replacement through other means, such as the OMAD meal or specific electrolyte solutions.

Moreover, there's a potential behavioral aspect to consider. The act of "grazing" on moist vegetables throughout the day, while offering some hydration, might inadvertently diminish the perceived need for dedicated water drinking breaks. If the gardener feels they are obtaining fluids from the vegetables, they might be less inclined to pause for more substantial and targeted fluid intake. This could create a psychological pitfall where a seemingly healthy habit paradoxically contributes to overall underhydration if it displaces more effective hydration practices. It is therefore important for the gardener to consciously differentiate between grazing for nutritional supplementation and the imperative need for planned, significant fluid and specific electrolyte consumption.

Table 2: Estimated Water and Key Electrolyte Content of Common Raw Garden

Vegetables

Vegetabl e (100g raw)	Water Content (%)	Potassiu m (mg)	Magnesiu m (mg)	Sodium (mg)	Calcium (mg)	Source(s)
Cucumber (with peel)	~95-97	~147	~13	~2	~16	37
Celery	~95	~260	~11	~80	~40	37
Tomato	~94-95	~237	~11	~5	~10	37
Bell Pepper (green)	~92-94	~175	~10	~3	~10	37
Lettuce (Iceberg)	~96	~141	~7	~10	~18	37
Zucchini (with skin)	~93-95	~261	~18	~8	~16	37
Spinach	~91	~558	~79	~79	~99	39
Kale	~84	~491	~47	~38	~150	39

Note: Values are approximate and can vary based on specific variety and growing conditions. Primarily sourced from USDA data where available, cross-referenced with provided snippets.

III. Crafting a Resilient Hydration Architecture: Innovative Rituals and Strategies for the OMAD Gardener

Developing a robust hydration strategy requires integrating physiological understanding with practical, actionable behaviors. For the OMAD gardener, this means creating innovative rituals and leveraging environmental cues to ensure fluid and electrolyte balance despite the inherent challenges of their work and dietary regimen.

A. Foundational Fluid Strategies

The cornerstone of any hydration plan is ensuring adequate total fluid intake and selecting appropriate fluid types. For an individual on an OMAD diet, particularly with high protein intake, daily fluid needs are substantial, generally in the range of 3-4 liters (approximately 12-16 cups) even before accounting for occupational sweat losses. Occupational Safety and Health Administration (OSHA) guidelines for workers in hot environments recommend consuming approximately 1 cup (8 ounces or ~240ml) of water every 15-20 minutes. This equates to roughly 1 liter per hour. However, it is also cautioned not to exceed 48 ounces (1.5 quarts or ~1.4 liters) per hour to mitigate the risk of hyponatremia (dangerously low blood sodium levels). Given the gardener's high sweat rates (potentially 1-2 L/hour), their total daily fluid requirement will likely be at the upper end of these recommendations, or even exceed them.

Fluid Types - A Critical Evaluation:

- Water: This should be the primary fluid consumed, especially during the 23-hour fasting window, to support overall hydration and crucial kidney function, particularly with a high-protein diet.¹⁰
- Homemade Oral Rehydration Solutions (ORS): These are vital for replacing electrolytes lost through profuse sweating, with a particular focus on sodium. Typical recipes involve water, salt, and a source of sugar. For the OMAD practitioner, the sugar content presents a consideration, as it technically breaks a strict fast. The gardener must evaluate their priorities: utilize a sugar-free electrolyte mix (avoiding artificial sweeteners where possible, as suggested by 5), opt for a very dilute ORS, or strategically consume ORS understanding it as a minor caloric deviation for a significant physiological gain. Some OMAD adherents permit small caloric allowances like bone broth 7, suggesting flexibility for essential needs. Given the extreme demands, prioritizing electrolyte repletion over strict caloric fasting during work hours is physiologically prudent. An ideal fluid replacement for industrial settings should contain significant sodium with minimal carbohydrate.
- Commercial Sports Drinks: These can be effective for electrolyte replacement during work that induces sweating for several hours.¹⁴ However, many are high in sugar.² "Low sugar" or "zero sugar" versions containing electrolytes may be more compatible with the fasting window.¹⁵ It's important to check the sodium content, aiming for approximately 150-200mg of sodium per 16oz (around 500ml) serving.¹⁵ Some sources caution against high-energy content sports drinks for industrial workers, favoring formulations with substantial sodium and minimal carbohydrates.²

• Fluids to Avoid or Limit: Sugary beverages like soda and fruit juice should be minimized as they are not optimal for hydration and can contribute to caloric intake outside the OMAD window. Excessive caffeine intake should be managed; while normal amounts may not impact overall hydration, large doses can have a diuretic effect and add strain to the heart, especially when already stressed by heat and workload. Alcohol is a diuretic and should be avoided, particularly around work periods.

A "layered" fluid strategy appears optimal for this gardener. Layer 1 (Baseline Hydration): Consistent intake of plain water throughout the day, especially during the fasting/working period, to support kidney function and general hydration. Layer 2 (Electrolyte Maintenance during Work): Regular sipping of sugar-free electrolyte solutions (e.g., powders containing sodium, potassium, and magnesium mixed with water ²⁵) during physical labor. Layer 3 (Intense Loss Replacement & OMAD Meal Support): Consumption of a more concentrated homemade ORS ⁴³ (perhaps with reduced sugar or used strategically as the OMAD meal approaches) or a carefully chosen low-sugar, electrolyte-rich sports drink ¹⁵ with or around the single daily meal to aggressively replenish depleted stores. This multi-pronged approach balances physiological necessities with the constraints of the OMAD diet.

