Name:	Date:
Mr. Croom's Physics	Chapter 4: Force and the Law of Motion

Newton's Second Law 2 (ANSWER KEY)

Solve the following problems

1. What is the mass in kg of a 200-lb person?

90.9 kg

2. What horizontal force must be applied to a 15-kg body in order to give it an acceleration of 3.00 m/s²?

45 N

3. A car weighs 15000-N and is traveling along a highway at 27 m/s. If the driver immediately applies his brakes and the car comes to rest in 85 m, what net force acts on the car during its acceleration?

-6564N

4. A rifle bullet of mass 12.0-g has a muzzle velocity of 750 m/s. What is the net force acting on the bullet when the rifle is fired, assuming the bullet is accelerated over the entire 1.00-m length of the gun barrel?

3375N

5. A 5.00-g bullet is fired at a velocity of 360 km/hr (*almost* 225 miles per hour!) into a block of wood and comes to rest in 6.00 cm. What is the net force stopping the bullet?

417N

6. A rope breaks when the tension exceeds 240 N. What is the maximum acceleration downward that a 170 kg load can have without breaking the rope?

Anything less then 8.3 m/s² breaks the rope.

Any pull greater than 1.4 m/s² breaks the rope

7. A stunt driver drives a new Lexus into a pile of sand. It hits the pile with a velocity of 20 m/s and comes to a stop in 0.5 second. If the car's weight is 12,000 N, find the net force on the car during this collision.

49,979N

- 8. Given two identical objects, the one with more force on it will have more **Acceleration**.
- 9. If you apply the same force to two objects, one much more massive than the other, the one with <u>less</u> mass will accelerate more.
- 10. Total force and acceleration of an object are always in <u>same</u> direction.
- 11. (Giancoli, p.103 #10) REVIEW: A stone hangs by a fine thread from the ceiling and a section of the same thread dangles from the bottom of the stone. If a person gives a sharp pull downward on the dangling thread, where is the tread likely to break: Below the stone or above the stone? What if the person gives a slow and steady pull? Explain your answer.

Below the stone because the stone has intertia!