

Minimal UART CPU System 1.x
by Carsten Herting (slu4)
last update Jul 24th 2022

Manual Rev. 1.x

Welcome to the Minimal CPU System - let’s just call it the ‘Minimal’.
I’ve designed this little computer entirely from TTL logic to be as
enjoyable and educational as I possibly can. It’s made as a learning
platform and to facilitate a deep understanding of the basic
principles of computers. Despite being deliberately simple, this CPU
is powerful enough to “never stop being usable” and more than doubles
the processing power of a Commodore C64 or Apple II. It can run some
serious software including early video game classics like TETRIS, IEEE
32-bit floating point math, a text editor, a native assembler capable
of assembling itself and even a Python-like high-level programming
language.

This document provides a comprehensive step-by-step introduction to
first-time users of the Minimal and at the same time serves as a
reference and programming handbook. See the section ‘CPU Architecture’
for a brief explanation of how it all works.

Have fun and let me know what you think!

Copyright (c) 2021, 2022 Carsten Herting (slu4)
THIS DOCUMENTATION IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THIS
DOCUMENTATION OR THE USE OR OTHER DEALINGS IN THIS DOCUMENTATION.

Board Revisions

There are several revisions of the ‘Minimal’ publicly available:

Revision 1.2 (EEPROM PCB Edition)
 o 1.8432MHz clock speed
 o 8KB ROM, 24KB RAM
 o memory-mapped UART I/O
 o not software-compatible to higher revisions

1

Revision 1.3 (FLASH PCB Edition)

​ o 1.8432MHz clock speed
 o 32KB FLASH SSD, 32KB RAM
 o dedicated UART I/O instructions
 o fully software-compatible to revision 1.5

Revision 1.5 (Expanded PCB Edition)

​ o selectable clock speed up to 3.6864MHz
 o 512KB FLASH SSD, 32KB RAM

​ o dedicated UART I/O instructions
​ o expansion port and selectable clock speed

Redux Breadboard Revision 1.6 (aka Beast Mode Edition)
​ same as revision 1.5 except for:

 o 8.3MHz maximum clock speed
 o improved microcode efficiency
 o runs all software of revision 1.3 - 1.5

​ o optimized for breadboards and lowest chip count

Earlier breadboard prototypes no longer exist (revisions 0.9 and 1.0).
PCB revisions 1.1 and 1.4 represent internal validation steps.

This text applies to board revisions 1.5 and higher, although from 1.3
onwards, all revisions are software-compatible. A cycle-exact emulator
of revision 1.5 is available on Windows (see chapter ‘Emulator’).

Building the Hardware

Step 1. I have documented the development of the 'Minimal CPU System'
on my YouTube channel:
www.youtube.com/channel/UCXYQcMpUBT3aaQKfmAVJNow
● Humble beginnings:
www.youtube.com/playlist?list=PLYlQj5cfIcBVRMsr9yxHmvCzMqonI6O6N
● ‘Minimal’ is taking shape:
www.youtube.com/playlist?list=PLYlQj5cfIcBU5SqFe6Uz4Q31_6VZyZ8h5
● Build information on revision 1.5 (Expanded Edition):
www.youtube.com/watch?v=osVi06VKvA0
● Build information on revision 1.6 (Breadboard Redux Edition):
https://www.youtube.com/watch?v=Gz1VVOsNn_8

There is also a discussion board where you can engage with other
‘minimalists’ to get some help or browse through different builds:
https://minimal-cpu-system.boards.net/

2

http://redirect.viglink.com?key=71fe2139a887ad501313cd8cce3053c5&subId=7215060&u=https%3A//www.youtube.com/channel/UCXYQcMpUBT3aaQKfmAVJNow
http://www.youtube.com/playlist?list=PLYlQj5cfIcBVRMsr9yxHmvCzMqonI6O6N
http://www.youtube.com/playlist?list=PLYlQj5cfIcBU5SqFe6Uz4Q31_6VZyZ8h5
https://www.youtube.com/watch?v=osVi06VKvA0
https://www.youtube.com/watch?v=Gz1VVOsNn_8
https://minimal-cpu-system.boards.net/

All build information is contained in the Minimal’s GitHub repository:
https://github.com/slu4coder/Minimal-UART-CPU-System
This is what you'll find:
● KiCAD project files with detailed schematics and PCB layout
● PCB Gerber files and bill of materials (BOM)
● Source code of all programs available for the Minimal
 These programs can be assembled and uploaded either on real
 hardware or into the ‘Minimal Emulator’.
● Binary images of the FLASH memory (OS, demos and games) and
 the CPU's control microcode
● Cross-assembler executable (Windows) to write your own programs
● Cross-assembler written in Python
 www.youtube.com/watch?v=rdKX9hzA2lU
● Emulator executable simulating the Minimal cycle-exactly

Step 2. Download the GitHub repository. If you want to go for the PCB
version, send the Gerber files over to a PCB manufacturer of your
liking. Going for the breadboard version you will need 8 good-quality
65-row breadboards as shown below (point-to-point resistance <1 Ohm is
recommended), around 240 jumper wires plus some longer connections and
lots of smaller bits and pieces of wire.

Step 3. Shop for all the parts needed (see bill of materials).
Depending on the region you live in, this may be either very easy or
quite complicated. Almost all parts are pretty standard, though.

Step 4. Assembly! It usually takes about 2-3 hours of soldering .
Since I have deliberately used old-school through-hole parts and DIL
IC packages, soldering can easily be done by hand.
The 74HCxx IC family is susceptible to ESD damage, so it’s a good idea
to ensure proper grounding of your workspace before you start. The
result on PCB should look something like this:

3

https://github.com/slu4coder/Minimal-UART-CPU-System
https://www.youtube.com/watch?v=rdKX9hzA2lU

If you go for the breadboard version, plan around 6 hours of build
time. Any mistake will be a pain to track down. So carefully
double-check every connection.

Step 5. Burn the FLASH images (Control FLASHs and the OS/SSD FLASH).
If you do not own a FLASH EEPROM programmer I recommend building my
DIY version: www.youtube.com/watch?v=2crXqNlBazg

Step 6. Get a 5V output USB-to-serial breakout board. Not all boards
share the same pinout. My board here is based upon the IC FT232. From
bottom to top the pins are labeled GND, CTS, 5V, TXD, RXD and DTR (not
used).

Step 7. Read the section ‘Before Power-Up’ of this document before
connecting the PCB to your PC.

Before Power-Up

Select the Minimal's clock speed divider (applies to revision 1.5
only) by placing a jumper horizontally on exactly one of the rows of
the 5x2 pin header on the bottom right of the PCB. If you are using a
3.6864MHz crystal you can use any jumper position. If you are using a
7.3728MHz crystal the smallest divide you can select is 2, since the

4

http://redirect.viglink.com?key=71fe2139a887ad501313cd8cce3053c5&subId=7215060&u=https%3A//www.youtube.com/watch%3Fv%3D2crXqNlBazg

maximum CPU clock rate is 3.6864MHz. Let’s for now choose a clock
speed of 1.8432MHz and call this the default speed.

​ 5x2 Divider​ 3.6864MHz Crystal​ ​ 7.3728MHz Crystal
​ ---
​ /1​ |O O|​ 3.6864MHz (230400bps)​​ do not connect

/2​ |O O|​ 1.8432MHz (115200bps)​​ 3.6864MHz (230400bps)
​ /4​ |O O|​ 0.9216MHz (57600bps)​ ​ 1.8432MHz (115200bps)
​ /8​ |O O|​ 0.4608MHz (28800bps)​ ​ 0.9216MHz (57600bps)
​ /16​ |O O|​ 0.2304MHz (14400bps)​ ​ 0.4608MHz (28800bps)

Other oscillator and clock speed combinations are also possible, e. g.
a 16MHz oscillator with a 2MHz (/8) system clock selected will run at
a serial speed of 125kbps. You can even use a manual clock. I
recommend socketing the oscillator for maximum flexibility.

WARNING: “Hot-plugging” the Minimal or ICs of the Minimal can cause
unwanted write operations to the FLASH IC, potentially leading to data
loss, making a re-programming of the FLASH IC necessary.

Always disconnect your USB-to-serial breakout board from the USB port
before plugging it into the Minimal’s UART socket. Make sure that the
GND and 5V lines connect correctly. Verify that the UART TXD (transmit)
line will cross-connect to the breakout board’s RXD (receive) line and
vice versa. Only then connect the USB plug to power (usually a USB port
on your PC).
If you plan to connect to the Minimal UART socket with jumper wires,
always make sure to connect GND *before* connecting any other lines.

Serial Port Configuration

After power-up, the LED should be on. Now is the time to configure the
serial port of your PC. This configuration will look a bit different
in each terminal emulation but generally we need to set the following:

o Set the baud rate to 1/16th of the CPU clock speed you have
 selected. Since we have chosen 1.8432MHz, this is 115200bps.
o Select 1 start bit, 8 data bits, 2 stop bits, no parity
 bits, no flow control, local echo off.
o Set the ‘new line character’ to be LF (0x0a) like in UNIX.
o Set a transmit delay of 35ms/line to ensure that Minimal
 will have enough time to process each input line. The delay
 varies with clock speed (3.6864MHz: 17ms, 230.4kHz: 95ms)
 and also with your host system’s load. Just experiment a bit.
o Set the terminal emulation to 60 x 25 characters and chose a

5

 proper font. I like this C64-style TrueType terminal font:
 https://style64.org/c64-truetype.

In ‘TeraTerm’ on my Windows machine, this will look like this:

NOTE: With a minor modification the Minimal also supports RTS/CTS flow
control. See the appendix for more information.

Boot Monitor

Now press the RESET button in the upper left corner of the PCB. The
Minimal should greet you with the following start screen:

+--+
| MINIMAL CPU SYSTEM 1.5.3 by C. Herting |
| 512KB SSD - 32KB RAM - Type m for menu |
+--+
8000 _

You are now inside the boot monitor. Typing ‘m <ENTER>’ displays the
menu options:

HEX [r] Set A [run]
[A].B Show [A]..B [q]
:C[D] Store C[D] at A..
v A B C Fill A..B with C
k A B C Copy A..B to C..
i A ​ DisAsm A.. [q]
s A B F Save A..B as file F
l file Load file
z file Zap file
n 0..f Set SSD bank
t Show SSD content
w Wipe SSD bank

6

https://style64.org/c64-truetype

Let’s go through them by using examples. By typing any 2-byte HEX
address followed by <ENTER> you can change the address the monitor is
displaying at the start of the input line. The OS only accepts
lower-case letters.
By pressing ‘r <ENTER>’ the monitor will jump to that location and
execute whatever program is located there. Let’s try that by typing:

f000 <ENTER>
r <ENTER>

You should again see the start screen since 0xf000 is the start of the
operating system in RAM. Bring back the menu with m. You can display
the memory content by using the ‘.’ symbol:
​ .f0ff <ENTER>

will display the memory content starting from the current address
(which we have set to 0xf000) until 0xf0ff. You can take a look at
larger sections, too. After each page, the OS waits for a keystroke
before displaying the next page. You can quit by pressing ‘q’. Try

​ 0000.ffff <ENTER>

to display the whole memory content starting at address 0x0000. Let’s
display the memory area at 0x8000 by typing:

​ 8000.801f <ENTER>

This should show something similar (but not identical) to this:

8000 ab 9f e6 6a 28 f7 b6 0a 65 ae 8e f5 73 43 d7 b2
8010 d2 dd ab c6 8f d7 26 f3 8f 0e 08 62 9f 2d c0 ee
8000

since after power-up the RAM is usually filled with random garbage.
Let’s fill the first 16 bytes with zeros by using the ‘fill’ command
‘v’:

​ v 8000 800f 0 <ENTER>
​ 8000.801f <ENTER>

which will now display

8000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
8010 d2 dd ab c6 8f d7 26 f3 8f 0e 08 62 9f 2d c0 ee

7

8000

You can fill larger memory areas, too. Just be a bit careful until you
know the memory layout. There is a copy command ‘k’ as well. Let’s
copy the second row starting from 0x8010 to the first row starting at
0x8000 by typing

​ k 8010 801f 8000 <ENTER>
​ 8000.801f <ENTER>

which will output the result

8000 d2 dd ab c6 8f d7 26 f3 8f 0e 08 62 9f 2d c0 ee
8010 d2 dd ab c6 8f d7 26 f3 8f 0e 08 62 9f 2d c0 ee
8000

as expected. Let’s try to disassemble something. Since the only
program in memory right now is the OS itself at 0xf000, let’s type

​ i f000 <ENTER>

which shows us

f000 JPA f015
f003 JPA f03c
f006 JPA f327
f009 JPA f347
f00c JPA f376
f00f JPA f8bb
f012 JPA f91b
f015 LDI fe
f017 STA ffff

and so on. Press ‘q’ if you have seen enough. Until now, we haven’t
actually changed any memory content. Let’s store some data by using
the ‘:’ command:

​ 8000: 0 1 2 3 4 5 6 7 8 9 a b c d e f <ENTER>

Taking a look at that memory again with ‘8000.800f <ENTER>’ shows

​ 8000 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

8000

We can use that feature to input mnemonics, too. Try the following:

8

​ 8000: INP BEQ 00 80 OUT JPA 00 80 <ENTER>
​ 8000 r <ENTER>

Congratulations! You have just written your first assembler program on
the Minimal. It is reading the UART, printing out any keystrokes
immediately to the screen. Try typing something!