It is critical to emphasize that failure to adequately replace sodium, in particular, can lead to serious consequences. If large volumes of plain water are consumed to quench thirst and support protein metabolism without concurrent sodium replacement, blood sodium levels can become dangerously diluted, a condition known as hyponatremia.² The gardener's high sweat rate and potentially high intake of plain water amplify this risk. Therefore, ensuring adequate sodium intake—through electrolyte-enhanced beverages, judicious salting of the OMAD meal, or other sodium sources compatible with the dietary approach—is as vital as maintaining water intake. The guideline to not exceed 48oz of fluid per hour ⁹ is partly aimed at preventing such dilutional hyponatremia.

Table 3: Comparative Analysis of Hydration Fluids for the OMAD Gardener

Type E	Key Electrolyt es (Typical)	Sugar Content (Approx.)	Osmolalit y (General)	Suitabilit y for Fasting Window (Strict OMAD)	Suitabilit y with OMAD Meal	Notes
--------	--------------------------------------	-------------------------------	-----------------------------	--	--------------------------------------	-------

Plain Water	Minimal	Zero	Hypotonic	Yes	Yes	Essential for baseline hydration & kidney function; insufficien t alone for high sweat losses. ¹⁰
Homemad e ORS (e.g., WHO formula based)	Sodium, Potassium , Chloride	~20-27g/L (glucose)	Isotonic/H ypotonic	No (due to sugar)	Yes	Excellent for electrolyte repletion; sugar aids absorptio n but breaks fast. Consider modified low-sugar versions. ⁴³
Sugar-Fre e Electrolyte Powders/T ablets	Sodium, Potassium , Magnesiu m	Zero (or negligible)	Variable (often Hypo)	Yes (if no artificial sweetener s affecting fast)	Yes	Good for electrolyte maintenan ce during fasting; check for adequate sodium levels. ²⁵
Commerci al Sports Drinks (Regular)	Sodium, Potassium	High (~60-80g/ L)	Isotonic/H ypertonic	No (due to sugar)	Condition al	Can replenish electrolyte s but high sugar content is problemat ic for OMAD &

						general health. ²
Commerci al Sports Drinks (Low/Zero Sugar)	Sodium, Potassium	Low/Zero	Hypotonic /Isotonic	Yes (check sweetener s)	Yes	Better OMAD option if electrolyte s are adequate; ensure sufficient sodium. ¹⁵
Infused Water (Garden Herbs/Frui t)	Variable, generally low	Very Low/Zero	Hypotonic	Yes	Yes	Enhances palatabilit y, minor nutrient boost; not a primary electrolyte source. 45

B. The Critical First Sip: Designing a Morning Hydration Ritual to Prime for the Day (and Sideline the Coffee Cue)

The body naturally wakes up in a state of mild dehydration after 7-8 hours of sleep without fluid intake.⁴⁷ For the gardener, whose work involves immediate outdoor labor and who may carry a residual metabolic load from an evening high-protein meal, initiating hydration upon waking is paramount. A dedicated morning hydration ritual can jumpstart metabolism, rehydrate the brain (which is approximately 75% water), support digestive health, and aid in flushing metabolic byproducts accumulated overnight.⁴⁷

To establish this habit, particularly when a strong coffee routine already exists, behavioral strategies are key:

- Environmental Cues & Placement: The simplest and often most effective strategy is to keep a water bottle or glass of water at the bedside.⁴⁷ This makes water the first and most accessible option upon waking.
- **Habit Stacking:** This technique involves linking the new desired behavior (drinking water) to an existing, ingrained habit *before* the coffee cue.⁴⁷ For example, the new sequence could be: "After I turn off my alarm, I will drink a full glass of water, and *then* I will proceed to make my coffee." Alternatively, one could

drink water while waiting for the coffee to brew.⁴⁷

- Gradual Approach (If reducing coffee is also a goal): While the primary focus here is *preceding* coffee with water, if caffeine reduction is desired, it should be done slowly to minimize withdrawal symptoms like headaches.⁵¹ This might involve gradually replacing a portion of caffeinated coffee with decaf, then herbal tea, and eventually more water.⁵¹
- Enhance Water Palatability: To make the morning water more appealing, consider adding a squeeze of fresh lemon or lime, a few mint leaves from the garden, or even a tiny pinch of unrefined sea salt to provide trace electrolytes.⁴⁵
- **Set Initial Reminders:** In the early stages of habit formation, a dedicated alarm or phone reminder specifically for "morning water" can be beneficial.⁴⁸
- Volume: Aim for a substantial intake, such as 12-16 ounces (approximately 350-500ml) of water upon waking.⁴⁷

This "Morning Hydration Prime" should be conceptualized not merely as "drinking water" but as a deliberate, preparatory act, conditioning the body for the unique physiological demands of the day: intense heat, strenuous exertion, an extended fasting period under OMAD, and the ongoing processing of a significant protein load. This reframing elevates the perceived importance and utility of the ritual. A potential structure for this ritual could involve: (1) Having water readily available at the bedside. (2) Upon waking, sitting up and consuming the pre-determined volume of water (optionally enhanced with lemon or a pinch of salt). (3) Engaging in a few minutes of gentle stretching or mindfulness as the water begins to absorb. (4) *Only then* proceeding with the coffee-making routine. This sequence creates a deliberate pause and a new, positive habit loop before the highly ingrained coffee habit is engaged.

