Unit 2 Simplifying Expressions and Solving Equations

		Knowledgehook- www.khmath.com	Learning Goals
Page 02	Lesson 01: Introduction to Algebra	Simplifying Expressions ☆☆☆ Challenge 6 ☆☆☆ Challenge 7	I understand the difference between simplifying expressions and solving equations.
Page 03	Lesson 02: Single-Variable Expressions		I can solve single-variable expressions.
Page 04	Lesson 03: Gathering Like Terms		I can simplify like terms.
Page 06	Lesson 04: Adding and Subtracting Polynomials	Simplifying Expressions Challenge 9	I can add and subtract polynomials with up to two variables.
Page 08	Lesson 05: Multiplying Polynomials	Simplifying Expressions ☆☆☆ Challenge 10	I can multiply a polynomial by a monomial involving variables.
	Mid-Chapter Assessment (quiz)		
Page 10	Lesson 06: Solving Equations - by addition and subtraction		I can solve equations through inverse operations.
Page 12	Lesson 07: Solving Equations - by division and multiplication		I can solve equations through inverse operations.
Page 15	Lesson 08: Solving Equations - using signs and expansion		I can solve equations with negative signs. I can solve equations by multiplying polynomials by monomials.
Page 18	Lesson 09: Solving Equations - with like terms		I can solve equations by adding like terms.
Page 20	Lesson 10: Solving Equations to solve problems	Solving Equations ☆☆☆ Challenge 2 Solving Equations ☆☆☆ Challenge 4	I can substitute values into equations to solve problems.
Page 23	Review and extra practice		
	Assessment (test)		

DragonBoxEDU - ClassCode: 4GOB

Access: http://games.wewanttoknow.com
Or, download free iOS app DragonBoxEDU
(the free one)

Goal: complete chapter 8

Lesson 01: Difference between solving equations and simplifying expressions

Simplifying Expressions:

•

- Example of expression: 3x 2x + 5x- 6x
- Example of expression in an equation: 2x + 3x + 4 = 24

Solving Equations:

:

Example: 2x + 3 = 5
 x = 1

PRACTICE:

Are these expressions or equations? Circle one for each.

v = 2v + 7	overession	oguation
y = 3x + 7	expression	equation

$$7x + 1 = 7.15$$
 expression equation

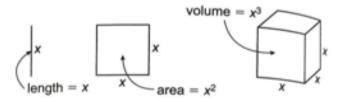
$$6m - 7t + 1 - 11m$$
 expression equation

Terms in Algebra

- Variable
- Coefficient

$$3x$$
 - variable is x, coefficient is 3

$$-\mathbf{X}^2$$
 - variable is x, coefficient is -1 and exponent 2


PRACTICE:

Circle the coefficient for each:

Circle the variable for each:

Lesson 02: Single-Variable Expressions

An expression with only one variable is called a monomial . Examples: 3x, $5x^2$, 10y, $-y^3$, 6t

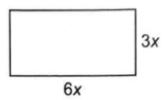
- Like terms have the same variable AND exponent
- Like terms can be added

You can group like terms by adding them.

$$2x^3 + 3x^3$$
 $x^2 + 3x^2$ $5x + x$ $3 + 6$

PRACTICE:

1. Circle the like terms


- 2. Create an algebraic expression with a set of like terms:
- 3. Simplify each expression:

a)
$$5x^2 + 3x^2 + 6x^2$$
 b) $7x + 8x + 2x + x$ c) $2x^3 + 5x^3$

d)
$$x^2 + 4x^2 + 3x^2 + 5x^2$$

4. Find the error in the simplification. $4x + 2x^3 + 6x = 12x^3$

5. Determine the simplified expression that represents the perimeter of the rectangle.

6. Fill in the missing terms to make the two sides of the equation equal.

a)
$$6x + \underline{\hspace{1cm}} + 4x = 13x$$

b)
$$9x^3 + 3x^3 + \underline{\hspace{1cm}} + 7x^3 = 24x^3$$

c)
$$5x^2 + \underline{\hspace{1cm}} + 3x^2 + 6x^2 = 19x^2$$

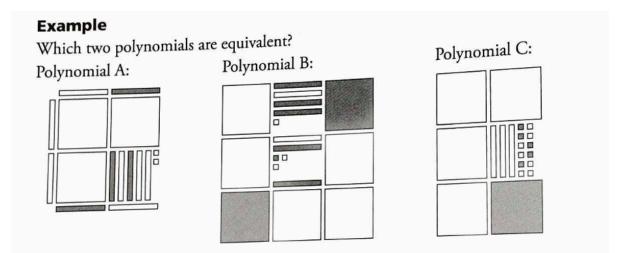
d)
$$7x + \underline{\hspace{1cm}} + 3x + 6x = 16x$$

- 7. Mary says x^2 and x^3 are like terms. Do you agree? Explain.
- 8. Draw a diagram to represent each of x, x^2 and x^3 .