Hello World! ajshkjdahskdjhaskdjhaskd

Okay, we can’t get back to the monitor since our program is running in
an endless loop. Simply press RESET. You don’t have to enter longer
programs by hand of course! Just copy and paste the following
assembled program into your serial terminal:

8000
:0e fe 16 ff ff 0e 13 35 fd 0e 80
:35 fc 38 22 80 14 05 80 48 65 6c
:6c 6f 2c 20 57 6f 72 6c 64 21 0a
:00 34 ff 16 44 80 34 fe 16 45 80
:1d 44 80 11 00 3b 43 80 02 00 00
:00 00 00 00 00 00 2e 44 80 14 2c
:80 39 00 00
8000

and enter ‘r’ for run and you should see this:

Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!

You can use this method to upload any (even very large) programs from
your host computer into the RAM of the Minimal.

Memory Layout

The address space of the Minimal is 16 bits wide and reaches 64KB at
0x0000-0xffff. This address space is expanded to 512KB of FLASH
memory, which can be accessed in 16 chunks of 32KB called banks. The
active bank is controlled by the 4-bit bank register.

0x0000 - 0x7fff 32KB of active FLASH SSD bank
0x0000 - 0x0033 Bank 0: OS boot loader and dummy file header

9

0x0034 - 0x0fff Bank 0: OS image, gets copied to RAM upon RESET
0x1000 - 0x7fff Bank 0: free
0x8000 - 0xffff 32KB of RAM
0xe000 - 0xefff used temporarily by the SSD file system
0xf000 - 0xfeff MinOS operating system
0xfeb0 - 0xfec8 MinOS variables
0xfec9 - 0xfeff MinOS line input buffer
0xff00 - 0xffff 256 bytes of CPU stack
0xffff LSB of stack pointer (SP)

On bank 0 the first 4KB (0x0000-0x0fff) hold a write-protected and
self-loading image of the operating system MinOS. The rest of bank 0
and all other SSD banks can be used for your programs and data.

Upon pressing RESET, the program counter and bank register are set to
zero. The code starting at 0x0000 on bank 0 - the OS bootloader if you
will - copies the OS image into the RAM area 0xf000-0xfeff and then
jumps to 0xf000 into the boot monitor which in turn presents its start
screen.

Please also keep in mind that several of Minimal’s native software
development tools, e. g. the text editor and assembler, make use of
additional memory areas. See section ‘Native Tool Chain’ for more
information.

SSD File System

Although it is possible to access the FLASH memory area directly with
read and write operations as detailed in the datasheet of the
SST39SF040 FLASH, the operating system features a minimalistic file
system that transforms the FLASH EEPROM into a viable SSD drive which
greatly facilitates storing and retrieving your data by offering the
following basic functionality:

SAVE
To save a block of memory to the currently selected SSD bank, type:

s <firstaddr> <lastaddr> <filename> ENTER

<firstaddr> and <lastaddr> denote the memory hex addresses of the
first and last byte to store and <filename> can be a string with a
maximum length of 19 characters. The start address <first> of the data
is stored as part of the file as detailed in the section ‘file
format’.

10

LOAD
To load a saved block of memory back into RAM, just type:

​ l <filename> ENTER

Note that the operating system only searches for the specified
filename within the currently selected SSD bank.

ZAP (DELETE)
In order to delete an existing file, type:

z <filename> ENTER

In case there exist two or more files of the same filename, it is
always the oldest file that is deleted.

TABLE OF CONTENT (DIRECTORY)
To show the content of the currently selected SSD bank, type:

t ENTER

WIPE (FORMAT)
In case you want to format the currently selected SSD bank, type:

w ENTER

All data stored on this SSD bank will be erased.

File Format
Data is stored as a ‘file’ by prepending a file header containing the
following additional information to the data:

​ 20 bytes​ <filename>​​ zero-terminated string
​ 2 bytes​ <address>​ ​ destination address of <data>
​ 2 bytes​ <N>​ ​ ​ byte size of <data>
​ N bytes​ <data>​ ​ data section

Properties
Within one SSD bank, it is possible to have multiple files with
identical names. The file system acts like an upward-growing stack
where the last-written file resides on the top of the stack. Deletion
on the other hand always searches for the oldest occurrence of a given
filename and only deletes this version.
When a file is deleted from the SSD, other files at higher addresses
are moved down within the active SSD bank to close the gap. To

11

accomplish this, the file system uses the RAM area 0xe000-0xefff as a
temporary data buffer.

Assembler Programming

Writing your programs “close to the metal” will yield the fastest
code. And it really helps develop a deep understanding of the inner
workings of a CPU. Depositing byte values or mnemonics at memory
locations - as we have seen above - already allows you to input short
programs. It is much more convenient however, to let an assembler
translate your program into machine code.

Currently there are two cross-platform assemblers and even a native
assembler available for the Minimal. The use of the native assembler
is described in the section ‘Native Tool Chain’. It supports the same
syntax as the cross-platform versions.
Both cross-assemblers are simple command line tools running on your
host PC that let you specify a filename of your source code and that
output machine code to the console. That code will be in a format
matching the ‘set address’ and ‘deposit’ commands of the OS that you
can then cut & paste to the Minimal via a terminal emulation. The
Minimal will “think” that you are just typing very quickly.

Assembler Syntax

The assembler ‘asm.exe’ is written in C++ and runs on Windows whereas
‘asm.py’ runs platform-independently in any Python interpreter. To
assemble a file, just type

asm <file>​​ ​ or​ ​ python asm.py <file>.

The supported basic syntax is identical for both assembers but
‘asm.exe’ offers an additional #include functionality and a command
line option for printing out symbol tables. Type asm -h or asm --h or
asm for more information. The following statements must be placed at
the start of a line:

#org 0x80ff​ sets the program counter address to 0x80ff
#include file​ includes a file prior to assembling (asm.exe only)
#begin​ ​ begins emitting the opcode (default)
#end ​ ends emitting opcode (but the PC is still advanced)
label:​ ​ defines a label as the start address of a line

12

The following statements may be placed within a line in any order:

MNEMONIC​ ​ emits the opcode of a mnemonic written in upper-case
label​​ ​ emits the LSB and MSB of the address label
<label​ ​ least significant byte (LSB) of address label
>label​ ​ most significant byte (MSB) of address label
label+off​ ​ emits the LSB and MSB of the address label+off
label-off​ ​ emits the LSB and MSB of the address label-off
​ ​ ​ <off> can be any decimal number between 0 and 99.
0x8fff​ ​ 16-bit hex word (will be decoded to LSB MSB)
0x8f​ ​ ​ 8-bit hex byte (negative numbers in 2’s complement)
-123 or 123​ 8-bit signed decimal byte
'a'​ ​ ​ equivalent to 65 or 0x41
'hello'​ ​ byte string in memory (0x68 0x65 0x6c 0x6c 0x6f)
1,2,3 or 1 2 3​ defines multiple bytes in memory
; blablabla​ comment

Labels and mnemonics are case-sensitive. Mnemonics are only accepted
in upper-case. Use lower-case for hex numbers. Mathematical
expressions and definitions of constants beyond the limited
functionality described above are not supported.

Instruction Set Overview

Here you find a list of the available instruction types and their
different address modes. Please note that not every address mode is
available for every instruction type.

Legend: dark gray = not applicable, light gray = not implemented

Description

Accumulator
No Operand

Accumulator
Immediate

Accumulator
Abs Address

Accumulator
Rel Address

Byte at
Abs Address

Word at
Abs Address

Stack at
SP + Offset

Load A from LDI LDA LDR LDS

Store A to STA STR STS

Clear CLB CLW

Negate NEG NEB NEW

Increment INC INB INW

Decrement DEC DEB DEW

Add ADI ADA ADR ADB ADW

Subtract SBI SBA SBR SBB SBW

Compare CPI CPA CPR

Add with Carry In ACI ACA ACR ACB ACW

Subtract with Carry In SCI SCA SCR SCB SCW

13

Jump to JPA JPR

Jump to Subroutine JPS

Return from Subroutine RTS

No Operation / Wait NOP

Terminal Input INP

Set FLASH bank * BNK

Output A to Terminal OUT

Clear Carry In Flag CLC

Set Carry In Flag SEC

Description
Accumulator
No Operand

Accumulator
Immediate

Accumulator
Abs Address Logical Shift Left LSL

Rotate Shift Left ROL Branch on Non-Zero BNE

Logical Shift Right LSR Branch on Zero BEQ

Rotate Shift Right ROR Branch on Carry Clear BCC

Arithmetic Shift Right ASR Branch on Carry Set BCS

Push on Stack PHS Branch on Plus BPL

Pull from Stack PLS Branch on Minus BMI

* has no effect on revision 1.3 (32KB FLASH Edition)

Instruction Set 1.3 - 1.5

Software written for revision 1.3 - 1.5 will run on higher revisions.

Legend: A=accumulator, R=result, M=most significant byte, ?=undefined, -=unchanged
Instruction Description Target Operand Accumulator Flags Clock

Name DEC HEX Type Size Change N C Z Cycles

NOP 0 0 No Operation none none 0 - - - - 16

BNK 1 1 Set FLASH bank * bank A 0 - - - - 4

OUT 2 2 UART Output UART A 0 - 1 0 0 4

CLC 3 3 Clear Carry In Flag none none 0 - 1 0 0 5

SEC 4 4 Set Carry In Flag none none 0 - 0 1 1 5

LSL 5 5 Logical Shift Left (=ASL) A none 0 R R R R 5

ROL 6 6 Rotate Shift Left A none 0 R R R R 5

LSR 7 7 Logical Shift Right A none 0 R R R R 13

ROR 8 8 Rotate Shift Right A none 0 R R R R 12

ASR 9 9 Arithmetic Shift Right A none 0 R R R R 15

INP 10 0A UART Input incl. CPI 0xff A none 0 R R R R 6

NEG 11 0B Negate A none 0 R R ? R 6

INC 12 0C Increment A none 0 R R R R 5

DEC 13 0D Decrement A none 0 R R R R 5

14

LDI 14 0E Load from A immediate 1 R - - - 4

ADI 15 0F Add A immediate 1 R R R R 5

SBI 16 10 Subtract A immediate 1 R R R R 5

CPI 17 11 Compare A immediate 1 - R R R 5

ACI 18 12 Add with Carry In A immediate 1 R R R R 5

SCI 19 13 Subtract with Carry In A immediate 1 R R R R 5

JPA 20 14 Jump to PC abs addr 2 - - - - 6

LDA 21 15 Load from A abs addr 2 R - - - 7

STA 22 16 Store A to byte @ abs addr 2 - - - - 8

ADA 23 17 Add A abs addr 2 R R R R 8

SBA 24 18 Subtract A abs addr 2 R R R R 8

CPA 25 19 Compare A abs addr 2 - R R R 8

ACA 26 1A Add with Carry In A abs addr 2 R R R R 8

SCA 27 1B Subtract with Carry In A abs addr 2 R R R R 8

JPR 28 1C Jump to PC rel addr 2 - - - - 9

LDR 29 1D Load from A rel addr 2 R - - - 10

STR 30 1E Store A to byte @ rel addr 2 - - - - 10

ADR 31 1F Add A rel addr 2 R R R R 11

SBR 32 20 Subtract A rel addr 2 R R R R 11

CPR 33 21 Compare A rel addr 2 - R R R 11

ACR 34 22 Add with Carry In A rel addr 2 R R R R 11

SCR 35 23 Subtract with Carry In A rel addr 2 R R R R 11

CLB 36 24 Clear byte @ abs addr 2 R 0 1 0 8

NEB 37 25 Negate byte @ abs addr 2 R R ? R 10

INB 38 26 Increment byte @ abs addr 2 R R R R 10

DEB 39 27 Decrement byte @ abs addr 2 R R R R 10

ADB 40 28 Add byte @ abs addr 2 - R R R 9

SBB 41 29 Subtract byte @ abs addr 2 - R R R 10

ACB 42 2A Add with Carry In byte @ abs addr 2 - R R R 11

SCB 43 2B Subtract with Carry In byte @ abs addr 2 - R R R 11

CLW 44 2C Clear word @ abs addr 2 - 0 1 0 10

NEW 45 2D Negate word @ abs addr 2 ? M ? M 13

INW 46 2E Increment word @ abs addr 2 ? M M M 13

DEW 47 2F Decrement word @ abs addr 2 ? M M M 13

ADW 48 30 Add word @ abs addr 2 ? M M M 12

SBW 49 31 Subtract word @ abs addr 2 ? M M M 13

ACW 50 32 Add with Carry In word @ abs addr 2 ? M M M 13

15

SCW 51 33 Subtract with Carry In word @ abs addr 2 ? M M M 14

LDS 52 34 Load from Stack A offset 1 R ? ? ? 9

STS 53 35 Store A on Stack stack offset 1 - ? ? ? 16

PHS 54 36 Push on Stack stack none 0 - ? ? ? 12

PLS 55 37 Pull from Stack A none 0 R ? ? ? 10

JPS 56 38 Jump to Subroutine PC abs addr 2 ? ? ? ? 16

RTS 57 39 Return from Subroutine PC none 0 ? ? ? ? 14

BNE 58 3A Branch on Non-Zero PC abs addr 2 - - - - 5/6**

BEQ 59 3B Branch on Zero PC abs addr 2 - - - - 5/6**

BCC 60 3C Branch on Carry Clear PC abs addr 2 - - - - 5/6**

BCS 61 3D Branch on Carry Set PC abs addr 2 - - - - 5/6**

BPL 62 3E Branch on Plus PC abs addr 2 - - - - 5/6**

BMI 63 3F Branch on Minus PC abs addr 2 - - - - 5/6**

* has no effect on board revisions prior to 1.5
** 6 cycles if branching

Instruction Set 1.6

This table shows the detailed properties of each instruction of
revision 1.6. Improvements with respect to revision 1.3 - 1.5 are
small but noticeable and are highlighted below in cyan. Software
explicitly exploiting these changes will not run on earlier revisions.

