
WordPress Playground

—ToC pattern—

How to use WordPress Playground for handovers

What will you build?
Create the Blueprint
Test the Blueprint
Use the JavaScript API
Your turn

—ToC pattern—

How to use WordPress Playground for interactive
demos

Learn how to spin a live site that
demonstrates a custom plugin, a theme
adapted to feature it, and a concise manual
for users—no server needed

By Ronny Shani

WordPress Playground’s JavaScript API is a developer-oriented tool that opens a
new world of possibilities. Supporting elaborate standalone instances makes it

None

particularly effective for showcasing a theme or a plugin (or both) and
preparing WordPress guides that go beyond textual documentation to provide a
layer of interactivity.

If you’re not familiar with Playground, start by reading the previous article:
Introduction to Playground: running WordPress in the browser. To make the
most of this tutorial, you’d need to understand the modularity of the three APIs
that power Playground and how they allow you to share themes, plugins, and
even complete websites—content included.

What will you build?

The project is inspired by a common use case: demonstrating how a custom
plugin coupled with a theme adapted to feature it looks and functions together.
This scenario requires a manual that instructs users how and where to set the
data displayed in the plugin’s custom fields. Using Playground to spin up a live
site with an extra step-by-step guide makes the experience much more
engaging.

├── playground
│ ├── zips
│ │ ├── blue-note.zip
│ │ ├── meta-block-sidebar.zip
│ ├── blueprint.json
│ ├── index.html
├── plugins
│ │ ├── meta-block-sidebar
│ │ │ ├── PLUGIN FILES...
├── themes
│ │ ├── blue-note
│ │ │ ├── THEME FILES...
├── README.md

You can find the code on the GitHub repository created to accompany this
tutorial. The project includes the theme and plugin source files, as well as

https://developer.wordpress.org/news/2024/04/05/introduction-to-playground-running-wordpress-in-the-browser/
https://github.com/wptrainingteam/playground-demo-handover

JavaScript

compressed files used by Playground. Either clone or create it manually before
you continue.

Create the Blueprint

Let’s start with the cornerstone of every Playground project: the
blueprint.json file. If you haven’t cloned the repository, copy and paste
the following code into your file:

{
 "$schema":
"https://playground.wordpress.net/blueprint-schema.json",
 "preferredVersions": {
 "php": "latest",
 "wp": "latest"
 },
 "siteOptions": {
 "blogname": "WordPress Playground Demo"
 },
 "plugins": [
 "create-block-theme",

"https://raw.githubusercontent.com/wptrainingteam/playground-d
emo-handover/main/playground/zips/meta-block-sidebar.zip"
],
 "steps": [
 {
 "step": "installTheme",
 "themeZipFile": {
 "resource": "url",
 "url":
"https://raw.githubusercontent.com/wptrainingteam/playground-d
emo-handover/main/playground/zips/blue-note.zip"
 }
 },
 {
 "step": "runPHP",

 "code": "<?php require_once('/wordpress/wp-load.php');
wp_insert_post(array('post_title' => 'Created by a
Blueprint', 'post_content' => '<!-- wp:paragraph --><p>How do
you update the meta fields?</p><!-- /wp:paragraph --><!--
wp:list --><!-- wp:list-item -->Open the
Settings sidebar by clicking the window icon
next to the blue Update button.<!--
/wp:list-item --><!-- wp:list-item -->Click the
Meta Block Sidebar menu (below the
Summary menu).<!-- /wp:list-item --><!--
wp:list-item -->Type the Team name and
the date the person joined the company in the
respective fields.<!-- /wp:list-item --><!-- wp:list-item
-->Click the blue Update button.<!--
/wp:list-item --><!-- /wp:list -->','post_status' =>
'publish'));"
 }
],
 "features": {
 "networking": true
 },
 "login": true,
 "landingPage": "/?p=4"
}

Let’s take a moment to explain the different steps Playground will perform for
you:

1.​ Once launched, Playground will create a WordPress instance, using the
latest PHP and WordPress versions supported.

2.​ Then, it will rename the site.
3.​ Install and activate two plugins: Create Block Theme (available on the

Plugin Directory and, therefore, fetched using its slug), and the custom
Meta Block Sidebar (available in the same GitHub repository, and,
accordingly, fetched from the relevant URL).

4.​ Install and activate the adapted version of the Blue Note theme (fetching
it from the same GitHub repository).

https://wordpress.org/plugins/create-block-theme/
https://wordpress.org/themes/blue-note/

5.​ Create a post with a step-by-step guide.
6.​ Enable networking mode.
7.​ Log into the site as an Administrator.
8.​ And, finally, open the site displaying the newly created post.

The little user manual packs content and HTML block markup together using
WordPress’ wp_insert_post function. This method works for short
snippets, but it’s wiser to explore Playground’s more robust alternatives:

●​ Importing an XML file using the importWxr step, or
●​ Generating posts via WP-CLI using the eponymous wp-cli step.