Lesson 03: Gathering Like Terms

A polynomial is an expression of more than two terms

- o MONO (1) monomial = 1 term
 - Examples:
- O BI (2) binomial = 2 terms
 - Examples:
- o POLY (many) polynomial = many terms
 - Examples:

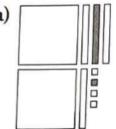

Like terms have the same variable and exponents

$$9x^2$$
 and $2x^2$

- Like terms can be added --> 3x + 4x = 7x
- \circ Like terms that are the same number, but different signs are called zero pairs --> 2x + -2x = 0
- To simplify a polynomial, you gather like terms and remove zero pairs

Using algebra tiles

- Large square = x^2
- Long rectangle = x
- Small square = 1
- One color is positive and the other negative $(-x^2, -x, -1)$


PRACTICE:

 $3x^2$, -2, $5x^3$, 7, -2x, $-4x^3$, 5x, 1, $4x^2$, -x1. Gather like terms

2. Simplify each polynomial. Write a simplified expression for each.

Simplify each polynomia.

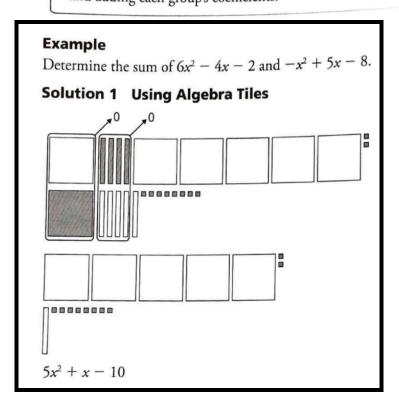
b)

3. Simplify. a) $5x^2 + 2x - 6x - 3x^2$

4. Find the error.

 $4x - 2x^2 - 2x^2 - x - 3$ is simplified to 3x - 3. b) $4x + 2x^2 + 5 + 6x + 1$ is simplified to $12x^2 + 6$. a)

5. Fill in the missing terms to make the two sides equal.


a)
$$6x + 8 + \underline{\hspace{1cm}} + 4x + 1 = 13x + 9$$

b)
$$5x^2 + 3x + \underline{\hspace{1cm}} + 3x^2 + 6x^3 = 10x^3 + 8x^2 + 3x$$

Lesson 04: Adding and Subtracting Polynomials

KEEP IN MIND

- You can add polynomials by representing each polynomial using algebra tiles and then simplifying using zero pairs.
- You can add polynomials by grouping like terms from each polynomial and adding each group's coefficients.

Solution 2 Using Symbols
$$[6x^{2} - 4x - 2] + [-x^{2} + 5x - 8]$$

$$= [6x^{2} + (-1x^{2})] + [-4x + 5x] + [-2 + (-8)]$$

$$= 5x^{2} + 1x + (-10)$$

$$= 5x^{2} + x - 10$$

When subtracting polynomials you can add the OPPOSITE.

$$(4x^2 - 5x + 7) - (3x - 1)$$

= $4x^2 - 8x + 8$

PRACTICE:

- 1. Add
- a) $(3x-7) + (x^2-2x+7)$
- **b)** $(5x^2 + x + 2) + (3x^2 + 2x + 5)$
- c) $(3x^3 + 2x^2 5x + 1) + (4 + 6x 7x^2 4x^3)$

2. Subtract

a)
$$(-x^2 + 3x - 1) - (3x^2 - 4x + 2)$$
 b) $(2x^2 + x) - (5x^2 - x + 6)$

b)
$$(2x^2 + x) - (5x^2 - x + 6)$$

Lesson 05: Multiplying Polynomials

You can multiply two monomials by multiplying the coefficients of the terms and writing the product of the variables using a single exponent.

Example:

$$(2x)(-5x^2)$$

$$= -10x^3$$

More Examples:

a. (x) (2x)

b. 3x (4x)

c. $3x(4x^2)$

d. 3 (3x)

e. $-2(3x^3)$

f. (5x)(-2x)

You can determine the product of a monomial and a polynomial by applying the distributive property - multiplying each term of the polynomial by the monomial.