For this specific gardener, the morning hydration ritual carries additional significance. It provides immediate fluid support for the kidneys, which may be actively processing urea from a substantial protein meal consumed the previous evening (linking back to the discussion in Section II.B). This direct physiological rationale—addressing a specific need created by the unique dietary pattern—can serve as a powerful motivator for adhering to the new habit, transforming it from a generic wellness tip into a targeted self-care intervention.

C. Enhancing Hydration Adherence & Efficacy

Beyond foundational strategies and morning rituals, several ongoing practices can improve both the consistency and effectiveness of hydration throughout the demanding workday.

1. From the Garden to Your Bottle: Creative Infusions to Elevate Water Palatability

and Electrolyte Content

If plain water becomes monotonous, leading to reduced intake, enhancing its palatability with natural infusions can be a valuable strategy.⁴⁸ Using fresh ingredients, many of which can be sourced directly from the garden, can add appealing flavors and a minor complement of electrolytes and vitamins without introducing significant calories, making them generally compatible with the OMAD fasting window.

Suitable Garden Ingredients for Infusion:

- Herbs: Mint, basil, rosemary, lavender, thyme, sage, lemon verbena, parsley, and cilantro are excellent choices. Bruising the leaves gently before adding them to water helps release their aromatic oils and flavors.⁴⁵
- Fruits: Slices or zest of lemon, lime, cucumber, or orange can provide a refreshing tang. Berries (strawberries, raspberries, blueberries) and small pieces of watermelon or apple can also be used. If strict adherence to zero calories during the fast is paramount, using only the peels or zest of citrus fruits, or very small quantities of fruit, is advisable. Slightly mashing fruit before infusion can enhance flavor release.³⁷
- Vegetables: Slices of cucumber or celery, or even thin carrot ribbons, can add subtle freshness.³⁷

Preparation and Use:

Simply add the chosen ingredients to a pitcher, water bottle, or jar, top with filtered water, and allow it to sit, preferably refrigerated, for at least an hour to allow the flavors to meld.46 The longer it infuses, the more pronounced the flavor will become. Infused waters can often be refilled with fresh water multiple times throughout the day, adding more ingredients as needed.46 Some appealing combinations include cucumber with mint, strawberry with lemon and basil, grapefruit with rosemary, or even apple with a cinnamon stick.46 It is important to maintain perspective: while these infusions make water more enjoyable and may contribute trace micronutrients, they provide minimal electrolytes compared to the substantial amounts lost through sweat during intense labor. They should be viewed as an *adjunct* to enhance water intake, not as a replacement for targeted electrolyte solutions when significant losses occur.

The act of harvesting small quantities of herbs or fruits directly *from the garden* for the specific purpose of water infusion can create a positive behavioral feedback loop. This transforms hydration from a mere necessity into a small, rewarding, garden-centric ritual, strengthening the connection to the habit. Furthermore, while the electrolyte contribution is modest, the various phytochemicals, vitamins (like Vitamin K from cucumbers, folate, Vitamin C from tomatoes), and antioxidants (such as lycopene from tomatoes or beta-carotene from zucchini) present in these fresh

garden ingredients ³⁷ could offer subtle synergistic benefits in combating the oxidative stress associated with intense physical exertion and heat exposure. ⁷ This represents a qualitative benefit extending beyond simple flavor enhancement.

2. Seamless Sipping: Integrating Hydration into the Gardening Workflow

To ensure consistent fluid intake during long hours of gardening and weeding, hydration must become an integrated and almost automatic part of the workflow, rather than an interruption or an afterthought.

Accessibility is Paramount:

- Personal Hydration System: Always have a personal water bottle readily accessible. Insulated bottles are preferable as they keep water cool and more palatable for longer periods in the heat.⁹ For continuous, hands-free access, a hydration pack (e.g., CamelBak style) can be highly effective.¹⁶
- Strategic Water Stations: If carrying a bottle is cumbersome for certain tasks, establish "Hydration Anchor Points" designated spots throughout the garden (e.g., by the compost bin, at the end of each major planting bed, near the tool shed) where larger water containers are kept and regularly refilled. Moving between these points during the natural flow of work becomes an automatic cue to drink. This creates a system integrated with the work environment, reducing reliance on memory alone.

• Task-Associated Hydration Cues (Habit Stacking):

- Link drinking water to specific, recurring gardening tasks.⁴⁹ Examples include:
 - "After weeding one full row, take a predetermined number of sips."
 - "When I stop to sharpen a tool, switch tasks, or walk to a new area, drink."
 - "Each time I empty a bucket of weeds or debris, take a fluid break."
 - A simple rule: "Water the plants, then water yourself."

• Time-Based and Environmental Reminders:

- Utilize a watch or phone with interval alarms set for every 15-20 minutes as a backup reminder.¹⁶
- Mark personal water bottles with hourly consumption goals (e.g., "Drink to this line by 10:00 AM").
- The position of the sun can serve as a rough, naturalistic cue (e.g., "When my shadow shortens to X length, or when the sun clears that large tree, it's time for a water break").