ℹ️ Shorthand
The Blueprint in this tutorial takes advantage of Playground’s shorthand
syntax to make this set of instructions less verbose. The following steps are
currently supported: login, plugins, siteOptions, and
defineWpConfigConsts. Check out the documentation to learn more
about how and when to use these instead of explicit steps.

Test the Blueprint

Now would be a good time to pause, experiment, and get comfortable with
Blueprints. Copy the code above and paste it into the official Blueprint editor
(still a WIP). Your instance should be identical to the original demo.

https://developer.wordpress.org/reference/functions/wp_insert_post/
https://wordpress.github.io/wordpress-playground/blueprints-api/steps#ImportWxrStep
https://wordpress.github.io/wordpress-playground/blueprints-api/steps/#WPCLIStep
https://wordpress.github.io/wordpress-playground/blueprints-api/steps-shorthands
https://playground.wordpress.net/builder/builder.html
https://playground.wordpress.net/?mode=seamless#%7B%22$schema%22:%22https://playground.wordpress.net/blueprint-schema.json%22,%22landingPage%22:%22/?p=4%22,%22login%22:true,%22preferredVersions%22:%7B%22php%22:%22latest%22,%22wp%22:%22latest%22%7D,%22siteOptions%22:%7B%22blogname%22:%22WordPress%20Playground%20Demo%22%7D,%22features%22:%7B%22networking%22:true%7D,%22plugins%22:[%22create-block-theme%22,%22https://raw.githubusercontent.com/wptrainingteam/playground-demo-handover/main/playground/zips/meta-block-sidebar.zip%22],%22steps%22:[%7B%22step%22:%22installTheme%22,%22themeZipFile%22:%7B%22resource%22:%22url%22,%22url%22:%22https://raw.githubusercontent.com/wptrainingteam/playground-demo-handover/main/playground/zips/blue-note.zip%22%7D,%22options%22:%7B%22activate%22:true%7D%7D,%7B%22step%22:%22runPHP%22,%22code%22:%22%3C?php%20require_once('/wordpress/wp-load.php');%20wp_insert_post(array(%20'post_title'%20=%3E%20'Created%20by%20a%20Blueprint',%20'post_content'%20=%3E%20'%3C!--%20wp:paragraph%20--%3E%3Cp%3EHow%20do%20you%20update%20the%20meta%20fields?%3C/p%3E%3C!--%20/wp:paragraph%20--%3E%3C!--%20wp:list%20--%3E%3Col%3E%3C!--%20wp:list-item%20--%3E%3Cli%3EOpen%20the%20%3Cstrong%3ESettings%3C/strong%3E%20sidebar%20by%20clicking%20the%20window%20icon%20next%20to%20the%20blue%20%3Cstrong%3EUpdate%3C/strong%3E%20button.%3C/li%3E%3C!--%20/wp:list-item%20--%3E%3C!--%20wp:list-item%20--%3E%3Cli%3EClick%20the%20%3Cstrong%3EMeta%20Block%20Sidebar%3C/strong%3E%20menu%20(below%20the%20%3Cstrong%3ESummary%3C/strong%3E%20menu).%3C/li%3E%3C!--%20/wp:list-item%20--%3E%3C!--%20wp:list-item%20--%3E%3Cli%3EType%20the%20%3Cstrong%3ETeam%20name%3C/strong%3E%20and%20the%20%3Cstrong%3Edate%3C/strong%3E%20the%20person%20joined%20the%20company%20in%20the%20respective%20fields.%3C/li%3E%3C!--%20/wp:list-item%20--%3E%3C!--%20wp:list-item%20--%3E%3Cli%3EClick%20the%20blue%20%3Cstrong%3EUpdate%3C/strong%3E%20button.%3C/li%3E%3C!--%20/wp:list-item%20--%3E%3C/ol%3E%3C!--%20/wp:list%20--%3E','post_status'%20=%3E%20'publish'%20));%22%7D]%7D

To get a concrete sense of the possibilities, try modifying some values right
there in the Blueprint editor—maybe the value of landingPage (replace
/?p=4 with /?p=1) or blogname. If something goes wrong, undo your
changes, fix any errors the editor alerts you to, and hit the Run it button again.

ℹ️ How to load assets in a Blueprint?
Playground needs to be able to access your files to run them. This can be done
in several ways: via your custom domain, a GitHub repository, and more. The
former ostensibly makes more sense, but browser security restrictions mean
you’ll need to handle any Cross-origin resource sharing (CORS) issues on your
server. A faster way to go about it is to use GitHub’s special
raw.githubusercontent.com domain.
To prevent CORS-related errors, make your repository public, and point
Playground to the absolute paths of the files using the following pattern:
https://playground.wordpress.net/?blueprint-url=https
://raw.githubusercontent.com/{USER}/{REPO}/{BRANCH}/P
ATH/TO/FILE.
If your repository is private, you can only access the Playground instance via a
custom domain.

JavaScript

Playground’s in-browser editor is an invaluable tool for testing. It’s also the
fastest way to start adjusting the original sample to your needs. When you feel
confident enough, use it to prototype your project instead of tediously tweaking
the JSON on your local machine, hoping you got everything exactly right.