Legend: A=accumulator, R=result, M=most significant byte, ?=undefined, -=unchanged
Instruction Description Target Operand Accumulator Flags Clock

Name DEC HEX Type Size Change N C Z Cycles

NOP 0 0 No Operation none none 0 - - - - 16

BNK 1 1 Set FLASH bank * bank A 0 - - - - 4

OUT 2 2 UART Output UART A 0 - 1 0 0 4

CLC 3 3 Clear Carry In Flag none none 0 - 1 0 0 5

SEC 4 4 Set Carry In Flag none none 0 - 0 1 1 5

LSL 5 5 Logical Shift Left (=ASL) A none 0 R R R R 5

ROL 6 6 Rotate Shift Left A none 0 R R R R 5

LSR 7 7 Logical Shift Right A none 0 R R R R 13

ROR 8 8 Rotate Shift Right A none 0 R R R R 12

ASR 9 9 Arithmetic Shift Right A none 0 R R R R 15

INP 10 0A UART Input and CPI 0xff A none 0 R R R R 6

NEG 11 0B Negate A none 0 R R ? R 6

INC 12 0C Increment A none 0 R R R R 5

DEC 13 0D Decrement A none 0 R R R R 5

16

LDI 14 0E Load from A immediate 1 R - - - 4

ADI 15 0F Add A immediate 1 R R R R 5

SBI 16 10 Subtract A immediate 1 R R R R 5

CPI 17 11 Compare A immediate 1 - R R R 5

ACI 18 12 Add with Carry In A immediate 1 R R R R 5

SCI 19 13 Subtract with Carry In A immediate 1 R R R R 5

JPA 20 14 Jump to PC abs addr 2 - - - - 5

LDA 21 15 Load from A abs addr 2 R - - - 7

STA 22 16 Store A to byte @ abs addr 2 - - - - 7

ADA 23 17 Add A abs addr 2 R R R R 8

SBA 24 18 Subtract A abs addr 2 R R R R 8

CPA 25 19 Compare A abs addr 2 - R R R 8

ACA 26 1A Add with Carry In A abs addr 2 R R R R 8

SCA 27 1B Subtract with Carry In A abs addr 2 R R R R 8

JPR 28 1C Jump to PC rel addr 2 - - - - 8

LDR 29 1D Load from A rel addr 2 R - - - 10

STR 30 1E Store A to byte @ rel addr 2 - - - - 10

ADR 31 1F Add A rel addr 2 R R R R 11

SBR 32 20 Subtract A rel addr 2 R R R R 11

CPR 33 21 Compare A rel addr 2 - R R R 11

ACR 34 22 Add with Carry In A rel addr 2 R R R R 11

SCR 35 23 Subtract with Carry In A rel addr 2 R R R R 11

CLB 36 24 Clear byte @ abs addr 2 - - - - 8

NEB 37 25 Negate byte @ abs addr 2 R R ? R 10

INB 38 26 Increment byte @ abs addr 2 R R R R 10

DEB 39 27 Decrement byte @ abs addr 2 R R R R 10

ADB 40 28 Add byte @ abs addr 2 - R R R 8

SBB 41 29 Subtract byte @ abs addr 2 - R R R 10

ACB 42 2A Add with Carry In byte @ abs addr 2 - R R R 9

SCB 43 2B Subtract with Carry In byte @ abs addr 2 - R R R 11

CLW 44 2C Clear word @ abs addr 2 - - - - 10

NEW 45 2D Negate word @ abs addr 2 ? M ? M 13

INW 46 2E Increment word @ abs addr 2 ? M M M 13

DEW 47 2F Decrement word @ abs addr 2 ? M M M 13

ADW 48 30 Add word @ abs addr 2 ? M M M 12

SBW 49 31 Subtract word @ abs addr 2 ? M M M 13

ACW 50 32 Add with Carry In word @ abs addr 2 ? M M M 13

17

SCW 51 33 Subtract with Carry In word @ abs addr 2 ? M M M 14

LDS 52 34 Load from Stack A offset 1 R - - - 8

STS 53 35 Store A on Stack stack offset 1 - - - - 15

PHS 54 36 Push on Stack stack none 0 - - - - 11

PLS 55 37 Pull from Stack A none 0 R - - - 9

JPS 56 38 Jump to Subroutine PC abs addr 2 ? - - - 14

RTS 57 39 Return from Subroutine PC none 0 - - - - 12

BNE 58 3A Branch on Non-Zero PC abs addr 2 - - - - 5

BEQ 59 3B Branch on Zero PC abs addr 2 - - - - 5

BCC 60 3C Branch on Carry Clear PC abs addr 2 - - - - 5

BCS 61 3D Branch on Carry Set PC abs addr 2 - - - - 5

BPL 62 3E Branch on Plus PC abs addr 2 - - - - 5

BMI 63 3F Branch on Minus PC abs addr 2 - - - - 5

* has no effect on board revisions prior to 1.5

Addressing Modes

Where applicable the last letter of the mnemonic indicates the
addressing mode. The CPU expects 16-bit addresses in little-endian
format, i. e. the least significant byte (LSB) at the lower memory
address and the most significant byte (MSB) at the higher address.

‘A’ indicates absolute addressing mode. The following two bytes are
interpreted as an address of the argument of the instruction. The
result is stored in the accumulator. Example: ADA 0x04 0xf0 adds the
content of address 0xf004 to the accumulator.

‘R’ indicates relative addressing mode. The address following the
opcode is interpreted as a pointer to the address of the argument. The
result is stored in the accumulator. Example: ADR 0x04 0xf0 adds the
content of the address stored at 0xf004 to the accumulator.

‘B’ indicates ‘to byte at absolute address’ mode. Here, the
accumulator is the argument and the result is stored in the byte
specified by the address following the opcode. Example: LDI 10 ADB
0x04 0xf0 adds 10 to the content of 0xf004.

‘W’ indicates ‘to word at absolute address’ mode. Again the
accumulator provides the argument but the result is stored in the word
at the address following the opcode. Example: LDI 250 ADW 0x04 0xf0
adds 250 to the content of 0xf004. In case of an overflow (carry flag
set) the content of 0xf005 automatically increments.

18

UART Operations

Using the UART as an I/O device is really easy and only involves the
following two instructions:

OUT sends the content of the accumulator via UART. Please keep in mind
that the Minimal (being minimal) does not feature an output buffer. So
it is up to you to wait for the UART transmission to complete before
you can send another byte. The shortest possible interval between two
consecutive OUT instructions is 160 cycles or 10 NOP instructions.

INP moves and clears the content of the UART receiver register into
the accumulator. An empty register will yield 0xff and the zero flag
is set (Z=1). Thus, INP provides non-blocking input. Blocking input
can be implemented with:

​ Wait:​​ INP BEQ Wait

Stack Operations

The memory address 0xffff holds the LSB of the CPU stack pointer (the
MSB is always 0xff). The stack pointer is pointing to the next free
memory location on the stack page 0xff00-0xffff and is growing
downwards. The stack pointer has to be initialized with

​ LDI 0xfe STA 0xffff

which is usually done by the OS. If you plan on using your own
software, please keep in mind to include this line in your code. The
Minimal offers the following instruction that make use of the stack:

JPS <subroutine> pushes the LSB and MSB of the address following the
opcode (program counter + 1) to the stack and decrements the stack
pointer twice. Next the processor loads the address <subroutine> into
the program counter, entering your subroutine.

RTS increments the stack pointer twice and pulls two bytes from the
stack and stores them in the program counter. Before the execution is
continued, the program counter is incremented twice, effectively
pointing it to the next instruction that follows the JPS <subroutine>
call.

19

PHS pushes the content of the accumulator onto the stack and
decrements the stack pointer.

PLS increments the stack pointer and pulls the value stored at that
stack position into the accumulator.

LDS <index> loads the content of the address (stack pointer + <index>)
into the accumulator. <index> can be any signed byte value.

STS <index> stores the content of the accumulator to the address
(stack pointer + <index>). <index> can be any signed byte value.

Calling Convention

Although it is really up to you, the programmer, how you want to
handle data transfer to and from subroutines within your code, it can
be helpful to stick to a certain use pattern which for the Minimal I
will outline here. Let’s suppose, a subroutine expects two parameters
<A> and to work with and returns a result <C>.

The caller then has the responsibility to push these data onto the
stack prior to calling the subroutine. Once the caller has regained
focus, it cleans up and in case of <C> processes all data that it has
pushed onto the stack:

LDI <C> PHS​ ; pushes a container <C> for the return value
LDI PHS​ ; pushed parameter

​ LDI <A> PHS​ ; pushes parameter <A>
​ JPS <subroutine>
​ PLS​ ​ ​ ; cleans up <A> from stack
​ PLS​ ​ ​ ; cleans up from stack

PLS​ ​ ​ ; moves the return value <C> into the accumulator
​ STA ...​ ​ ; stores the result <C> somewhere

The callee in turn can access parameters and store results within the
stack area provided by the caller. Note that after the JPS instruction
has pushed the return address below the parameters, they - to the
callee - appear two bytes further up the stack.
​
<subroutine>:​ LDS 5 STA ...​ ; loads parameter <A> from stack
​ ​ ​ LDS 4 STA ...​ ; loads parameter from stack
​ ​ ​ ...​ ​ ​ ; do some stuff
​ ​ ​ STS 3​​ ​ ; stores return value in container <C>
​ ​ ​ RTS​ ​ ​ ; caller regains focus
Stack as viewed from the caller’s perspective prior to JPS:

20

Offset:​ -4​ -3​ -2​ -1​ 0​ 1​ 2​ 3​ (relative to SP)
Stack:​ ---​ ---​ ---​ ---​ ---​ <C>​ ​ <A>

Stack as viewed from the callee’s perspective right after JPS:

Offset:​ -2​ -1​ 0​ 1​ 2​ 3​ 4​ 5​ (relative to SP)
Stack:​ ---​ ---​ ---​ MSB​ LSB​ <C>​ ​ <A>

API Functions

Why not reuse helpful OS subroutines for your own code? Here is how
and why: OS subroutines are called via a fixed jump table address.
With a new OS release, API functions may be added or improved but the
addresses of existing API functions WILL NOT CHANGE over time. The
programs you write with the API will work no matter what OS version
you use. This will keep your own code nice and concise, and these
functions are already pretty optimized. Here is an overview of the API
subroutines and other useful data:

Address​ ​ API label​ ​ Description
--
#org 0xf000​ _Start:​ ​ ; OS entry point for restart
#org 0xf003​ _Prompt:​ ​ ; OS entry point for line input prompt
#org 0xf006​ _Print:​ ​ ; prints a null-terminated string
#org 0xf009​ _PrintHex:​​ ; prints a byte in HEX format
#org 0xf00c​ _WaitUART:​​ ; waits for UART transmission
#org 0xf00f​ _LoadFile:​​ ; loads a file from the SSD
#org 0xf012​ _SaveFile:​​ ; saves data as a file to SSD bank
#org 0xf015​ _MemMove:​ ​ ; moves an (overlapping) memory block
#org 0xf018​ _FindFile:​​ ; returns a pointer to a stored file
#org 0xf01b​ _Mnemonics:​ ; pointer to mnemonic table
#org 0xf01d​ ​ ​ ​ ; pointer (unused)
#org 0xf01f​ _HexToWord:​ ; converts a hex string into 2 bytes
#org 0xf022​ _CursorX:​ ​ ; sets the cursor x position 1..60
#org 0xf025​ _CursorY:​ ​ ; sets the cursor y position 1..25
#org 0xf028​ _Random:​ ​ ; pseudo-random byte generator
#org 0xf02b​ _XOR:​​ ​ ; byte XOR(A, B)
#org 0xfeb0​ _MemAddr:​ ​ ; displayed address of the OS monitor
#org 0xfeb2​ _ParsePtr:​​ ; input parsing pointer
#org 0xfec2​ _RandomState:​ ; random generator state (4 bytes)
#org 0xfec6​ ​ ​ ​ ; unused (3 bytes)
#org 0xfec9 ​ _InpBuf: ​​ ; input line buffer (55 bytes)

21

Most of the functions expect parameters to be pushed onto the stack
prior to calling. Some may return values to be pulled from the stack.
Please note that the caller - not the callee - is responsible for
cleaning up the stack. See section ‘Calling Convention’ for more
information.

_MemMove
Moves potentially overlapping N bytes from [A..] to [B..].
push: B_lsb, B_msb, A_lsb, A_msb, N_lsb, N_msb
Pull: #, #, #, #, #, #

_Print
Prints out a null-terminated string located at <stradr>.
push: stradr_lsb, stradr_msb
pull: #, #

_CursorX
Sets the horizontal cursor position to 1..60.
push: pos
pull: #

_CursorY
Sets the vertical cursor position to 1..25.
push: pos
pull: #

_Random
Returns a pseudo-random byte <num> 0..255.
push: #
pull: <num>

Algorithm described by EternityForest (2011)
https://www.electro-tech-online.com/threads/ultra-fast-pseudorandom-number-generator-for-8-bit.124249/

uint8_t random()
{
 x++; ​​ ​ ​ ​ ​ ​ ​ ​
 a = a ^ c ^ x;
 b = b + a;
 c = (c + (b >> 1)) ^ a;
 return c;
}

_XOR
Exclusive OR (XOR) operation.
push: A, B

22

https://www.electro-tech-online.com/threads/ultra-fast-pseudorandom-number-generator-for-8-bit.124249/

pull: B, XOR(A,B)

_PrintHex
Prints out a byte value <val> in HEX format.
push: val
pull: #

_HexToWord
Parses a lower-case hex number 0000 - ffff from <address>
push: #, address_lsb, address_msb
pull: word_lsb, word_msb, status
success: status = 0x00, failure: status = 0xf0

_FindFile
Searches for <filename> stored at <nameptr>
<filename> must be terminated with either 0x00 or 0x10 (LF)
push: nameptr_lsb, nameptr_msb
pull: fileptr_msb, fileptr_lsb
success: fileptr_msb < 0x80

_LoadFile
Loads file <name> from SSD, <name> must be terminated by 0 or ENTER.
Only the first 20 bytes are accepted.
push: nameptr_lsb, nameptr_msb
pull: target_lsb, target_msb
success: target_msb >= 0x80

This example loads the file "blocks" from the SSD and runs it.