• Ergonomic Considerations:

 While not direct hydration tools, using ergonomic garden tools, such as garden carts to transport tools and supplies, can also facilitate carrying larger water containers with less effort.⁵³ Tool belts or specialized gardening aprons with built-in water bottle holders can keep personal hydration within immediate reach.

• Workflow Integration and Dynamic Adaptation:

- Pre-Task Hydration: Consciously drink before commencing a particularly strenuous or prolonged task.
- Post-Task Hydration: Replenish fluids immediately after completing a demanding segment of work.
- Scheduled Breaks in Shade: Combine essential rest periods with cooling and dedicated hydration. OSHA guidelines emphasize the importance of cool, shaded rest areas for workers in hot environments.⁹
- The gardener should evaluate which tasks are most dehydrating (e.g., heavy digging in full sun versus light pruning in a shaded area) or typically occur during the hottest parts of the day. Hydration cues and frequency should be dynamically adjusted, with more aggressive hydration linked to these higher-demand periods. For instance, a rule might be "drink every 10 minutes during active digging in direct sun" versus "every 30 minutes during detail-weeding in a cooler, shaded spot." This creates a responsive and efficient hydration plan tailored to the varying intensities within the workday.

D. Strategic OMAD Meal Composition for Next-Day Hydration Resilience

The single daily meal within an OMAD regimen carries the critical responsibility of not only providing calories and macronutrients for recovery and energy but also aggressively replenishing fluids and electrolytes lost throughout the day. Furthermore, it must aim to pre-load the body with these essential components to support physiological demands, especially for sodium, potassium, and magnesium, in anticipation of the *next* day's work.

• Fluid Content within the Meal: While the primary fluid consumed with the meal should be water or an ORS, incorporating water-rich foods can contribute to overall hydration. For a predominantly meat and protein meal, this might be more challenging than for other dietary patterns, but options like including a large serving of high-water, low-carbohydrate vegetables (e.g., cucumber, celery, tomato salad) on the plate can increase the meal's fluid volume.³⁷ If the OMAD meal is consumed after the day's work, some research suggests that carbohydrate intake during recovery from exertional heat stress can ameliorate intestinal injury and permeability more effectively than protein alone, and also supports endotoxin clearance.⁵⁴ This might warrant consideration for including a source of complex carbohydrates in the OMAD meal, if compatible with the gardener's overall dietary philosophy.

• Electrolyte Focus:

- Sodium: This is the most critical electrolyte to replenish aggressively via the OMAD meal, as it's the primary opportunity for substantial intake. Strategies include:
 - Liberal salting of food during preparation.
 - Choosing protein sources that are inherently saltier (e.g., some cured or brined meats, though whole, unprocessed foods are generally preferred).
 - Consuming a dedicated electrolyte drink or a homemade ORS concurrently with the meal. Meal breaks are emphasized as crucial for salt intake.
- Potassium: Many protein sources, such as meat and fish, naturally contain potassium. This can be supplemented by including potassium-rich vegetables if they are part of the OMAD meal (e.g., spinach, avocado, or even a small serving of sweet potato if the diet allows).³⁹
- Magnesium: Found in nuts, seeds, and legumes (if these are incorporated into the "protein" portion of the meal), as well as some meats and green leafy vegetables.
- Nutrient Density and Quality: The OMAD meal must be exceptionally nutrient-dense to meet all micronutrient requirements within a single eating occasion.²¹ Prioritizing whole, unprocessed foods is essential.²⁴ Adequate protein is necessary for muscle repair and maintenance ⁵⁶, but the increased water demand associated with its metabolism must be continually addressed.³³

Given the extreme electrolyte losses anticipated and the constrained window for repletion, the OMAD meal should aim for a slight *overcompensation* of electrolytes, particularly sodium. This strategy seeks to build a small reserve to buffer against losses during the initial hours of the following workday, before active hydration efforts can fully catch up. This means consciously adding more salt to food than might be typical for taste alone or ensuring the consumption of a concentrated electrolyte beverage with the meal. This proactive approach can enhance physiological resilience for the subsequent period of fasting and exertion.

Furthermore, evaluating food choices and preparation methods for their "hydration potential" can be beneficial. Opting for meat and protein sources cooked in ways that retain moisture (e.g., stews, braises, if culturally and dietarily acceptable) rather than very dry cooking methods can make a difference. As mentioned, incorporating high-water, low-carbohydrate vegetables like celery or cucumber directly onto the OMAD plate, rather than relying solely on grazing, increases the overall fluid volume of the meal without significantly altering its high-protein, OMAD character. This holistic

optimization of the entire meal event, not just the accompanying beverage, contributes to better hydration.

E. Advanced Self-Monitoring and Adaptation

To truly personalize and optimize a summer hydration strategy, particularly under such demanding conditions, the gardener must engage in diligent self-monitoring and be prepared to adapt their plan dynamically.