Feel free to alter the file names and directory structure according to your
project’s theme and plugins—don’t forget to update the file paths and sync
everything to GitHub so the files are available online (see the CORS section
above). Once you’re happy with the result, copy the code over to your
blueprint.json file.

You can share the project using Playground’s Query API. Here’s what the URL of
the example project looks like:
https://playground.wordpress.net/?blueprint-url=https
://raw.githubusercontent.com/wptrainingteam/playgroun
d-demo-handover/main/playground/blueprint.json.

Use the JavaScript API

So far, you haven’t actually tapped into the JavaScript API; let’s see how you can
take advantage of its most powerful feature: initiating the Playground API Client.
Create an index.html file, and copy and paste the following code:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width,
initial-scale=1.0">
 <title>Demo Handover Playground</title>
 <style>
 body {
 display: grid;
 place-items: center;
 background: linear-gradient(deeppink, darkorange);

 }
 header {
 font-size: 1em;
 font-family: monospace;
 display: flex;
 align-items: baseline;
 gap: 1rem;
 }
 iframe#wp-playground {
 width: 100%;
 height: 100dvh;
 border: 2px solid currentColor;
 }
 </style>
 </head>
 <body>
 <header>
 <h1>Playground Demo</h1>
 <p>Source code <a
href="https://github.com/wptrainingteam/playground-demo-handov
er" target="_blank" rel="noopener">on GitHub</p>
 </header>
 <iframe id="wp-playground" title="Playground Demo
Site"></iframe>
 <script type="module">
 import { startPlaygroundWeb } from
'https://playground.wordpress.net/client/index.js';
 const client = await startPlaygroundWeb({
 iframe: document.getElementById('wp-playground'),
 remoteUrl:
`https://playground.wordpress.net/remote.html`,
 blueprint:
 {
 TO-DO: ADD FINAL BLUEPRINT
 },
 });
 </script>
 </body>
</html>

The client object will load inside the iframe via the project’s
remote.html file—the only allowed “endpoint” of this API—and run the steps
provided inside the blueprint variable, leveraging the Blueprint API to
configure the client based on your specific settings.

One of the helpful side effects of using the JavaScript API (instead of loading an
iframe) is that you don’t need to worry about CORS, absolute paths, and
public repositories: the client handles everything—as long as you’ve set the
correct URL. Paste the contents of the blueprint.json file created before,
and feel free to change any preceding HTML markup and CSS styles to match
your needs.

ℹ️ Live testing
Playground’s JavaScript API uses ES Modules, which means you’ll need a local
server to run index.html in the browser. To launch a simple development
server, open the terminal, and type any of the following:
For PHP: php -S localhost:8000
For NodeJS: npx serve

After you upload everything to GitHub and connect the repository to a custom
domain and hosting provider, you can access and share the complete demo via
your domain, pointing to the path of your index.html file
(https://www.example.com/playground/).

This is what the original project looks like:

https://wordpress.github.io/wordpress-playground/javascript-api/index-html-vs-remote-html
https://wordpress.github.io/wordpress-playground/javascript-api/blueprint-json-in-api-client
https://wordpress.github.io/wordpress-playground/javascript-api/blueprint-json-in-api-client

Your turn

Now that you’re all set—with both code samples and a deeper understanding of
what each line does—it’s time to create your project: Upload your own modified
theme or bespoke plugin, think about how to best generate posts, change the
site settings, set up users (and more advanced scenarios) with wp-cli, and
think what else you could do in the HTML-based demo itself.

How about loading multiple instances on the same page, each showing a
different style variation side-by-side? Or, maybe, prepare a live tutorial teaching
how to edit a template page and load a Playground in an iframe below,
asking students to recreate it, and share their results on GitHub (using the
Export Pull Request to GitHub option in the UI)?

The JavaScript API supports much more advanced use cases, so check out the
first part of this series to see what else is possible with Playground, explore the
Blueprints examples, demos, and apps for inspiration, and start playing.

Props to @bph, @zieladam, and @bjmcsherry for reviewing this post.

https://wordpress.github.io/wordpress-playground/javascript-api/index
https://developer.wordpress.org/news/2024/04/05/introduction-to-playground-running-wordpress-in-the-browser/
https://developer.wordpress.org/news/2024/04/05/introduction-to-playground-running-wordpress-in-the-browser/
https://wordpress.github.io/wordpress-playground/blueprints-api/examples
https://wordpress.github.io/wordpress-playground/blueprints-api/examples
https://wordpress.github.io/wordpress-playground/links-and-resources#apps-built-with-wordpress-playground
https://profiles.wordpress.org/bph/
https://profiles.wordpress.org/zieladam/
https://profiles.wordpress.org/bjmcsherry/

	WordPress Playground
	

	How to use WordPress Playground for interactive demos
	What will you build?
	Create the Blueprint
	Test the Blueprint
	Use the JavaScript API
	Your turn