#org 0xa000 ​LDI <filename PHS​ ; push pointer to filename
 ​ LDI >filename PHS
 ​ JPS _LoadFile​ ​ ; call API function
 ​ PLS STA target+0​​ ; pull target address
 ​ PLS STA target+1
 ​ CPI 0x80 BCC _Start​ ; check for errors
 ​ JPR target​ ​ ; SUCCESS => jump to target
 ​
filename: ​ "blocks", 0
target: ​ 0x0000

#end
#org 0xf000 ​_Start: ​ ; declare some API symbols
#org 0xf00f ​_LoadFile:

_SaveFile

23

Saves data as a file <name> to the SSD. Data will be written from
address <first> to (and including) <last>.
push: nameptr_lsb, nameptr_msb, 1st_lsb, 1st_msb, last_lsb, last_msb
pull: #, #, #, #, #, status
success: status = 1

The following example saves data to the SSD as file "testdata".

#org 0xa000 ​LDI <filename PHS
 ​ LDI >filename PHS
 ​ LDI 0x00 PHS​ ​ ; push 0x8000
 ​ LDI 0x80 PHS
 ​ LDI 0xff PHS​ ​ ; push 0x8fff
 ​ LDI 0x8f PHS
 ​ JPS _SaveFile ​ ; call API function
 ​ LDI 5 ADB 0xffff ​ ; clean up stack
 ​ PLS CPI 0 BEQ _Start ; check for failure
 ​ JPA _Prompt

filename: ​ "testdata", 0
 ​ #end

#org 0xf000 ​_Start: ​ ; declare some API symbols
#org 0xf003 ​_Prompt:
#org 0xf012 ​_SaveFile:

_Mnemonics
Holds a pointer to the following ordered list of mnemonics (the list
index corresponds to the instruction code):

'NOP', 'BNK', 'OUT', 'CLC', 'SEC', 'LSL', 'ROL', 'LSR',
'ROR', 'ASR', 'INP', 'NEG', 'INC', 'DEC', ‘LDI', 'ADI',
'SBI', 'CPI', 'ACI', 'SCI', 'JPA', 'LDA', 'STA', 'ADA',
'SBA', 'CPA', 'ACA', 'SCA', 'JPR', 'LDR', 'STR', 'ADR',
'SBR', 'CPR', 'ACR', 'SCR', ‘CLB', 'NEB', 'INB', 'DEB',
'ADB', 'SBB', 'ACB', 'SCB', 'CLW', 'NEW', 'INW', 'DEW',
'ADW', 'SBW', 'ACW', 'SCW', 'LDS', 'STS', 'PHS', 'PLS',
'JPS', 'RTS', 'BNE', 'BEQ', 'BCC', 'BCS', 'BPL', 'BMI'

_MemAddr
Current address displayed by the OS memory monitor.

_ParsePtr

24

A pointer to the command line one step beyond the last character
processed by the operating system. This grants the called program
access to command line parameters. For example, after

​ 8000 r <filename> ENTER

the pointer will point to the space following ‘r’ in the above command
line. The called program may then use and change the pointer to
extract the <filename> data.

_RandomState
4-byte state of the pseudo-random number generator. Enhance the
entropy of the generator by XOR-ing external values into these data.

_InpBuf
Start of the input buffer used by the OS. It has a size of 55 bytes
with the last bytes address being 0xfeff. Since the OS resets this
buffer before using it, you can use it for your programs whenever the
OS is not in focus (see _ParsePtr).

Native Tool Chain

You want the full retro immersion without a host system? You can
write, edit, assemble, organize and run your programs natively on the
Minimal! Here is how.

Text Editor

Upload and store the ‘Minimal Editor’ file to your SSD under the
filename ‘editor’. It’s 4KB in size and resides in the memory area
0x8000-0x8fff. Text data start from 0x9000, with lines separated by LF
(0x0a). The end of the text is designated by EOF (0x00). After a
power-up, upload and start the editor with

8000 l editor ENTER
8000 r ENTER​ ​ or​ ​ 8000 r <filename> ENTER

The option shown on the right will directly load a text file from the
SSD. You can immediately enter text. The following editor commands are
available:

Ctrl q​ ​ ​ quits the editor (file stays in memory)
Ctrl n ​ ​ ​ brings up a ‘new’ dialog
Ctrl l <filename>​ loads a text file from SSD into memory
Ctrl s <filename>​ saves the current text file to SSD

25

Ctrl a​ ​ ​ marks the beginning of a text block
Ctrl x​ ​ ​ cuts out a marked blocks until cursor
Ctrl c​ ​ ​ copies a marked block until cursor
Ctrl v​ ​ ​ pastes a copied or cut text block
Ctrl z​ ​ ​ toggles the display of line numbers

Please note that the Minimal is just capable of providing all these
text editing functions. Redrawing the whole screen after a PAGE
UP/DOWN, for example, takes quite some time. PAGE UP/DOWN keystrokes
come encoded as a sequence of characters. Keep in mind that if you use
these keys in the REPEAT mode, the Minimal will inevitably miss some
of these characters and display the remaining ones in an unwanted way.
The Minimal - being a minimal machine - will miss these characters
because it is busy redrawing the screen and because its serial UART
does not feature input buffering.

Text File Transfer

Data can be transferred to the RAM of the Minimal by pasting it to the
terminal emulation you are using (e. g. Tera Term). The Minimal will
receive the data as “keystroke input”, i. e. the OS will interpret the
data in hexadecimal format, so that assembler output can be directly
uploaded (see section ‘Boot Monitor’ for more information).

Due to Minimal’s speed constraints, the native text editor is unable
to provide this direct ‘cut & paste’ functionality for a complete
source text. However, text files can directly be uploaded to the SSD
file system of the Minimal. A little tool called ‘textloader’ provides
this functionality. Just assemble or load it, select the SSD bank you
want to save the file to and type

​ 8000 r <textfile> ENTER.

Until you hit ESC, the ‘textloader’ program will await ASCII data you
paste to the terminal window as “keystrokes” and save them in
Minimal’s text file format under the filename <textfile>.

Note: By using serial RTS/CTS flow control you can also directly cut &
paste text into the editor itself. See the appendix for more
information.

Assembler

Upload and store the ‘Minimal Assembler’ to your SSD. It is 4KB in
size and resides in the memory area 0xd000-0xdfff. For temporary data

26

storage the area 0xe000-0xefff is being used. The native assembler
supports the same general syntax as the cross-platform version (see
section ‘Assembler Programming’). This section only briefly describes
the usage from within the Minimal. Invoking the assembler is possible
via the OS command line with two options:

​ d000 r ENTER ... or...​ d000 r <filename> ENTER

The first option starts the assembler without specifying a filename.
The assembler then expects to find text data of the text editor in
memory starting at address 0x9000. Hence, this mode allows you to
quickly switch between the text editor and the assembler without
having to save your source text in between. Assembling the text data
will not affect your code in any way. The assembler will use the
memory area that is left beyond the text file. Therefore, use this
option preferably only for shorter programs and quick tests. Check for
conflicts between your specified build address and the memory usage of
the assembler using the memory monitor.

The second option tells the assembler to process a source file located
on the SSD in FLASH memory. This is the preferred method for larger
files, since the program text itself does not have to be present in
RAM. The assembler will use the entire RAM starting from address
0x8000 to build your project. Again, it’s your own responsibility to
check for potential memory conflicts.

A typical assembler run will look like this:

d000 r hello.txt ENTER

Minimal Assembler 1.5
123..........45
c046

The numbers 1 to 5 indicate the current pass the assembler is
performing. Pass 3 usually takes the longest and is substituting all
labels with their corresponding addresses, with each dot representing
a single substitution.
Once finished, the assembler hands back control to the OS. The address
displayed is the first free address beyond the assembler output. This
makes saving your assembled program easy with

​ s c000 c045 hello ENTER.

27

When encountering an error, the assembler halts and reports a short
message together with the corresponding line number, e. g.

ERROR in line 021: “blabla”.

Min (Python-Like Language)

Min stands for ‘Min is not Python’ and is a high-level Python-like
programming language that can run as an interpreter natively on the
‘Minimal CPU System’. As a matter of fact, Min runs quite slowly and
is meant mainly for demonstration purposes.
Min interprets program text that is currently being edited within the
native text editor. So in order to use Min, upload both the editor and
the Min interpreter into memory. The editor resides at 0x8000, program
text starts at 0x9000 and Min resides at 0xc000.
I have made a small video series about the inner workings of Min:
https://www.youtube.com/playlist?list=PLYlQj5cfIcBW9oNldqIPtkfaKt_rixoBc

Quick Example
Let’s start the editor by typing

8000 r ENTER

and input this Min example:

001|while key() == 0xff
002| print “Hello, World!”

Now leave the editor by pressing ‘CTRL Q’ and start Min by typing

c000 r ENTER

You will see ‘Hello, World!’ fill your screen until you hit any key.

​ 8000 c000 r

Hello, World!Hello, World!Hello, World!Hello, World!Hello,
Hello, World!Hello, World!Hello, World!Hello, World!Hello,
Hello, World!Hello, World!Hello, World!Hello, World!Hello,
Hello, World!Hello, World!Hello, World!Hello, World!Hello,
Hello, World!Hello, World!Hello, World!...

Min’s Syntax is almost like Python’s
The exact language definition in ‘Enhanced Backus-Naur Form (EBNF)’ is
given in the appendix. If you are familiar with Python you will easily

28

https://www.youtube.com/playlist?list=PLYlQj5cfIcBW9oNldqIPtkfaKt_rixoBc

find your way in Min. The following list of the supported features,
commands and differences with respect to Python will get you started.

●​ Python-style indentation (two spaces)
●​ if-elif-else, while-break, and, not, or like in Python
●​ Local and global variables (unlike Python Min has static typing)
●​ include “<filename>” functionality (see str, int, input below)
●​ def-return like in Python, additional C-style ‘&’ referencing
●​ print <expression> like in Python but without parentheses
●​ len(<string>),
●​ key() for keyboard (UART) input polling
●​ rnd() for pseudo-random bytes
●​ str(<int>), int(<string>), input() via ‘include “std.min”’
●​ Strings (“hello”) and integer (16-bit) data types
●​ 1-dimensional arrays only
●​ Array slicing operator '..' replacing Python’s ':'
●​ 'A' replacing Python’s ord("A")
●​ ':' and ';' are optional syntax sugar
●​ bitwise 16-bit operators &, |, ^, >>, <<
●​ decimal and hex lower-case '0xffff' notation

I recommend taking a quick look at the many example programs provided.

Error Codes
The following table lists the error codes Min uses in its messages
alongside with the error line number.

0​ unexpected end of file
1​ invalid identifier
2​ call dictionary full
3​ call already exists
4​ undefined variable
5​ invalid expression
6​ type mismatch
7​ data memory full
8​ variable dictionary full
9​ expecting array
10​ expecting basetype
11​ unexpected indentation
12​ unexpected end of block
13​ array buffer overflow
14​ unexpected break
15​ unexpected return
16​ unexpected definition
17​ invalid parameter

29

18​ unexpected include
19​ file not found
20​ invalid filename
21​ invalid index
22​ element access without array
34​ expecting "
40​ expecting (
41​ expecting)
44​ expecting '
46​ expecting .
61​ expecting =
93​ expecting]

VGA – PS/2 – Terminal

The ‘Minimal Terminal’ is a small PCB add-on (see project repository
on GitHub: https://github.com/slu4coder/Minimal-Terminal) that allows
you to operate the ‘Minimal CPU System’ without a host PC - it’s
basically a pocket-sized stand-alone serial terminal. Just hook up an
old PS/2 keyboard and a VGA monitor to the ‘Minimal Terminal’ and
connect the Minimal to the UART interface.

The ‘Minimal Terminal’ offers a resolution of 60x25 characters with
each character being displayed as an 8x8 pixel matrix and processes
the following ANSI control sequences:

ESC [H​ ​ Moves the cursor to the left upper corner.
ESC [J​ ​ Clears the screen from cursor position onwards.
ESC [K ​ ​ Clears the line from cursor position onwards.
ESC [<n> A​ Moves the cursor <n> steps up.
ESC [<n> B​ Moves the cursor <n> steps down.
ESC [<n> C​ Moves the cursor <n> steps to the right.
ESC [<n> D​ Moves the cursor <n> steps to the left.
ESC [<n> G​ Moves the cursor to column <n>.
ESC [<n> d​ Moves the cursor to row <n>.