- Urine Color Assessment: Regularly checking urine color is a practical and widely recommended method for gauging hydration status.10 Pale, clear urine (like light lemonade) generally indicates good hydration, while darker yellow or amber urine signals a need for increased fluid intake.10 It is advisable to use validated urine color charts (e.g., the Armstrong 8-color chart, Wardenaar 7-color chart, or Wardenaar 3-color lavatory chart) and adhere to correct assessment methods for improved accuracy.62 The first urine void of the morning provides a good overall indication of baseline hydration status.14 However, it is crucial to be aware of potential confounders that can affect urine color independently of hydration status. These include the intake of B-vitamins (which can turn urine bright yellow), consumption of certain foods like beets (which can impart a reddish hue), some medications, and even a very high protein diet (which can sometimes lead to darker urine if fluid intake is borderline).61 Lighting conditions during assessment and the method of collection can also influence perception.62 The gardener must learn to interpret their urine color in the context of these potential influences, establishing what their normal hydrated urine color looks like, considering any regular supplements or dietary factors. For instance, if B-vitamins consistently cause bright yellow urine when known to be well-hydrated, then a shift towards a duller, darker yellow or orange would still be a significant indicator of dehydration, rather than simply assessing against a "pale straw" ideal.
- Body Weight Monitoring: Tracking body weight changes by weighing before and after work sessions can provide a quantitative estimate of sweat loss. A loss of one pound of body weight is roughly equivalent to a fluid loss of two cups (approximately 16 ounces or 500ml).¹⁰ The goal should be to minimize body weight loss during work to less than 2% of starting body weight, as losses exceeding this threshold are associated with performance decrements.¹⁴
- **Frequency of Urination:** A noticeable decrease in the frequency of urination throughout the day can be an indicator of inadequate fluid intake.¹³
- Subjective Sensations (Beyond Thirst): Continuously paying attention to the subtle early warning signs of dehydration discussed in Section I.C (e.g., fatigue,

- changes in focus or mood, dry mouth) is essential for early intervention.¹⁹
- Field-Expedient Sweat Sodium Loss Estimation: While not laboratory-precise, certain qualitative observations can help the gardener gauge if they are a "salty sweater" and thus may require more aggressive sodium repletion ⁶:
 - Visible white, salty residue on skin or clothing after sweat evaporates (more noticeable in dry air).
 - Sweat that tastes distinctly salty or stings the eyes or any open cuts/grazes.
 - Experiencing dizziness or a head rush when standing up quickly after prolonged exercise (a sign of orthostatic hypotension, potentially linked to fluid/sodium loss).
 - A tendency to suffer from muscle cramps during or after long periods of sweating.
 - Consistently feeling unusually unwell or performing poorly after exercising in the heat.
 - o A strong craving for salty foods during or after exertion.
- Dynamic Adaptation and Personalized Logging: The most effective hydration strategy is one that is dynamic and responsive. Fluid and electrolyte intake should be adjusted daily based on the results of self-monitoring, the anticipated intensity and duration of work, prevailing weather conditions (ambient temperature, humidity, solar load 1), and individual physiological responses. To facilitate this, the gardener could create and maintain a simple daily hydration log. This log could track key variables such as morning urine color, pre- and post-work body weight (even if done periodically rather than daily), estimated volume and type of fluid/electrolyte intake, a brief description of the day's work intensity and weather conditions, and subjective notes on energy levels, focus, and thirst. Over time, analyzing this data would reveal personal patterns (e.g., "On very hot days involving heavy digging, I typically lose X pounds and require Y liters of fluid with Z amount of electrolytes to maintain pale urine the next morning and feel well"). This data-driven approach allows for the progressive refinement of a truly personalized hydration plan, moving beyond general guidelines to a strategy optimized for their unique circumstances.

IV. Conclusion and Recommendations

The gardener/landscaper operating under the combined stressors of strenuous summer labor, a raw vegetable grazing habit, and a high-protein OMAD dietary regimen faces a uniquely complex hydration challenge. Standard hydration advice is insufficient; a highly individualized, analytical, and proactive approach is imperative not only for maintaining daily performance and well-being but also for safeguarding

long-term health, particularly kidney function.

Key Synthesized Conclusions:

- Elevated and Compounded Dehydration Risk: The confluence of high sweat
 rates from intense physical work in heat, the diuretic potential of a ketogenic state
 induced by OMAD, and the increased water demand for processing a large, single
 protein meal creates an exceptionally high baseline risk for dehydration and
 electrolyte imbalance.
- 2. **Sodium Repletion is Critical:** While raw vegetable grazing contributes some fluids and non-sodium electrolytes, it fails to address the significant sodium losses from sweat. The OMAD meal and any fluids consumed during the fasting/work window must strategically prioritize sodium replacement to prevent hyponatremia and support physiological function.
- 3. **OMAD Requires Hydration Vigilance:** The 23-hour fasting window inherent in OMAD severely restricts opportunities for fluid and electrolyte intake. This necessitates meticulous planning of fluid consumption throughout the day, potentially involving calorie-free electrolyte solutions during work, and an OMAD meal composition that aggressively replenishes stores.
- 4. **Kidney Health Demands Proactive Management:** The combination of a high, concentrated protein load and the persistent risk of dehydration places considerable strain on the kidneys. Superior and consistent hydration is a non-negotiable kidney-protective measure.
- 5. **Behavioral Strategies are Essential:** Establishing ingrained hydration habits, such as a "Morning Hydration Prime" ritual and task-associated drinking cues, is as crucial as understanding the physiological needs. Enhancing water palatability through natural infusions can support adherence.
- 6. **Self-Monitoring is Key to Personalization:** Due to high inter-individual variability in sweat loss and response to dietary patterns, ongoing self-monitoring (urine color, body weight, subjective symptoms) and dynamic adaptation of the hydration plan are vital for sustained success.

