Fine-grained Resource Configuration

Motivation

The current resource request for container does not consider the resource usages in specific
UDF. It assumes that the UDF should just create short-life small objects and these can be
recycled quickly by JVM, so most of the resources will be controlled and managed by
framework. It is suitable for most of the scenarios and can work well in performance.

For some special cases, the UDF may consume much resources in different ways. For
example. the user may load big dictionary in memory or define the large internal cache in
UDF, and this kind of memory will not be released and recycled. So it will result in exceeding
the maximum resource limit of container and even decrease performance.

To avoid the above bad cases, this proposal provides an option to give users the possibility
to define the resource usages if needed. And the container resource request should also
consider this part of resource in UDF in order to get the best performance.

Core Changes

e The container resource that RM requests from the cluster is composed of cpu cores
and memory currently. The cpu cores in container resource is the same with that in
slot resource profile from JM requests to RM, and the memory in container should
consider extra framework memory except for the total memory in slot resource
profile.

e The framework memory is mainly used by network buffer pool and memory manager
services in TM, and it is occupied along with TM startup no matter with running tasks.
Currently this part of memory size and type(heap or direct) can be configured
according to job scale. For future improvements, it can be configured and
deterministic in task level, so considered together in slot resource profile from JM
requests to RM.

e The cpu cores in slot resource profile refers to the cpu usages by running tasks, and
they can be calculated from chained operators when generating job graph based on
individual operator cpu cores setted by setResource API.

e The memory in slot resource profile is expanded to different types(heap, direct,
native) and also refers to the memory usages by running tasks.

e The task memory can be calculated from chained operators which mainly concern
about memory usages in states and UDF. Users can estimate the state size by
setResource API, and the speicific state backend provides the method to give the

best suitable memory usages in different types based on the state size. For UDF
memory usages, it can also be setted by setResource API.

e Apart from resource, The JVM options attached with container should be supported
and could also be configured in job level.

Container Resource (RM -> Cluster)

Slot Resource Profile (JM -> RM) Framework Resource

) ‘ : TM memory
: ‘cpu cores | heap memory|d\rec1 memory | native memory ' ; (heap, direct)

: | network buffer pool ‘ + | memory manager ‘

Task Resource

@ ‘ task heap memory | : ‘ task direct memory ‘ | task native memory |

Config Config

Chained Operators Resource
: - : | chained operators memory
: | chained operators cpu cores StreamGraph Generation (heap, direct, native)

Operator Resource

s
API : API

Public Interfaces

On the API level, the main objective is to give users the options to expose different
resources usages for operators concerned about UDF implementation. In order to define the
resource and consider dynamic expansion in an easy way, we introduce the ResourceSpec
class to describe the different resource factors and provide some basic construction
methods for resource group.

The ResourceSpec can be setted onto the internal transformation in DataStream and base
operator in DataSet separately, the similar way with other existing properties like parallelism,
name, etc. In order to support resource resize for container, the ResourceSpec will be
setted as minimum and maximum in the API for future improvements.

ResourceSpec

public class ResourceSpec implements Serializable {

public ResourceSpec(
double cpuCores,
long heapMemoryInMB,
long directMemoryIlnMB,
long nativeMemoryInMB,
long stateSizelnMB) {

I/ without state

public ResourceSpec(
double cpuCores,
long heapMemoryInMB,
long directMemoryInMB,
long nativeMemorylnMB) {

/lonly need cpu and java heap memory as common
public ResourceSpec(double cpuCores, long heapMemoryInMB) {
}

SingleOutputStreamOperator(DataStream)

public SingleOutputStreamOperator<T> setResource(
ResourceSpec minResource, ResourceSpec maxResource) {
transformation.setResource(minResource, maxResource);
return this;

public SingleOutputStreamOperator<T> setResource(ResourceSpec resource) {
transformation.setResource(resource, resource);
return this;

Operator(DataSet)

public O setResource(ResourceSpec minResource, ResourceSpec maxResource) {
this.minResource = minResource;
this.maxResource = maxResource;
O returnType = (O) this;
return returnType;

public O setResource(ResourceSpec resource) {
this.minResource = resource;
this.maxResource = resource;
O returnType = (O) this;
return returnType;

}

	ResourceSpec
	SingleOutputStreamOperator(DataStream)
	Operator(DataSet)