30

https://github.com/slu4coder/Minimal-Terminal

ESC [S​ ​ Scrolls one step up (blank line at the bottom)
ESC [T​ ​ Scrolls one step down (blank line at the top)

<n> can be any positive decimal number. The default for <n> is 1 for
the 1st column or row. The terminal has a configurable bitrate as
described below and otherwise expects the following serial settings:

8 data bits
1 start bit
2 stop bits
no parity bit
flow control: none
new line: LF (0x0a)

The bitrate of the terminal can be configured with two jumpers. The
possible configurations for the pin header on the right edge of the
PCB are shown as viewed from the top. Please note that any changes
only take effect after a reset or power-up.
​

O O|​​ 230400 bps
​ O O|

O==O|​​ 115200 bps
​ O O|
​

O O|​​ 57600 bps
​ O==O|

O==O|​​ 28800 bps
​ O==O|

Please note that the sketch currently only implements German keyboard
layout. For any other localization you will have to fiddle with the
PS/2-to-ASCII lookup table within the Arduino sketch of the terminal. I
am grateful for any contribution here ;-)

Emulator

The ‘Minimal Emulator’ models the Minimal CPU in its revision 1.5, its
SSD storage and terminal output cycle-exactly in real time and with a
vintage CRT vibe.

31

Note: Using the emulator on a slower PC may impose an upper limit on
the maximum clock frequency you can emulate.

Commands

The behavior of the emulator can be controlled via keyboard shortcuts:

ALT TAB ​Changes focus to another application

ESC END ​Quits the emulator

The content of the 512KB FLASH is written to ‘flash.bin’.
ESC HOME Resets the CPU (emulated reset key)

ESC 0 ​ Halts the clock
ESC 1..7 Sets clock speed to 10^1..7Hz but no larger than 1.8432MHz
ESC 9 ​ Enables maximum speed mode 3.6864MHz

F1 ​​ Toggles the emulator's HUD control screen. Here you can

monitor the exact state of the CPU components clock, bus,
control word, instruction register, step register,
flags register, program counter, memory address and
bank register, ALU with A and B registers
and a 256-byte RAM page.

F2/3 ​ Changes the RAM page address on the HUD by +/- 0x0100
SHIFT F2/3​Changes the RAM page address on the HUD by +/- 0x1000
ESC s ​ Performs a full clock cycle and halts the clock
ESC h ​ Performs half a clock cycle and halts the clock
ESC x ​ Executes until next instruction fetch (II) and halts

32

You can copy and paste text into the terminal just like on real
hardware by using Alt V or by clicking on the right mouse button.

Character Set

The emulator terminal uses a set of 256 8x8 pixel characters enhancing
the capabilities of a standard ASCII terminal and roughly resembling
the style of a Commodore C64 or VIC-20. The order of the characters
follows ASCII conventions. In the picture below, the character set is
shown in rows of 32 characters from left to right, starting at index
zero in the left upper corner.

CPU Architecture

So you want to understand how it all works? I’ll do my best to
describe the various parts and functions of the CPU here. Let’s start
with a list of the basic features of this machine:

●​ Von-Neumann architecture
●​ 8-bit data bus
●​ 16-bit address space
●​ 24-bit control word (revision 1.5 uses only 16 control words)
●​ 2 data registers A and B
●​ Simple adder with 3 flags (negative N, carry C and zero Z)
●​ 64 instructions (incl. subroutines, stack- and word operations)
●​ 32KB RAM
●​ 512KB FLASH (OS and SSD with file system)
●​ UART interface (terminal display, keyboard input and data I/O)

For the rather general description I am going to give, let’s use the
block diagram of the ‘Minimal CPU’ revision 1.6 (‘Redux’) shown below
as an overview. It exposes the functionality in its most accessible
form.

33

Components & Control Signals

At first glance, any CPU architecture looks daunting since it consists
of various different functional blocks (shown in blue). Each block may
contain several components (shown in gray). To a large part, the
complex behavior of a CPU system stems from the fact that - like most
complex systems - it involves feedback. In the following I will talk
about components and their control signals. On the one hand control
signals manage components and on the other hand components manage
control signals. See the feedback?

Generally, each component of the CPU has an input and an output. It’s
behavior is controlled by little switches. These switches are operated
by control signals. Part of the “magic” of a CPU is to generate its
own control signals, press its own buttons, if you will. Before we
discuss how that is accomplished, let me give a brief description of
each component, its control switches (labeled in RED in the above
diagram) and its inputs and outputs.

8-Bit Data Bus
The data bus is a “glue” component that connects inputs and outputs of
most components. This backbone of the CPU is nothing more than 8 data
lines (shown above as a single black vertical line). The statement ‘a
component outputs something to the bus’ means that it drives each bus
line to a well-defined voltage level (HIGH or LOW). With each bus line

34

n = 0..7 a value 2^n is associated such that in total values 0..255
can be represented.

There is one property of central importance when it comes to
understanding the “magic” of the ‘Minimal’: The data bus lines are
pulled HIGH via 470 Ohm resistors. That means that if no component is
driving the bus, reading the bus will yield 0b11111111 = 0xff or -1.
At this point, let me just say that the ability of generating this
value is the key to the more sophisticated stack operations the
‘Minimal’ is capable of. But let’s continue by discussing all the
other components.

System Clock
The system clock connects to almost every component of a CPU and
synchronizes all activities to a common pace so that components can
work together. The system clock defines the processing speed of a CPU.
At the start of a clock cycle (clock going LOW) new control signals
are set. This may force a component to output data onto the bus and
another component to read data from the bus. It is important to note
that the reading operation happens in the middle of the clock cycle
with the rising edge of the clock – during a time when the output has
stabilized.

System clock:​ ----________________----------------____

Clock cycle:​ <------------------------------>

Control signal:​ ____--------------------------------____

A-Register (Accumulator)
The A-register can hold a single data byte. Its input and output is
connected to the data bus. The control switch AI (for A in) reads the
value on the data bus into the register. AO (for A out) puts the
stored value onto the bus. Furthermore, the value stored in A is
permanently connected to the input of the adder component.

B-Register
The B-register works just the same as the A-register and is also
permanently connected to the adder component.

Adder (ALU)
The adder adds the values of A and B. EO (for sum out) puts this
result onto the bus. ES (for inversion) inverts B prior to adding it
to A. EC (for carry in) adds one to the result. This allows us to
perform subtractions, since in 2’s complement A - B = A + (~B) + 1,

35

where ~B denotes the inverse of B. Thus, in order to output A - B, the
control signals EO, ES and EC must all be active at once.
Depending on its result, the adder outputs three flags: N negative, C
carry and Z zero.

N = 1 if the most significant bit of the result is HIGH.
C = 1 if the result of a calculation exceeds 0xff.
Z = 1 if the result of a calculation is zero or 0x00.

Memory (RAM and FLASH)
Memory integrates a large number of single-byte register cells into
one chip. Each cell has a unique index or address. To select a certain
cell, the address bits have to be present at the address inputs of the
memory chip. RO (for RAM out) will output the content of the selected
cell onto the bus. RI (for RAM) stores the bus value into the selected
cell.

Memory Address Register (MAR)
The memory address register (MAR) consists of three registers: A
16-bit counter with its most significant byte (MSB) MAR_H and least
significant byte (LSB) MAR_L part and an additional 4-bit BANK
register. The output lines of all three registers are permanently
connected to the memory address lines of the RAM and FLASH chip, where
memory line M15 selects whether RAM is enabled (M15 = HIGH, address
range 0x8000-0xffff) or FLASH is active (M15 = LOW, address range
0x0000-0x7fff).
Two control signals MIL and MIH (for memory address register input low
and high) read a value from the bus into either the MAR_L or MAR_H
part. ME increments the current value held by MAR_L and MAR_H. KI (for
memory bank in) reads the lower 4 bus bits into the memory BANK
register, defining which 32KB bank of the FLASH IC will be accessed by
the processor.

Program Counter (PC_L, PC_H)
The program counter consists of two 8-bit registers, holding the most
significant byte PC_H and least significant byte PC_L of a 16-bit
memory address. The program counter points to the instruction in
memory which is currently being processed. Like that MAR, the program
counter can also increment (count up one): If CE (for count enable) is
active, incrementing happens at the rising edge of the clock. For
writing and reading data to and from the register, four control
signals are used: COL/COH for counter out low/high and CIL/CIH for
counter in low/high.

Terminal Registers (TR)

36

The terminal ‘sender register’ transmits its content via UART. TI
reads bus data into the register for transmission. The terminal
‘receiver register’ reads a byte from the UART. TO outputs the last
received byte to the bus and TC clears the register to 0xff.

Flags Register (FR)
Upon FI the state of the three adder flags N, C and Z is being stored
in this register.

Instruction Register (IR)
The 6-bit instruction register holds the opcode of the current
instruction to be processed. II reads in a new opcode from the bus.

Step Counter (Step)
The step counter is 4 bits wide and holds the current step of an
instruction. Upon IC (for instruction step clear) this counter is
reset to zero.

Control Word Generation

The 4 bits of the step counter with the 6 bits of the instruction
register and the 4 bits of the flags register together form a 14-bit
address input to the control ROMs. Each control ROM outputs 8 control
signals. The state of all these control signals is called a control
word.

Let’s briefly discuss the difference between revision 1.5 (‘Expanded
PCB’) and revision 1.6 (‘Redux’) here. Revision 1.6 uses 3 control
ROMs to generate the 24 control signals we have discussed above
directly. Revision 1.5 however only uses two control ROMs for the 16
main control signals

AI, AO, BI, BO, MI, CI, CO, HI, EO, ES, EC, TR, CE, RI, RO, IC.

The other control signals are derived by the use of logic ICs as given
in the block schematic of revision 1.5 shown below.

37

Processing Instructions

Upon pressing RESET, both the program counter and the instruction step
counter are set to zero. Regardless of the state of the flags register
and instruction register, the instruction steps 0, 1 and 2 have fixed
control words:

​ Step 0:​ COL|MIL
​ Step 1:​ COH|MIH
​ Step 2:​ RO|II|CE|ME
​ Step 3:​ ...
​ .

Step 15:​ ...

Let’s see what they do: In step 0 and 1 the LSB and MSB part of the
program counter is copied to the memory address register,
respectively. In step 2, RO puts the content of the memory location
the PC is pointing to onto the bus. That is the opcode of the next
instruction! II stored this opcode in the instruction register. CE|ME
increments both the program counter and the memory address register so
that further arguments of the instruction can be read in. Since by
now, the instruction register “knows” about the new instruction, steps
3 to 15 are different for each instruction, since they are selected by
the opcode inside the instruction register and the content of the
flags register. Each instruction consists of a meaningful step
sequence of control words called microcode. A list of the microcode of
each instruction is given in the appendix.

38

The IC signal marks the end of an instruction and resets the step
counter back to zero.

Reaching 8.3MHz

What is that critical path limiting the clock speed? Well, it is the
longest streak of operations that must occur in sequence. For the
Minimal, it's the path where the step counter is reset at the end of
an instruction: (A) the step counter advances, (B) the control word
updates pulling (C) the reset of the step counter, (D) immediately
resulting in another or 2nd update of the control word, ending with a
stable bus output of the microcode step 0: COL|MIL. Compared to other
paths, this sequence leaves us with the least time until the rising
edge of the clock looms and all outputs need to be stable for reading:

+---+------+---+
| # | Time | Operation |
+---+------+---+
I	10ns	clock inversion (NAND)	
A	15ns	step counter increments	
B	30ns	1st CTRL update (resetting step counter)	
C	15ns	step counter reset after ~MR	
D	30ns	2nd CTRL update (0: COL	MIL of next instr.)
E	20ns	PC 74HC245 buffer has stable bus output	
.	10ns	overall jitter safety-margin	
Z	15ns	all outputs assume high-Z state	
T	40ns	bus pull-up to 2.5V (trigger level)	
H	25ns	bus pull-up to 3.5V (worst case high level)	
+---+------+---+

Items T and H result from the RC time constant T formed by the pull-up
resistor and line capacitance of each bus line:

​ R = 470Ω​ and​ C = 14pF + 11 * 3.5pF + 7 * 10pF = 123pF
​

=> T = ln(2) * R * C = 40ns

where C is the sum of the capacitance (d=0.5mm, h=1.5cm, l=1.2m) of
the bus wire above a ground plane and the input and output
capacitances of the connected ICs. The times given in the table above
have all been experimentally verified to +/-5ns.

The following timing diagrams show the critical path for a standard
clock cycle as described above (and as used by revision 1.5) for a
cycle time of 260ns (3.8MHz). Each digit represents a duration of 5ns:

39

cycle ----><--><---------------
CLOCK -----__________________________--------------------------________________
~CLOCK _______--------------------------__________________________--------------
critical IIAAABBBBBBCCCDDDDDDEEEE.. IIAAABBBBBBCCCDD
write IIAAABBBBBB
read RRRRRRRRRRRRRRRRRRRRRRRRRR
bus 0xff ZZZTTTTTTTTHHHHH
control ----------------__-----

The diagram below shows the highly optimized clock cycle of revision
1.6 for a cycle time of 120ns (8.3MHz). Again, each digit represents a
duration of 5ns:

cycle -><----------------------><----------------------><-------
CLOCK0 --____________------------____________------------________ FR, SR, 2x pulse
CLOCK1 ----____________------------____________------------______ 4x PC
CLOCK2 -----____________------------____________------------_____ TX, RX, bank
~CLOCK2 ______------------____________------------____________----
CLOCK3 -------____________------------____________------------___ 4x MAR
PULSE ________________----____________________----______________
critical AAABBBBBBCCCDDDDDDEEEE..AAABBBBBBCCCDDDDDDEE
write AAABBBBBB AAABBBBBB
read RRRR RRRR
bus 0xff ZZZTTTTTTTTHHHHH
control -----------------------________________________-----------

Processing Power

Let me first point out that measuring computer processing power can be
very dependent on the benchmark test. So choosing a task that
represents the actual work the computer is supposed to do is
essential. In the early days of computing the unit ‘Mips’ (million
instructions per second) was popular for comparing different CPUs.
This unit is a bit unfortunate though, since it is insensitive to the
amount of work a CPU gets done within a single instruction.
To give you an example, a specialty of the Minimal is its word
addressing mode: ADW adds the accumulator to the LSB of a 16-bit value
at a given memory address and in case of an overflow also
automatically increments the MSB. The famous MOS 6502 processor lacks
such a functionality and thus needs multiple 8-bit instructions for
the same task. Misleadingly, this results in a potentially higher Mips
value.

