
How to re-interpret BDT-based LLP searches?

This is a live document, where people can go ahead and write out thoughts and ideas ahead
of the discussion which will take place on Weds May 26th at ~15h CET:
https://indico.cern.ch/event/980853/timetable/#b-420244-reinterpretation

Please feel free to contribute!

LC:

-​ Basic problem: searches which make use of machine-learning techniques are not
generally easy to re-interpret in terms of models other than those in the original paper

-​ In fact, (theorists please correct me if I’m wrong), I don’t think ANY of the
many LLP searches which have used BDTs/NNs in recent years have been
re-used…

-​ This is obviously a problem in the long-term: what happens in 40nok years
when all the analysts have moved on? We will still want to exploit these
searches !

-​ Need to think now about this problem

-​ Should we be preserving BDTs/NNs on HEPData?
-​ If so, can they easily be run ? (what happens in 40 years when no-one

uses/maintains TMVA anymore??)
-​ TMVA BDTs can quite easily be converted to pure C++/python code

eg using https://gitlab.com/agbuckley/bdt2cpp/-/tree/master
-​ This means no horrible dependencies need to be carried around just

to re-run the BDTs
-​ However, does similar system exist for NNs?

-​ ONNX has been mentioned, but is it really as portable as we need it?

-​ Or do we need to preserve the analysis in a Docker container, with all dependencies?
-​ This is what RECAST framework which is used by ATLAS does:

-​ Does CMS have any similar containerisation projects?
-​ And LHCb ?

-​ How to give Theorists access to this ?

-​ Even if we *can* preserve BDTs, can they actually get re-run without a full detector
simulation?

-​ Eg if one uses detailed response eg # clusters, jet width etc, as inputs…
-​ Could efficiency tables/smearing of truth variables do the jon?

-​ Probably not, but are there other options?
-​

-​ How can we train our BDTs/NNs to avoid such issues?
-​ Train on variables well-defined at truth-level, if possible
-​ Smear inputs according to systematics to avoid overtraining to nominal..

https://indico.cern.ch/event/980853/timetable/#b-420244-reinterpretation
https://gitlab.com/agbuckley/bdt2cpp/-/tree/master

-​ …?

Karri/Kate side conversation - which LL analyses actually use event level BDTs/ML?

Most common seems to be object level

●​ CMS displaced jet NN tagger
http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-19-011/

●​ CMS displaced jets
http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-19-021/

Could we not just provide parameterized efficiencies here? This is what we do for b-tagging.
For reinterpretation efficiencies don’t need to be perfect anyway, just “good enough”

Any event level?

●​ Maybe ATLAS calRatio?? LC : yes, we do !
●​ https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2017-25/
●​ https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-20

20-007/

Hot take: we shouldn’t use ML for LL searches :)
​ 👀

From Zoom Chat

Giordon S: SModelS also works with the full likelihoods -- not just simplified ones.
Jan Heisig: Exactly, haven't have time to comment on it. So far there are three ATLAS
analyses where we use this information.
Andy Buckley: Credit where it's due (rather than break the flow of discussion): Louie himself
has added some very nice features to that bdt2cpp tool!
G S: This paper from Ghosh, Nachman ,Whiteson -- https://arxiv.org/abs/2105.08742 -- has
some times on uncertainty-aware ML.
G S: ONNX: https://onnx.ai/
G S: You can see the supported tools: https://onnx.ai/supported-tools.html
G S : @Andy:
https://github.com/microsoft/onnxruntime/blob/master/docs/Versioning.md#:~:text=Compatibi
lity-,Backwards%20compatibility,range%20%5B7%2D9%5D.
Andy Buckley: The NN preserving tool that Harrison P mentioned wasn't in the Reint Forum,
actually, but on a mailing list. He was talking about Frugally Deep:
https://github.com/Dobiasd/frugally-deep

Andy Buckley: I think there are more, e.g. this https://github.com/serizba/cppflow (and IIRC
PyTorch also has a C/C++ interface)