Example:

$$4x (x^2 - 3x + 2)$$

$$= 4x (x^2) + 4x(-3x) + (4x)(2)$$

$$= 4x^3 - 12x^2 + 8x$$

More Examples:

b.
$$(-2x^2)(x + 6)$$

c.
$$5x(2x^2 + 3x - 4)$$

2. Multiply.

a)
$$(x)(x) =$$

b)
$$(x)(x^2) =$$

c)
$$(4)(4x) =$$

d)
$$(6x)(2x) =$$

a)
$$(5x)(3x-2)$$

b)
$$(-2x)(x+7)$$

c)
$$(3x)(2x^2 + 4x - 1)$$

d)
$$(6x^2)(-5x-4)$$

4. Determine the missing polynomials.

a)
$$(\underline{\hspace{1cm}})(3x-1)=6x^2-2x$$

b)
$$(-4x + 5) = 20x^2 - 25x$$

c)
$$(2x^2)(\underline{\hspace{1cm}} + \underline{\hspace{1cm}}) = 14x^3 + 2x^2$$

e)
$$5(2x^2) =$$

f)
$$-4(2x^3) =$$

g)
$$(5x)(-3x) =$$

h)
$$(-2x^2)(-4x) =$$

2. Multiply.

a)
$$(x)(x) =$$

b)
$$(x)(x^2) =$$

c)
$$(4)(4x) =$$

d)
$$(6x)(2x) =$$

3. Multiply.

a)
$$(5x)(3x-2)$$

b)
$$(-2x)(x+7)$$

c)
$$(3x)(2x^2 + 4x - 1)$$

d)
$$(6x^2)(-5x-4)$$

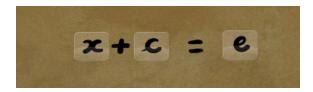
4. Determine the missing polynomials.

a)
$$(\underline{\hspace{1cm}})(3x-1)=6x^2-2x$$

b)
$$(-4x + 5) = 20x^2 - 25x$$

c)
$$(2x^2)(\underline{\hspace{1cm}} + \underline{\hspace{1cm}}) = 14x^3 + 2x^2$$

6. Determine an expression for the area of this rectangle.


$$8x-3$$

e) $5(2x^2) =$ _____

g)
$$(5x)(-3x) =$$

g)
$$(5x)(-3x) =$$

h) $(-2x^2)(-4x) =$ _____

Lesson 06: Solving Equations by Addition and Subtraction

More Examples:

$$t - 3 = 15$$

$$b - 12 = 14 + 3$$

Solve each equation.

a

1.
$$b - 8 = 15$$

b

$$x - 14 = 36$$

C

$$c - 3 = 28 + 4$$

2.
$$42 = r - 12$$
 $80 = e - 26$

$$80 = e - 26$$

$$20 + 11 = f - 14$$

3.
$$163 = a - 27$$

$$9 \times 9 = m - 38$$
 $t - 28 = 102$

$$t - 28 = 102$$

4.
$$117 = w - 83$$

$$200 - 25 = g - 83$$

4.
$$117 = w - 83$$
 $200 - 25 = g - 83$ $h - 75 = 100 + 56$

Solve each equation.

1.
$$d + 12 = 48$$

$$36 + e = 84$$

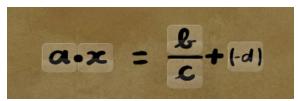
$$f + 14 = 18 + 18$$

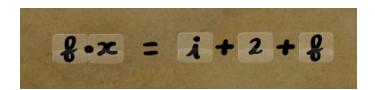
c

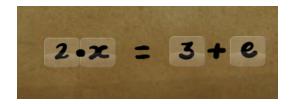
2.
$$38 = j + 13$$

$$27 = 9 + h$$

$$20 + 34 = 27 + l$$


3.
$$12 + w = 76$$


$$114 = x + 38$$


$$300 - 30 = y + 50$$

Lesson 07: Solving Equations by Division and Multiplication

Division

$$4m = 52$$

Multiplication

$$\frac{z}{a} = \frac{e}{c} + (-d)$$

$$\frac{z}{4} = g + \frac{g}{2} + (-g)$$

$$\frac{a}{5} = 35$$

Solve each equation.