Having that said, the 6502 processor is rated 0.43Mips at 1MHz
translating into an average of 2.3cpi (‘clocks per instruction’).
Obviously, the number of instructions per second (ips) can be
calculated by dividing the clock frequency by the number of clocks per
instruction. At its time the 6502 was quite an efficient pipelined
CPU.

40

The Minimal, while running the MIN interpreter as a benchmark, uses on
average 8.18cpi. Compared to the 6502, this value is much higher since
the Minimal a) by design lacks the efficiency of a pipelined CPU and
b) features more advanced instructions than the 6502. You see, it’s
complicated.

On the Minimal we get 0.122Mips per MHz clock rate, i. e. 0.45Mips at
3.6864MHz (comparable to a C64 or Apple II) or 1.01Mips at 8.3MHz.

Appendix

Technical Specification

Maximum Supply Voltage​ ​ ​ ​ ​ ​ 5.5V
Maximum Clock Frequency​ ​ (rev1.5 @ 5V)​ ​ 3.8MHz

(rev1.6 @ 5V)​ ​ 8.3MHz
Recommended Clock Frequency​​ (rev1.5 @ 5V)​ ​ 3.6468MHz

(rev1.6 @ 5V)​ ​ 8.0000MHz
Relative UART Bitrate Tolerance​ ​ ​ ​ ​ +/-4%
Recommended UART Line Delay​​ (8.0000MHz)​ ​ 10ms

(3.6864MHz)​ ​ 20ms
​ ​ ​ ​ ​ ​ (1.8432MHz)​ ​ 40ms
Processing Power​​ ​ ​ (3.6864MHz)​ ​ 0.45Mips

(8.0000MHz)​ ​ 0.98Mips
(8.3000MHz)​ ​ 1.01Mips

Minimum supply voltage of rev1.6 as a function of clock frequency:

Supply current of rev1.6 at 5V supply voltage as a function of clock frequency:

41

Supply current of rev1.6 at 4MHz clock frequency as a function of supply voltage:

Microcode 1.5 (‘Enhanced’)

#define NOP CO|MI, CO|MI|HI, RO|HI|CEME, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define BNK CO|MI, CO|MI|HI, RO|HI|CEME, AO|EC|HI, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define Out CO|MI, CO|MI|HI, RO|HI|CEME, AO|TR|HI, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define CLC CO|MI, CO|MI|HI, RO|HI|CEME, AO|BI, EOFI|ES, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define SEC CO|MI, CO|MI|HI, RO|HI|CEME, AO|BI, EOFI|ES|EC, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define LSL CO|MI, CO|MI|HI, RO|HI|CEME, AO|BI, EOFI|AI, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define ROL0 CO|MI, CO|MI|HI, RO|HI|CEME, AO|BI, EOFI|AI, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define ROL1 CO|MI, CO|MI|HI, RO|HI|CEME, AO|BI, EOFI|AI|EC, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define LSR0 CO|MI, CO|MI|HI, RO|HI|CEME, AO|BI, EOFI|ES, EOFI|AI|BI, EOFI|AI|BI, EOFI|AI|BI, EOFI|AI|BI, EOFI|AI|BI, EOFI|AI|BI, EOFI|AI|BI, EOFI|AI|BI, IC, 0, 0
#define LSR1 CO|MI, CO|MI|HI, RO|HI|CEME, AO|BI, EOFI|ES, EOFI|EC|AI|BI, EOFI|EC|AI|BI, EOFI|EC|AI|BI, EOFI|EC|AI|BI, EOFI|EC|AI|BI, EOFI|EC|AI|BI, EOFI|EC|AI|BI, EOFI|EC|AI|BI, IC, 0, 0
#define ROR0 CO|MI, CO|MI|HI, RO|HI|CEME, AO|BI, EOFI|AI|BI, EOFI|AI|BI, EOFI|AI|BI, EOFI|AI|BI, EOFI|AI|BI, EOFI|AI|BI, EOFI|AI|BI, EOFI|AI|BI, IC, 0, 0, 0
#define ROR1 CO|MI, CO|MI|HI, RO|HI|CEME, AO|BI, EOFI|AI|BI|EC, EOFI|EC|AI|BI, EOFI|EC|AI|BI, EOFI|EC|AI|BI, EOFI|EC|AI|BI, EOFI|EC|AI|BI, EOFI|EC|AI|BI, EOFI|EC|AI|BI, IC, 0, 0, 0
#define ASR00x CO|MI, CO|MI|HI, RO|HI|CEME, BI, EOFI|EC, AO|BI, EOFI|ES, EOFI|AI|BI, EOFI|AI|BI, EOFI|AI|BI, EOFI|AI|BI, EOFI|AI|BI, EOFI|AI|BI, EOFI|AI|BI, EOFI|AI|BI, IC
#define ASR01x CO|MI, CO|MI|HI, RO|HI|CEME, BI, EOFI|EC, AO|BI, EOFI|ES, EOFI|EC|AI|BI, EOFI|EC|AI|BI, EOFI|EC|AI|BI, EOFI|EC|AI|BI, EOFI|EC|AI|BI, EOFI|EC|AI|BI, EOFI|EC|AI|BI, EOFI|EC|AI|BI, IC
#define ASR10x CO|MI, CO|MI|HI, RO|HI|CEME, BI, EOFI|EC, AO|BI, EOFI|ES|EC, EOFI|AI|BI, EOFI|AI|BI, EOFI|AI|BI, EOFI|AI|BI, EOFI|AI|BI, EOFI|AI|BI, EOFI|AI|BI, EOFI|AI|BI, IC
#define ASR11x CO|MI, CO|MI|HI, RO|HI|CEME, BI, EOFI|EC, AO|BI, EOFI|ES|EC, EOFI|EC|AI|BI, EOFI|EC|AI|BI, EOFI|EC|AI|BI, EOFI|EC|AI|BI, EOFI|EC|AI|BI, EOFI|EC|AI|BI, EOFI|EC|AI|BI, EOFI|EC|AI|BI, IC
#define INP CO|MI, CO|MI|HI, RO|HI|CEME, TR|AI|BI, EOFI|ES|BI, EOFI|ES|EC, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define NEG CO|MI, CO|MI|HI, RO|HI|CEME, AO|BI, EOFI|ES|EC|AI, EOFI|ES|EC|AI, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define Inc CO|MI, CO|MI|HI, RO|HI|CEME, BI, EOFI|ES|EC|AI, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define Dec CO|MI, CO|MI|HI, RO|HI|CEME, BI, EOFI|AI, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

#define LDI CO|MI, CO|MI|HI, RO|HI|CEME, RO|AI|CEME, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define ADI CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI, EOFI|AI|CEME, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define SBI CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI, EOFI|ES|EC|AI|CEME, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define CPI CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI, EOFI|ES|EC|CEME, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define ACI0 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI, EOFI|AI|CEME, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define ACI1 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI, EOFI|EC|AI|CEME, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define SCI0 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI, EOFI|ES|AI|CEME, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define SCI1 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI, EOFI|ES|EC|AI|CEME, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

#define JPA CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|CI|HI, BO|CI, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define LDA CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|AI|CEME, IC, 0, 0, 0, 0, 0, 0, 0, 0
#define STA CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, AO|RI, CEME, IC, 0, 0, 0, 0, 0, 0, 0
#define ADA CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI, EOFI|AI|CEME, IC, 0, 0, 0, 0, 0, 0, 0
#define SBA CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI, EOFI|ES|EC|AI|CEME, IC, 0, 0, 0, 0, 0, 0, 0
#define CPA CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI, EOFI|ES|EC|CEME, IC, 0, 0, 0, 0, 0, 0, 0
#define ACA0 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI, EOFI|AI|CEME, IC, 0, 0, 0, 0, 0, 0, 0
#define ACA1 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI, EOFI|EC|AI|CEME, IC, 0, 0, 0, 0, 0, 0, 0
#define SCA0 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI, EOFI|ES|AI|CEME, IC, 0, 0, 0, 0, 0, 0, 0
#define SCA1 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI, EOFI|ES|EC|AI|CEME, IC, 0, 0, 0, 0, 0, 0, 0

#define JPR CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI|CEME, RO|CI|HI, BO|CI, IC, 0, 0, 0, 0, 0, 0
#define LDR CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI|CEME, RO|MI|HI, BO|MI, RO|AI, IC, 0, 0, 0, 0, 0
#define STR CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI|CEME, RO|MI|HI, BO|MI, AO|RI, IC, 0, 0, 0, 0, 0
#define ADR CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI, EOFI|AI, IC, 0, 0, 0, 0
#define SBR CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI, EOFI|ES|EC|AI, IC, 0, 0, 0, 0
#define CPR CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI, EOFI|ES|EC, IC, 0, 0, 0, 0
#define ACR0 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI, EOFI|AI, IC, 0, 0, 0, 0
#define ACR1 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI, EOFI|EC|AI, IC, 0, 0, 0, 0
#define SCR0 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI, EOFI|ES|AI, IC, 0, 0, 0, 0
#define SCR1 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI, EOFI|ES|EC|AI, IC, 0, 0, 0, 0

#define CLB CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI|AI, EOFI|ES|EC|RI, EOFI|ES|EC|AI|CEME, IC, 0, 0, 0, 0, 0, 0, 0
#define NEB CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|AI|BI, EOFI|ES|EC|AI, EOFI|ES|EC|RI, EOFI|ES|EC|AI|CEME, IC, 0, 0, 0, 0, 0
#define INB CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|AI|BI, EOFI|ES|EC|BI, EOFI|EC|RI, EOFI|EC|AI|CEME, IC, 0, 0, 0, 0, 0
#define DEB CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|AI|BI, EOFI|ES|EC|BI, EOFI|ES|RI, EOFI|ES|AI|CEME, IC, 0, 0, 0, 0, 0
#define ADB CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI, EOFI|RI, CEME, IC, 0, 0, 0, 0, 0, 0
#define SBB CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, AO|BI, RO|AI, EOFI|ES|EC|RI, BO|AI|CEME, IC, 0, 0, 0, 0, 0
#define ACB0 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, AO|BI, RO|AI, EOFI|AI, AO|RI, BO|AI|CEME, IC, 0, 0, 0, 0
#define ACB1 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, AO|BI, RO|AI, EOFI|EC|AI, AO|RI, BO|AI|CEME, IC, 0, 0, 0, 0
#define SCB0 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, AO|BI, RO|AI, EOFI|ES|AI, AO|RI, BO|AI|CEME, IC, 0, 0, 0, 0
#define SCB1 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, AO|BI, RO|AI, EOFI|ES|EC|AI, AO|RI, BO|AI|CEME, IC, 0, 0, 0, 0

#define CLW CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, AO|BI, EOFI|ES|EC|RI, CEME, EOFI|ES|EC|RI, IC, 0, 0, 0, 0, 0
#define NEW0 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|AI|BI, EOFI|ES|EC|AI, EOFI|ES|EC|RI, CEME, RO|BI, EOFI|ES|AI, AO|RI, IC, 0, 0

42

#define NEW1 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|AI|BI, EOFI|ES|EC|AI, EOFI|ES|EC|RI, CEME, RO|BI, EOFI|ES|EC|AI, AO|RI, IC, 0, 0
#define INW0 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|AI|BI, EOFI|ES|EC|BI, EOFI|EC|RI, CEME|BI, RO|AI, EOFI|ES|AI, AO|RI, IC, 0, 0
#define INW1 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|AI|BI, EOFI|ES|EC|BI, EOFI|EC|RI, CEME|BI, RO|AI, EOFI|ES|EC|AI, AO|RI, IC, 0, 0
#define DEW0 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|AI|BI, EOFI|ES|EC|BI, EOFI|ES|RI, CEME|BI, RO|AI, EOFI|AI, AO|RI, IC, 0, 0
#define DEW1 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|AI|BI, EOFI|ES|EC|BI, EOFI|ES|RI, CEME|BI, RO|AI, EOFI|EC|AI, AO|RI, IC, 0, 0
#define ADW0 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI, EOFI|RI, CEME|BI, RO|AI, EOFI|ES|AI, AO|RI, IC, 0, 0, 0
#define ADW1 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI, EOFI|RI, CEME|BI, RO|AI, EOFI|ES|EC|AI, AO|RI, IC, 0, 0, 0
#define SBW0 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, AO|BI, RO|AI, EOFI|ES|EC|RI, CEME|BI, RO|AI, EOFI|AI, AO|RI, IC, 0, 0
#define SBW1 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, AO|BI, RO|AI, EOFI|ES|EC|RI, CEME|BI, RO|AI, EOFI|EC|AI, AO|RI, IC, 0, 0
#define ACW0 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI, EOFI|BI, BO|RI, CEME|BI, RO|AI, EOFI|ES|AI, AO|RI, IC, 0, 0
#define ACW1 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, RO|BI, EOFI|EC|BI, BO|RI, CEME|BI, RO|AI, EOFI|ES|EC|AI, AO|RI, IC, 0, 0
#define SCW0 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, AO|BI, RO|AI, EOFI|ES|BI, BO|RI, CEME|BI, RO|AI, EOFI|AI, AO|RI, IC, 0
#define SCW1 CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|MI|HI, BO|MI, AO|BI, RO|AI, EOFI|ES|EC|BI, BO|RI, CEME|BI, RO|AI, EOFI|EC|AI, AO|RI, IC, 0