Actionable Recommendations (Level 6 Bloom's - Creating Solutions):

- 1. Adopt a Layered Fluid Intake Strategy:
 - **Baseline:** Continuous sipping of plain water throughout the day (target 3-4+ liters total, adjusted for sweat loss).
 - Work-Period Electrolyte Maintenance: Utilize sugar-free electrolyte powders/tablets (ensuring adequate sodium, potassium, magnesium) mixed in water during all work periods.
 - o OMAD Meal Electrolyte Replenishment: Consume the OMAD meal with a

dedicated electrolyte-rich beverage (e.g., homemade ORS with minimal sugar, or a concentrated electrolyte drink) and be liberal with sodium in food preparation. Aim to slightly overcompensate for daily losses.

2. Implement the "Morning Hydration Prime" Ritual:

 Consume 12-16oz (350-500ml) of water (optionally with lemon/pinch of salt) immediately upon waking, before coffee or any other activity, to rehydrate from sleep and support kidney processing of any overnight urea load.

3. Integrate "Hydration Anchor Points" and Task-Cues into the Garden Workflow:

- Establish fixed water stations in the garden.
- Link sips of water/electrolyte solution to specific, recurring gardening tasks (e.g., finishing a row, changing tools, emptying debris). Set timed reminders as a backup.

4. Optimize the OMAD Meal for Hydration and Electrolyte Resilience:

- Prioritize sodium, potassium, and magnesium-rich components within the high-protein framework.
- Ensure the meal is nutrient-dense and includes high-water-content vegetables on the plate.
- Consider the timing of the meal to minimize overnight kidney load if possible, or be extra diligent with morning pre-hydration.

5. Develop a Personalized Hydration Log:

- Track daily: morning urine color, pre/post-work weight (periodically), fluid/electrolyte intake (type and amount), work intensity, weather, and subjective well-being.
- Use this log to identify patterns and fine-tune the hydration strategy over time, creating a truly individualized plan.

6. Recognize and Act on Early Dehydration Cues:

 Be vigilant for subtle signs beyond thirst (fatigue, headache, poor focus, irritability, sugar cravings) and prioritize hydration when these occur, especially during summer work.

7. Prioritize Kidney Health:

- Maintain exceptional hydration consistently as a primary kidney-protective measure.
- Consider periodic consultation with a healthcare provider for kidney function monitoring, given the unique combination of dietary and occupational stressors.

By systematically evaluating the distinct physiological challenges and creatively implementing these tailored strategies, the OMAD gardener can build a resilient

hydration architecture that supports both high-level performance in demanding summer conditions and long-term physiological well-being. This requires a commitment to understanding one's own body, diligent self-monitoring, and the consistent application of evidence-informed practices.

Works cited

- Sweating Rate and Sweat Sodium Concentration in Athletes: A Review of Methodology and Intra/Interindividual Variability - PubMed Central, accessed June 4, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC5371639/
- 2. Sweat rate and sodium loss during work in the heat PMC PubMed Central, accessed June 4, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC2267797/
- SWEAT TESTING METHODOLOGY IN THE FIELD: CHALLENGES AND BEST PRACTICES - Gatorade Sports Science Institute, accessed June 4, 2025, https://www.gssiweb.org/docs/default-source/sse-docs/baker_sse_161.pdf?sfvrsn=2
- 4. The Basics of Equine Nutrition, accessed June 4, 2025, https://esc.rutgers.edu/fact_sheet/the-basics-of-equine-nutrition/
- 5. FS038: The Basics of Equine Nutrition (Rutgers NJAES) New Jersey Agricultural Experiment Station, accessed June 4, 2025, https://njaes.rutgers.edu/fs038/
- How to estimate how much sodium you lose in your sweat Precision Hydration, accessed June 4, 2025, https://www.precisionhydration.com/performance-advice/hydration/how-to-estimate-sweat-salt-loss/
- 7. Heat Acclimation Physiopedia, accessed June 4, 2025, https://www.physio-pedia.com/Heat Acclimation
- 8. 5 Dehydration Risks in Demanding Work Environments PREPD Hydration, accessed June 4, 2025, https://prepdhydration.com.au/blogs/hydration/5-dehydration-risks-in-demanding-work-environments
- A Guide for Outdoor Workers Staying Hydrated Mod Advisor, accessed June 4, 2025, https://www.modadvisor.com/articles/-staying-hydrated-a-guide-for-outdoor-workers
- Exercise the low-down on hydration | Better Health Channel, accessed June 4, 2025, https://www.betterhealth.vic.gov.au/health/healthyliving/Exercise-the-low-down-on-water-and-drinks
- 11. Dehydration: Symptoms & Causes Cleveland Clinic, accessed June 4, 2025, https://my.clevelandclinic.org/health/diseases/9013-dehydration
- 12. 6 Unusual Symptoms of Dehydration and Tips to Stay Hydrated Everyday Health, accessed June 4, 2025, https://www.everydayhealth.com/news/unusual-signs-of-dehydration/
- 13. Dehydration Symptoms & causes Mayo Clinic, accessed June 4, 2025, https://www.mayoclinic.org/diseases-conditions/dehydration/symptoms-causes/s