1.
$$3w = 12$$

$$3b = 51$$

$$8m = 100 - 4$$

2.
$$72 = 2a$$

$$54 = 3c$$

$$96-20=4r$$

3.
$$6e = 84$$

$$25s = 75$$

$$4d = 75 - 7$$

4.
$$14x = 42$$

$$75 = 15m$$

$$3y = 100 - 28$$

Solve each equation.

1.
$$\frac{a}{8} = 7$$

$$\frac{b}{13} = 9$$

$$\frac{c}{4} = 6 + 12$$

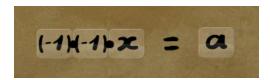
2.
$$16 = \frac{r}{8}$$

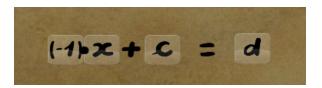
$$8 = s \div 7$$

$$2 \times 9 = \frac{t}{5}$$

3.
$$g \div 17 = 9$$

$$15 = \frac{h}{5}$$

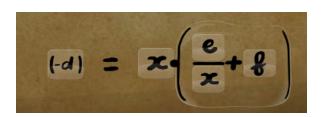

$$7 \times 6 = \frac{j}{3}$$


4.
$$\frac{m}{15} = 17$$

$$23 = \frac{n}{28}$$

$$p \div 19 = 3 \times 9$$

Lesson 08: Solving Equations with Signs and Expansion



$$-(x + 1) = 2$$

$$a\left(\frac{x}{a}+2\right)=\frac{c}{d}$$

$$\mathcal{L}\left(\frac{x}{c} + \frac{g}{c}\right) = i$$

$$5(8x + 8) = 280$$

$$7(9x - 15) = 588$$

$$10(10x - 6) = 540$$

Solve the equations.

(1)
$$7(7x + 16) = 455$$
 (2) $8(6x - 5) = 440$ (3) $9(5x - 4) = 189$

$$(2) \quad 8(6x - 5) = 440$$

$$(3) \quad 9(5x - 4) = 189$$

(4)
$$5(8x + 8) = 280$$
 (5) $6(7x + 9) = 306$ (6) $6(7x + 7) = 546$

(5)
$$6(7x + 9) = 306$$

(6)
$$6(7x + 7) = 546$$

(7)
$$5(10x + 14) = 320$$
 (8) $6(9x + 17) = 372$ (9) $5(8x + 12) = 460$

(8)
$$6(9x + 17) = 372$$

(9)
$$5(8x + 12) = 460$$

(10)
$$9(6x - 7) = 315$$

(10)
$$9(6x - 7) = 315$$
 (11) $10(7x - 16) = 190$ (12) $7(6x + 17) = 497$

$$(12) \quad 7(6x + 17) = 497$$

Lesson 09: Solving Equations with Like Terms

$$2 \cdot x + 3 = 4 \cdot x + (-2)$$

$$6 \cdot x + 7 + 2 \cdot x = 4 \cdot x + 9 \cdot x + 8$$

Solve the equations.

(1)
$$2x + 3(6x - 12) = 144$$
 (2) $6x + 4(5x - 9) = 172$

(2)
$$6x + 4(5x - 9) = 172$$

(3)
$$4x + 6(5x - 9) = 184$$

$$(4) \quad 5x + 5(5x - 15) = 195$$

(5)
$$6x + 2(4x + 15) = 198$$
 (6) $7x + 3(4x + 10) = 125$

(6)
$$7x + 3(4x + 10) = 125$$

(7)
$$5x + 5(2x + 3) = 120$$

(8)
$$7x + 2(5x - 12) = 129$$

(9)
$$6x + 2(x - 4) = 40$$

(10)
$$4x + 3(2x + 12) = 96$$

Lesson 10: Using Equations to Solve Problems

Examples:

1.

The formula

$$B = 100 - \frac{h}{156}$$

gives water's boiling point, *B*, in degrees Celsius at an altitude of *h* metres.

What is the approximate **boiling point of water** at an altitude of 5951 m?

B 62 °C

C 96 °C

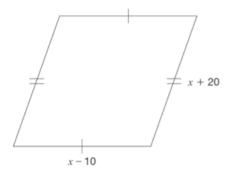
D 156 °C

2.

A rocket is fired upward from the ground. The equation below shows the relationship between *h*, the height of the rocket above the ground in metres, and *t*, the time in seconds.

$$h = 60t - 5t^2$$

Which of the following is the height of the rocket after 4 seconds?


a 35 m

b 44 m

c 160 m

d 240 m

Pauline builds a fence around her garden, which is shaped like a parallelogram, as shown below.