#define LDS CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, MI|HI, MI, RO|AI, EOFI|MI, RO|AI, IC, 0, 0, 0, 0, 0, 0
#define STS CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, MI|HI, MI, RO|MI, AO|RI, MI, RO|AI, EOFI|BI, MI, RO|MI, RO|AI, BO|MI, AO|RI
#define PHS CO|MI, CO|MI|HI, RO|HI|CEME, MI|HI, MI, RO|MI|BI, AO|RI, BO|AI, EOFI|ES|BI|MI, EOFI|RI, AO|MI, RO|AI, IC, 0, 0, 0
#define PLS CO|MI, CO|MI|HI, RO|HI|CEME, MI|HI, MI|BI, RO|AI, EOFI|ES|EC|AI, AO|RI, AO|MI, RO|AI, IC, 0, 0, 0, 0, 0
#define JPS CO|MI, CO|MI|HI, RO|HI|CEME, MI|HI, MI|BI, RO|AI|MI, CO|RI, EOFI|AI|MI, CO|RI|HI, BO|MI, EOFI|RI, CO|MI, CO|MI|HI, RO|BI|CEME, RO|CI|HI, BO|CI
#define RTS CO|MI, CO|MI|HI, RO|HI|CEME, MI|HI, MI|BI, RO|AI|MI, EOFI|ES|EC|AI|MI, RO|CI|HI, EOFI|ES|EC|AI|MI, RO|CI, BO|MI, AO|RI, CEME, CEME, IC, 0

#define BRA CO|MI, CO|MI|HI, RO|HI|CEME, RO|BI|CEME, RO|CI|HI, BO|CI, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define ___ CO|MI, CO|MI|HI, RO|HI|CEME, CEME, CEME, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

Microcode 1.6 (‘Redux’)
#define NOP COL|MIL, COH|MIH, RO|II|CE|ME, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define BNK COL|MIL, COH|MIH, RO|II|CE|ME, AO|NI, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define OUT COL|MIL, COH|MIH, RO|II|CE|ME, AO|TI, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define CLC COL|MIL, COH|MIH, RO|II|CE|ME, AO|BI, EO|FI|ES, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define SEC COL|MIL, COH|MIH, RO|II|CE|ME, AO|BI, EO|FI|ES|EC, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define LSL COL|MIL, COH|MIH, RO|II|CE|ME, AO|BI, EO|FI|AI, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define ROLx0x COL|MIL, COH|MIH, RO|II|CE|ME, AO|BI, EO|FI|AI, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define ROLx1x COL|MIL, COH|MIH, RO|II|CE|ME, AO|BI, EO|FI|AI|EC, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define LSRx0x COL|MIL, COH|MIH, RO|II|CE|ME, AO|BI, EO|FI|ES, EO|FI|AI|BI, EO|FI|AI|BI, EO|FI|AI|BI, EO|FI|AI|BI, EO|FI|AI|BI, EO|FI|AI|BI, EO|FI|AI|BI, EO|FI|AI|BI, IC, 0, 0
#define LSRx1x COL|MIL, COH|MIH, RO|II|CE|ME, AO|BI, EO|FI|ES, EO|FI|EC|AI|BI, EO|FI|EC|AI|BI, EO|FI|EC|AI|BI, EO|FI|EC|AI|BI, EO|FI|EC|AI|BI, EO|FI|EC|AI|BI, EO|FI|EC|AI|BI, EO|FI|EC|AI|BI, IC, 0, 0
#define RORx0x COL|MIL, COH|MIH, RO|II|CE|ME, AO|BI, EO|FI|AI|BI, EO|FI|AI|BI, EO|FI|AI|BI, EO|FI|AI|BI, EO|FI|AI|BI, EO|FI|AI|BI, EO|FI|AI|BI, EO|FI|AI|BI, IC, 0, 0, 0
#define RORx1x COL|MIL, COH|MIH, RO|II|CE|ME, AO|BI, EO|FI|AI|BI|EC, EO|FI|EC|AI|BI, EO|FI|EC|AI|BI, EO|FI|EC|AI|BI, EO|FI|EC|AI|BI, EO|FI|EC|AI|BI, EO|FI|EC|AI|BI, EO|FI|EC|AI|BI, IC, 0, 0, 0
#define ASR00x COL|MIL, COH|MIH, RO|II|CE|ME, FF|BI, EO|FI|EC, AO|BI, EO|FI|ES, EO|FI|AI|BI, EO|FI|AI|BI, EO|FI|AI|BI, EO|FI|AI|BI, EO|FI|AI|BI, EO|FI|AI|BI, EO|FI|AI|BI, EO|FI|AI|BI, IC
#define ASR01x COL|MIL, COH|MIH, RO|II|CE|ME, FF|BI, EO|FI|EC, AO|BI, EO|FI|ES, EO|FI|EC|AI|BI, EO|FI|EC|AI|BI, EO|FI|EC|AI|BI, EO|FI|EC|AI|BI, EO|FI|EC|AI|BI, EO|FI|EC|AI|BI, EO|FI|EC|AI|BI, EO|FI|EC|AI|BI, IC
#define ASR10x COL|MIL, COH|MIH, RO|II|CE|ME, FF|BI, EO|FI|EC, AO|BI, EO|FI|ES|EC, EO|FI|AI|BI, EO|FI|AI|BI, EO|FI|AI|BI, EO|FI|AI|BI, EO|FI|AI|BI, EO|FI|AI|BI, EO|FI|AI|BI, EO|FI|AI|BI, IC
#define ASR11x COL|MIL, COH|MIH, RO|II|CE|ME, FF|BI, EO|FI|EC, AO|BI, EO|FI|ES|EC, EO|FI|EC|AI|BI, EO|FI|EC|AI|BI, EO|FI|EC|AI|BI, EO|FI|EC|AI|BI, EO|FI|EC|AI|BI, EO|FI|EC|AI|BI, EO|FI|EC|AI|BI, EO|FI|EC|AI|BI, IC
#define INP0 COL|MIL, COH|MIH, RO|II|CE|ME, FF|BI|FI, TO|AI, EO|ES|EC|FI, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define INP1 COL|MIL, COH|MIH, RO|II|CE|ME, FF|BI|FI, FF|AI, EO|ES|EC|FI, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define NEG COL|MIL, COH|MIH, RO|II|CE|ME, AO|BI, EO|ES|EC|AI, EO|FI|ES|EC|AI, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define INC COL|MIL, COH|MIH, RO|II|CE|ME, FF|BI, EO|FI|ES|EC|AI, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define DEC COL|MIL, COH|MIH, RO|II|CE|ME, FF|BI, EO|FI|AI, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

#define LDI COL|MIL, COH|MIH, RO|II|CE|ME, RO|AI|CE, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define CPI COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE, EO|FI|ES|EC, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define ADI COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE, EO|FI|AI, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define ACIx0x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE, EO|FI|AI, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define ACIx1x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE, EO|FI|EC|AI, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define SBI COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE, EO|FI|ES|EC|AI, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define SCIx0x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE, EO|FI|ES|AI, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define SCIx1x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE, EO|FI|ES|EC|AI, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

#define JPA COL|MIL, COH|MIH, RO|II|CE|ME, RO|CIL|ME, RO|CIH, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define LDA COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|AI, IC, 0, 0, 0, 0, 0, 0, 0, 0
#define STA COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, AO|RI, IC, 0, 0, 0, 0, 0, 0, 0, 0
#define CPA COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|BI, EO|FI|ES|EC, IC, 0, 0, 0, 0, 0, 0, 0
#define ADA COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|BI, EO|FI|AI, IC, 0, 0, 0, 0, 0, 0, 0
#define ACAx0x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|BI, EO|FI|AI, IC, 0, 0, 0, 0, 0, 0, 0
#define ACAx1x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|BI, EO|FI|EC|AI, IC, 0, 0, 0, 0, 0, 0, 0
#define SBA COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|BI, EO|FI|ES|EC|AI, IC, 0, 0, 0, 0, 0, 0, 0
#define SCAx0x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|BI, EO|FI|ES|AI, IC, 0, 0, 0, 0, 0, 0, 0
#define SCAx1x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|BI, EO|FI|ES|EC|AI, IC, 0, 0, 0, 0, 0, 0, 0

#define JPR COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|CIL|ME, RO|CIH, IC, 0, 0, 0, 0, 0, 0, 0
#define LDR COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|BI|ME, RO|MIH, BO|MIL, RO|AI, IC, 0, 0, 0, 0, 0
#define STR COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|BI|ME, RO|MIH, BO|MIL, AO|RI, IC, 0, 0, 0, 0, 0
#define CPR COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|BI|ME, RO|MIH, BO|MIL, RO|BI, EO|FI|ES|EC, IC, 0, 0, 0, 0
#define ADR COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|BI|ME, RO|MIH, BO|MIL, RO|BI, EO|FI|AI, IC, 0, 0, 0, 0
#define ACRx0x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|BI|ME, RO|MIH, BO|MIL, RO|BI, EO|FI|AI, IC, 0, 0, 0, 0
#define ACRx1x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|BI|ME, RO|MIH, BO|MIL, RO|BI, EO|FI|EC|AI, IC, 0, 0, 0, 0
#define SBR COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|BI|ME, RO|MIH, BO|MIL, RO|BI, EO|FI|ES|EC|AI, IC, 0, 0, 0, 0
#define SCRx0x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|BI|ME, RO|MIH, BO|MIL, RO|BI, EO|FI|ES|AI, IC, 0, 0, 0, 0
#define SCRx1x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|BI|ME, RO|MIH, BO|MIL, RO|BI, EO|FI|ES|EC|AI, IC, 0, 0, 0, 0

#define CLB COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, AO|BI, EO|ES|EC|RI, IC, 0, 0, 0, 0, 0, 0, 0
#define NEB COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|AI|BI, EO|ES|EC|AI, EO|ES|EC|RI, EO|FI|ES|EC|AI, IC, 0, 0, 0, 0, 0
#define INB COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|AI|BI, EO|ES|EC|BI, EO|EC|RI, EO|FI|EC|AI, IC, 0, 0, 0, 0, 0
#define DEB COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|AI|BI, EO|ES|EC|BI, EO|ES|RI, EO|FI|ES|AI, IC, 0, 0, 0, 0, 0
#define ADB COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|BI, EO|FI|RI, IC, 0, 0, 0, 0, 0, 0, 0
#define ACBx0x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|BI, EO|FI|BI, BO|RI, IC, 0, 0, 0, 0, 0, 0
#define ACBx1x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|BI, EO|FI|EC|BI, BO|RI, IC, 0, 0, 0, 0, 0, 0
#define SBB COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, AO|BI, RO|AI, EO|FI|ES|EC|RI, BO|AI, IC, 0, 0, 0, 0, 0
#define SCBx0x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, AO|BI, RO|AI, EO|FI|ES|AI, AO|RI, BO|AI, IC, 0, 0, 0, 0
#define SCBx1x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, AO|BI, RO|AI, EO|FI|ES|EC|AI, AO|RI, BO|AI, IC, 0, 0, 0, 0

#define CLW COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, AO|BI, EO|ES|EC|RI, ME, EO|ES|EC|RI, IC, 0, 0, 0, 0, 0
#define NEWx0x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|AI|BI, EO|ES|EC|AI, EO|FI|ES|EC|RI, ME, RO|BI, EO|FI|ES|AI, AO|RI, IC, 0, 0
#define NEWx1x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|AI|BI, EO|ES|EC|AI, EO|FI|ES|EC|RI, ME, RO|BI, EO|FI|ES|EC|AI, AO|RI, IC, 0, 0
#define INWx0x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|AI|BI, EO|ES|EC|BI, EO|FI|EC|RI, ME|FF|BI, RO|AI, EO|FI|ES|AI, AO|RI, IC, 0, 0
#define INWx1x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|AI|BI, EO|ES|EC|BI, EO|FI|EC|RI, ME|FF|BI, RO|AI, EO|FI|ES|EC|AI, AO|RI, IC, 0, 0
#define DEWx0x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|AI|BI, EO|ES|EC|BI, EO|FI|ES|RI, ME|FF|BI, RO|AI, EO|FI|AI, AO|RI, IC, 0, 0
#define DEWx1x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|AI|BI, EO|ES|EC|BI, EO|FI|ES|RI, ME|FF|BI, RO|AI, EO|FI|EC|AI, AO|RI, IC, 0, 0
#define ADWx0x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|BI, EO|FI|RI, ME|FF|BI, RO|AI, EO|FI|ES|AI, AO|RI, IC, 0, 0, 0
#define ADWx1x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|BI, EO|FI|RI, ME|FF|BI, RO|AI, EO|FI|ES|EC|AI, AO|RI, IC, 0, 0, 0
#define ACWx0x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|BI, EO|FI|BI, BO|RI, ME|FF|BI, RO|AI, EO|FI|ES|AI, AO|RI, IC, 0, 0
#define ACWx1x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, RO|BI, EO|FI|EC|BI, BO|RI, ME|FF|BI, RO|AI, EO|FI|ES|EC|AI, AO|RI, IC, 0, 0
#define SBWx0x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, AO|BI, RO|AI, EO|FI|ES|EC|RI, ME|FF|BI, RO|AI, EO|FI|AI, AO|RI, IC, 0, 0
#define SBWx1x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, AO|BI, RO|AI, EO|FI|ES|EC|RI, ME|FF|BI, RO|AI, EO|FI|EC|AI, AO|RI, IC, 0, 0
#define SCWx0x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, AO|BI, RO|AI, EO|FI|ES|BI, BO|RI, ME|FF|BI, RO|AI, EO|FI|AI, AO|RI, IC, 0
#define SCWx1x COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE|ME, RO|MIH|CE, BO|MIL, AO|BI, RO|AI, EO|FI|ES|EC|BI, BO|RI, ME|FF|BI, RO|AI, EO|FI|EC|AI, AO|RI, IC, 0