<u>vc-20354086</u>

- 14. Hydrate Right Academy of Nutrition and Dietetics, accessed June 4, 2025, https://www.eatright.org/fitness/physical-activity/exercise-nutrition/hydrate-right
- 15. Sports and Hydration for Athletes: Q&A with a Dietitian | Johns ..., accessed June 4, 2025,
 - https://www.hopkinsmedicine.org/health/wellness-and-prevention/nutrition-and-fitness/sports-and-hydration-for-athletes
- 16. Hydration for Outdoor Enthusiasts: What You Need to Know ..., accessed June 4, 2025,
 - https://www.sqwincher.com/2025/03/05/hydration-for-outdoor-enthusiasts-what-you-need-to-know/
- 17. What Is the OMAD Diet and Is it Safe? EatingWell, accessed June 4, 2025, https://www.eatingwell.com/article/8037164/what-is-the-omad-diet-is-it-safe/
- 18. How to Maintain Proper Worker Hydration SlateSafety, accessed June 4, 2025, https://slatesafety.com/how-to-maintain-proper-worker-hydration/
- 19. Hydration Assessment of Athletes Gatorade Sports Science Institute, accessed June 4, 2025, https://www.gssiweb.org/sports-science-exchange/article/sse-97-hydration-assesment-of-athletes
- 20. What eating one meal a day does to your body and what results can you see after a month? Yahoo, accessed June 4, 2025, https://www.yahoo.com/lifestyle/eating-one-meal-day-does-100000175.html
- 21. The OMAD Diet: Fab or Fad? Benefits & Risks Of Eating One Meal A Day Megawecare, accessed June 4, 2025, https://www.megawecare.com/good-health-by-yourself/nutrition/one-meal-a-day-omad-diet
- 22. What is O.M.A.D. Diet and How It Can Cause Havoc On Your ..., accessed June 4, 2025, https://www.realfit.com.au/what-is-omad-diet
- 23. The Ultimate Guide to OMAD: One Meal a Day | Cosmo Appliances, accessed June 4, 2025,
 - https://cosmoappliances.com/the-ultimate-guide-to-omad-one-meal-a-day/
- 24. What Is OMAD Diet? Know How It Works, Benefits, Challenges And Risks Zee News, accessed June 4, 2025, https://zeenews.india.com/health/what-is-omad-diet-know-how-it-works-benefits-challenges-and-risks-2881483
- 25. What Happens When You Eat One Meal A Day? Rupa Health, accessed June 4, 2025.
 - https://www.rupahealth.com/post/what-happens-when-you-eat-one-meal-a-day
- 26. OMAD Diet: A Dietitian's Opinion Darwin Nutrition, accessed June 4, 2025, https://www.darwin-nutrition.fr/en/advice/omad/
- 27. OMAD Diet What Is It and How Does It Work? BeKeto UK, accessed June 4, 2025, https://beketo.uk/omad-diet/
- 28. Karan Johar's weight loss plan helped him lose 20kgs: What is 'OMAD', who should follow it and 5 tweaks that make it work better | Times of India, accessed June 4, 2025,

- https://timesofindia.indiatimes.com/life-style/health-fitness/weight-loss/karan-johars-weight-loss-plan-helped-him-lose-20kgs-what-is-omad-who-should-follow-it-and-5-tweaks-that-make-it-work-better/articleshow/120994652.cms
- 29. Keeping Workers Well-Hydrated OSHA, accessed June 4, 2025, https://www.osha.gov/sites/default/files/publications/OSHA4372.pdf
- 30. OMAD+B: A Guide to Sustainable Intermittent Fasting healthwords.ai, accessed June 4, 2025,
 - https://www.healthwords.ai/us/explore/article/content/omadb-the-sustainable-answer-to-intermittent-fasting-468
- 31. Fasting: Molecular Mechanisms and Clinical Applications PMC PubMed Central, accessed June 4, 2025, https://pmc.pcbi.plm.pib.gov/articles/PMC3946160/
 - https://pmc.ncbi.nlm.nih.gov/articles/PMC3946160/
- 32. Human Body's Hidden Power of Adaptation During Prolonged Fasting BIOENGINEER.ORG, accessed June 4, 2025, https://bioengineer.org/human-bodys-hidden-power-of-adaptation-during-prolonged-fasting/
- 33. On A High Protein Diet? Here's Why You Need To Increase Your ..., accessed June 4, 2025, https://www.netmeds.com/health-library/post/on-a-high-protein-diet-heres-why-you-need-to-increase-your-water-intake
- 34. The Effects of High-Protein Diets on Kidney Health and Longevity PMC, accessed June 4, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC7460905/
- 35. Do High Protein Diets Impact Kidney Health? Kerry Health And Nutrition Institute, accessed June 4, 2025, https://khni.kerry.com/news/protein-exercise-performance/do-high-protein-diets-impact-kidney-health/
- 36. News It's Summertime, Beware of Heat Illness | National Kidney Foundation, accessed June 4, 2025, https://www.kidney.org/news-it-s-summertime-beware-heat-illness
- 37. Which Are the Top Foods With High Water Content? These 18 Fruits and Vegetables Provide the Most Hydration GoodRx, accessed June 4, 2025, https://www.goodrx.com/well-being/diet-nutrition/fruits-and-vegetables-that-hydrate-you
- 38. Foods To Help Keep You Hydrated This Summer Cleveland Clinic Health Essentials, accessed June 4, 2025, https://health.clevelandclinic.org/hydrating-foods
- 39. Electrolytes in food: Foods high in electrolytes MedicalNewsToday, accessed June 4, 2025, https://www.medicalnewstoday.com/articles/electrolytes-food
- 40. 20 Foods High in Electrolytes to Support Hydration Health, accessed June 4, 2025, https://www.health.com/foods-with-electrolytes-8349000
- 41. Sodium In Fruits & Vegetables Have A Plant, accessed June 4, 2025, https://fruitsandveggies.org/blog/best-of-sodium/
- 42. Hydration Tips for Outdoor Activities | Cal OES News CA.gov, accessed June 4, 2025, https://news.caloes.ca.gov/hydration-tips-for-warmer-weather/
- 43. med.virginia.edu, accessed June 4, 2025,