Pauline uses 100 metres of fencing along the perimeter of the garden. Find the dimensions of her garden. Show your work.

Stephen's earnings are calculated according to the formula

Earnings =
$$7t + \frac{d}{20}$$

where t is the number of hours Stephen works and d is the dollar value of the clothes he sells in the week.

One week, Stephen works for 15 h and sells \$980 worth of clothes. How much does he earn?

- a \$54.25
- **b** \$105
- c \$154
- d \$176

A steel bar will expand when it is heated and contract when it is cooled. The relationship between the length of the bar, L, (mm) and the temperature, T, (°C) is given by

$$L = 5000 + 0.12(T - 20).$$

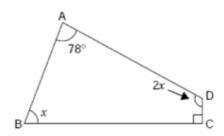
What is the length of the steel bar when the temperature is 45 °C?

- a 5001 mm
- **b** 5002 mm
- c 5003 mm
- d 5004 mm

A tap is leaking into a pail. The height of the water in the pail is represented by the equation h = 0.5t + 2, where h represents the height of water in the pail, in cm, and t represents the amount of time the tap has been leaking, in minutes.

What is the height of water in the pail if the tap has been leaking for 56 minutes?

- a 28 cm
- b 30 cm
- c 108 cm
- d 114 cm


Marco is designing a new sail for his windsurfer.

He uses the quadrilateral below as the design of one part of the sail.

a) Determine the value of x in the quadrilateral by solving the equation.

$$78 + x + 2x + 90 = 360$$

The total number of laps Tessa has run, l, after any number of days, n, is given by the formula

$$l = \frac{n(n+1)}{2}$$

Use this formula to determine the total number of laps Tessa will have run after 30 days.

REVIEW

2.1 Single-Variable Expressions

1. Simplify each expression.

a)
$$7 + 1 + 1 + 5 + 3$$

c)
$$5x + 4x + 4x + 3x + x$$

b)
$$6x^2 + 2x^2 + x^2 + x^2 + 9x^2$$

d)
$$2x^3 + 5x^3 + 3x^3 + 6x^3 + 7x^3$$

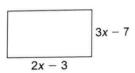
2.2 Gathering Like Terms

2. Simplify.

$$2x^2 + 4x^3 - 7x - 6 - 9x^2 + 4x^3 - 1$$

2.3 Adding Polynomials

3. Add.


a)
$$(3x^2 + 7x + 6) + (4x^2 + 2x + 5)$$

b)
$$(7x^3 + 5x^2 + 2) + (2x^2 - 9x - 2)$$

c)
$$(8x^2 - 2x - 9) + (-9x^2 + 4x - 1)$$

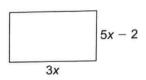
d)
$$(10x^3 - 4x - 3) + (-2x^3 + 10x^2 - 2)$$

4. Determine an expression for the perimeter of the rectangle.

2.4 Subtracting Polynomials

5. Subtract.

a)
$$(7x^2 + 5x - 4) - (-3x^2 + 5)$$


b)
$$(2x^3 + 5x^2 - 4x) - (-3x^2 + 5)$$

c)
$$(-2x^3 - x - 5) - (5x^3 - 6x^2 - 2)$$

- **6.** What expression was subtracted from $3x^2 + 4x 3$ to get $4x^2 2x + 3$?
- 7. What expression was added to $3x^2 + 4x 3$ to get $4x^2 2x + 3$?

2.5 Multiplying Polynomials

- 8. Multiply.
 - a) (7x)(-3x)
 - **b)** $(-6)(-3x^2)$
 - c) (-3x)(-4x-3)
- 9. Determine a simplified expression for the area of the rectangle.

2.6 Solving Equations: Part 1

10. Using examples, explain how inverse operations might be used to solve an equation. Use the equations x - 5 = 9, x + 5 = 9, 3x = 9, and $\frac{x}{3} = 9$ in your explanations.

2.7 Solving Equations: Part 2

11. Solve each equation.

a)
$$2x - 3 = 5$$

b)
$$2(3x-5)=8$$

12. Provide an example of an equation you could solve by either using the distributive property or not using the distributive property.

2.8 Solving Equations: Part 3

13. Solve each equation, and verify your solution.

a)
$$2x - 3x = 4$$

b)
$$3x + 2 = -x - 6$$

14. Show that the following expressions are equivalent.

a)
$$2x + 4$$

b)
$$2(x+2)$$

c)
$$3x - (x - 4)$$