#define LDS COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE, FF|MIH|MIL, RO|AI, EO|MIL, RO|AI, IC, 0, 0, 0, 0, 0, 0, 0
#define STS COL|MIL, COH|MIH, RO|II|CE|ME, RO|BI|CE, FF|MIH|MIL, RO|MIL, AO|RI, FF|MIL, RO|AI, EO|BI, FF|MIL, RO|MIL, RO|AI, BO|MIL, AO|RI, IC
#define PHS COL|MIL, COH|MIH, RO|II|CE|ME, FF|MIH|MIL, RO|MIL|BI, AO|RI, BO|AI, EO|ES|BI|MIL, EO|RI, AO|MIL, RO|AI, IC, 0, 0, 0, 0
#define PLS COL|MIL, COH|MIH, RO|II|CE|ME, FF|MIH|MIL|BI, RO|AI, EO|ES|EC|AI, AO|RI, AO|MIL, RO|AI, IC, 0, 0, 0, 0, 0, 0
#define JPS COL|MIL, COH|MIH, RO|II|CE|ME, FF|MIH|MIL|BI, RO|AI|MIL, COL|RI, EO|AI|MIL, COH|RI, BO|MIL, EO|RI, COL|MIL, COH|MIH, RO|CIL|ME, RO|CIH, IC, 0
#define RTS COL|MIL, COH|MIH, RO|II|CE|ME, FF|MIH|MIL, RO|MIL|CIL, CE|ME, CE, COL|BI, RO|CIH|ME, RO|CIL, FF|MIL|CE, BO|RI|CE, IC, 0, 0, 0

#define BRA COL|MIL, COH|MIH, RO|II|CE|ME, RO|CIL|ME, RO|CIH, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#define ___ COL|MIL, COH|MIH, RO|II|CE|ME, CE, CE, IC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

EBNF of Min

letter ​ = 'a' | ... | 'z' | 'A' | ... | 'Z' ;
digit ​ = '0' | ... | '9' ;
rel-op ​ = '==' | '!=' | '<' | '>' | '<=' | '>=' ;
str-op ​ = '==' | '!=' ;
add-op ​ = '+' | '-' ;
mul-op ​ = '*' | '/' ;

43

number ​ = digit, { digit } ;
identifier ​ = letter, { letter | digit | '_' } ;
whitespace ​ = ' ' | '\r' | '\t' | ':' | ';' ;
character ​ = ? any ASCII character ? ;
hexdigit ​ = digit | 'a' | ... | 'f' ;
hexnumber ​ = '0x', hexdigit, { hexdigit } ;

file ​ = { statement }, { NEWLINE }, ENDMARKER ;
statement ​ = { NEWLINE }, ? OKDENT ?, simple-line | compound-stmt ;
simple-line ​ = simple-stmt, { simple-stmt }, NEWLINE ;

simple-stmt ​ = 'print', expr-list
 ​ | 'break'
 ​ | 'return', [expr]
 ​ | identifier, '(', [expr-list], ')' ​ (* sub call *)
 ​ | identifier, '=', expr ; ​ (* assignment *)

compound-stmt = 'if', bool-expr, block,
 ​ { { NEWLINE }, ? OKDENT ?, 'elif', block },
 ​ [{ NEWLINE }, ? OKDENT ?, 'else', block]
 ​ | 'while', bool-expr, block
 ​ | 'def', ? NODENT ?, identifier, '(', [param-list], ')', block ;
 ​ | 'include', '"', { character }, '"'

block ​ = NEWLINE, ? INDENT ?, statement, { statement }, ? DEDENT ?
 ​ | simple-line ;

expr ​ = array-expr | math-expr ;
expr-list ​ = expr, { ',', expr } ;
param-list ​ = ['&'], identifier, { ',', ['&'], identifier } ;

array ​ = '[', [math-expr, { ',', math-expr }], ']' (* returns int[] *)
 ​ | '"', { character }, '"' ​ (* returns chr[] *)
 ​ | identifier, '(', [expr-list], ')'
 ​ | identifier
 ​ | array, '[', math-expr, '..', math-expr, ']' ; (* array slicing *)
array-expr ​ = array { '+' array } ; ​ (* concatenation *)

math-factor ​ = '(', math-expr, ')'
 ​ | number | hexnumber
 ​ | "'", character, "'"
 ​ | 'key', '(', ')'
 ​ | 'len', '(', array-expr, ')'
 ​ | 'rnd', '(', ')' ​ (* pseudo-random byte *)
 ​ | identifier '(', [expr-list], ')'
 ​ | identifier
 ​ | array, '[', math-expr, ']' ; ​ (* element access *)
math-inv ​ = ['~'], math-factor
math-bitwise​ = math-inv, { ('&' | '|' | '^' | '>>' | '<<'), math-inv } ;
math-term ​ = math-bitwise, { mul-op, math-bitwise } ;
math-expr ​ = [add-op], math-term { add-op, math-term } ;

bool-factor ​ = ['not'], math-expr, [rel-op, math-expr]

44

 ​ | ['not'], array-expr, [str-op, array-expr] ;
bool-term ​ = bool-factor, { 'and', bool-factor } ;
bool-expr ​ = bool-term, { 'or', bool-term } ;

Updating the OS

For the very first power-up of your Minimal, it is necessary to write
the operating system onto the FLASH IC by using an external
programmer. Once you have a version of the OS running, you can update
the OS ‘in situ’. Anytime you press the reset button, the OS copies
itself from its FLASH image location (first 4KB of bank 0) into RAM
0xf000 and runs there. And while the OS is running from RAM you can
update it’s FLASH image like so:

1)​Clear the RAM area 0xe000-0efff by typing: v e000 efff 0 ENTER.
2)​Assemble the operating system ‘os.txt’ on your host system.
3)​On the Minimal type: e000 ENTER and copy & paste the OS hex code.
4)​Assemble and upload the program ‘prom.txt’ to the Minimal.
5)​Start ‘prom’ by typing: 8000 r ENTER.
6)​‘prom’ will ask you if you want to copy 0xe000-0xefff to 0x0000.

Just hit ‘y’ and you are greeted by the new OS ;-)

Expansion Port

The Minimal features a stackable expansion port allowing you to expand
the CPU system with any functionality that can be accessed by the
‘memory-mapping’ technique: Within the Minimal, a so-called inhibit
signal ~INH is pulled inactive by default. Whenever an expansion
actively pulls ~INH low, the FLASH memory and RAM of the Minimal are
disabled (i. e. the ~CE chip enable lines are forced low) and their
outputs will remain in a high-impedance state.

By pulling ~INH low, the expansion card effectively hijacks the memory
address and bus lines, thus redirecting memory I/O operations of the
CPU to the expansion hardware.

The expansion card pulls the ~INH signal only low if the CPU accesses
certain memory locations associated with the expansion card’s
functionality. The necessary address decoding logic resides on the
expansion card.

Here is a pinout of the expansion port (top view of the PCB):

45

Pin​ ​ Direction​ Description
--
1​ ​ GND​ ​ ground
2​ ​ N/C​ ​ not connected
3​ ​ +5V​ ​ supply voltage
4​ ​ out​ ​ reset line of the CPU (active low)
5​ ​ out​ ​ system clock
6​ ​ out​ ​ CPU control line ‘RAM input’ (active high)
7​ ​ out​ ​ CPU control line ‘RAM output’ (active low)
8​ ​ in​ ​ RAM/ROM access inhibit signal (active low)
9 - 16​ in/out​ bus line bit 0-7
17 - 32​ out​ ​ memory address register bit 0-15

Please note that the extension port provides direct unbuffered access to
vital system signals. Proceed with caution. Do not overload any provided
signal with too much additional capacitance. This is particularly
important with the system clock, since it already is driving many of the
Minimal’s ICs. It is good design practice to buffer the system clock on
your extension card prior to using it for driving your own circuit.

VGA Expansion Card

You can add VGA output to your Minimal revision 1.5 by plugging the
‘Minimal VGA Expansion Card’ into the expansion port of the CPU.

Set up your CPU with a 16MHz oscillator, select a system clock
frequency of 2MHz (jumper to /8 position) and adjust the serial speed
to 125kbps (2MHz/16).

46

Next, connect the 16MHz (/1) and 4Mhz (/4) signals marked as ‘X’ in
the diagram of the Minimal’s 5x2 clock divider to the appropriate
socket on the VGA extension.

/1​ |O X| - 16MHz
/2​ |O O|

​ /4​ |O X| - 4MHz
​ /8​ |O--O| - jumper
​ /16​ |O O|

In case you plan on using a modern VGA monitor you are good to go now!

But before connecting your vintage CRT monitor to this VGA, a word of
warning: This minimalistic VGA card generates the necessary blanking
intervals from software, relying on *you* to initialize the VRAM to zero
before switching on your precious vintage CRT. Failing to do so may
cause interesting and permanent damage to your CRT since its electron
beam will hit spots it’s not supposed to hit.

The CPU interacts with the VGA expansion via two memory locations:

​ 0xdff9 - 0xdffa​ ​ 16-bit VRAM pointer register (MSB, LSB)
​ 0xdffc​ ​ ​ 8-bit VRAM I/O register

To store a value 0xff at VRAM index 0x0811 you can either type:
​
​ 0xdff9: 08 11 ENTER
​ 0xdffc: ff ENTER

or use the program:

​ LDI 0x08 STA 0xdff9 LDI 0x11 STA 0xdffa LDI 0xff STA 0xdffc

To read back a byte from VRAM just type dffc.dffc ENTER or use the
instruction LDA 0xdffc.
I have written several small functions that allow to use the VGA card
quite comfortably (see source code for further information on how to
call these functions):

VGA_Init​ ​ Erases VRAM (including the blank area) to zero
VGA_Fill​ ​ Lets you fill the display area with a byte value
VGA_Print​ ​ Lets you print out a text in the display area
VGA_SetPixel​ Lets you set pixel at a specific (x|y) position
​ ​ ​ within the display area

47

These functions comply with the allowed display area of the VGA card.

RTS/CTS Flow Control

By a simple modification as shown below, using RTS/CTS flow control is
possible on the Minimal. This gives you higher upload speed since
unnecessary line delays can be omitted and additionally allows for
cutting and pasting text directly into the native text editor of the
Minimal. Since the Minimal is already generating the required CTS
signal, only a single bodge wire is needed to feed CTS to the
appropriate pin of the USB-to-serial connector. I have made a video
about this topic: https://www.youtube.com/watch?v=lwuZ7xYtMKk

Please note that not all USB-to-serial converter chips support RTS/CTS
flow control in a way that suits the Minimal CPU. As of today, CH340G
works fine while FTDI232 and CP2102 are not suitable due to
differences in their hardware implementations.

48

https://www.youtube.com/watch?v=lwuZ7xYtMKk

	Manual Rev. 1.x
	Board Revisions
	Revision 1.2 (EEPROM PCB Edition)
	Revision 1.3 (FLASH PCB Edition)
	Revision 1.5 (Expanded PCB Edition)
	Redux Breadboard Revision 1.6 (aka Beast Mode Edition)

	Building the Hardware
	Before Power-Up
	Serial Port Configuration
	Boot Monitor
	Memory Layout
	SSD File System
	SAVE
	LOAD
	ZAP (DELETE)
	TABLE OF CONTENT (DIRECTORY)
	WIPE (FORMAT)
	File Format
	Properties

	Assembler Programming
	Assembler Syntax
	Instruction Set Overview
	Instruction Set 1.3 - 1.5
	Instruction Set 1.6
	Addressing Modes
	UART Operations
	Stack Operations
	Calling Convention
	API Functions
	_CursorX
	_CursorY
	_Random
	_XOR
	_HexToWord
	_Mnemonics
	_MemAddr
	_ParsePtr
	_InpBuf

	Native Tool Chain
	Text Editor
	Text File Transfer
	Assembler
	Min (Python-Like Language)
	Quick Example
	Min’s Syntax is almost like Python’s
	Error Codes

	VGA – PS/2 – Terminal

	Emulator
	Commands
	Character Set

	CPU Architecture
	Components & Control Signals
	8-Bit Data Bus
	
	System Clock
	A-Register (Accumulator)
	B-Register
	Adder (ALU)
	Memory (RAM and FLASH)
	Memory Address Register (MAR)
	Program Counter (PC_L, PC_H)
	Terminal Registers (TR)
	Flags Register (FR)
	Instruction Register (IR)
	Step Counter (Step)

	Control Word Generation
	Processing Instructions
	Reaching 8.3MHz
	Processing Power

	Appendix
	Technical Specification
	Microcode 1.5 (‘Enhanced’)
	Microcode 1.6 (‘Redux’)
	EBNF of Min
	Updating the OS
	Expansion Port
	VGA Expansion Card
	RTS/CTS Flow Control