- https://med.virginia.edu/ginutrition/wp-content/uploads/sites/199/2023/12/Homemade-Oral-Rehydration-Solutions-11-2023.pdf
- 44. Gardening and Dehydration: How to Stay Hydrated Hydrant, accessed June 4, 2025,
 - https://www.drinkhydrant.com/blogs/news/gardening-and-dehydration-how-to-stay-hydrated
- 45. What Can You Do to Make House Water Taste Better? Huft Home Services, accessed June 4, 2025, https://hufthomeservices.com/what-can-you-do-to-make-house-water-taste-be tter/
- 46. Infused Waters to Keep You Hydrated this Summer | Tasty Yummies ..., accessed June 4, 2025, https://tasty-vummies.com/infused-waters-to-keep-you-hydrated-this-summer/
- 47. Morning Routines for Success: Simple Habits to Boost Your Health ..., accessed June 4, 2025, https://careand.ca/post/morning-routines-for-success-simple-habits-health-productivity/
- 48. How to Drink More Water | Take Care by Hers, accessed June 4, 2025, https://www.forhers.com/guides/how-to-drink-more-water
- 49. How to Change Your Life Through Habit Stacking THE SAGE, accessed June 4, 2025, https://blog.gardenuity.com/habit-stacking/
- 50. Is Gardening Good Exercise? 5 Physical Benefits to Know Vitacost, accessed June 4, 2025, https://www.vitacost.com/blog/is-gardening-good-exercise/
- 51. How To Quit Caffeine Without The Headache | Henry Ford Health Detroit, MI, accessed June 4, 2025, https://www.henryford.com/blog/2024/09/how-to-quit-caffeine-without-the-headache
- 52. Tips for gardening in extreme heat | OSU Extension Service, accessed June 4, 2025, https://extension.oregonstate.edu/news/tips-gardening-extreme-heat
- 53. Ergonomic Solutions for Home Gardeners YouTube, accessed June 4, 2025, https://www.youtube.com/watch?v=an8q32R7FQo
- 54. Carbohydrate and protein intake during exertional heat stress ..., accessed June 4, 2025, https://pubmed.ncbi.nlm.nih.gov/28777927/
- 55. Beginner's 7-Day One Meal a Day (OMAD) Diet Plan for Weight Loss Delicut, accessed June 4, 2025, https://delicut.ae/blogs/7-day-one-meal-a-day-diet-plan-for-beginners
- 56. 2025 Secrets: How to Lose Weight Eating One Meal a Day Without Feeling Deprived, accessed June 4, 2025, https://boothcook.com/topics/2025-secrets-how-to-lose-weight-eating-one-am-kk8ow-meal-a-day-without-feeling-deprived/
- 57. OMAD Diet Guide: How It Works, Rules & 7-Day Meal Plan ToneOp Eats, accessed June 4, 2025, https://toneopeats.com/blogs/omad-diet-guide
- 58. Karan Johar reveals he lost 20 kgs with the OMAD (One Meal a Day) Diet. Exploring its advantages and disadvantages | Times of India, accessed June 4, 2025,

- https://timesofindia.indiatimes.com/life-style/health-fitness/karan-johar-reveals-he-lost-20-kgs-with-the-omad-one-meal-a-day-diet-exploring-its-advantages-and-disadvantages/articleshow/121307821.cms
- 59. Impact of Intermittent Fasting Combined With High ... Frontiers, accessed June 4, 2025, https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2022.884305/fu
- 60. The One Meal a Day Diet: Advantages, Drawbacks, and More TruePal, accessed June 4, 2025, https://thetruepal.com/blog/weight-loss-program/omad-diet-benefits-risks-meal-plan
- 61. Healthy Hydration for Outdoor Activity, accessed June 4, 2025, <a href="https://cales.arizona.edu/backvards/sites/cals.arizona.e
- 62. How to Accurately Assess Hydration Status Using Urine Color ..., accessed June 4, 2025,
 - https://www.hprc-online.org/nutrition/performance-nutrition/how-accurately-assess-hydration-status-using-urine-color-charts