Freighter Tiered Performance
Improvements

OVERVIEW

Freighter’s Ul still feels a bit sluggish, especially when navigating back and forth between the
Account view (main view) and other views like History, Send, etc. This is a persistent issue and
must be addressed before we continue to add new features as we are turning users away with
poor UX before we’re able to show them what Freighter has to offer. As with any application,

there are optimizations we can make both in the Ul layer as well as in the backend.

Upon looking more closely into these issues, | discovered there are some obvious “quick win”
improvements we can make as well as some issues into which we must dig further. There are
some Ul patterns with clear issues, but there are also some unsolved mysteries around slow load
times for a subset of users. We will create a plan to address the issues with clear answers right
away while simultaneously gathering more context about the unknown issues so we can quickly
follow up and solve those, as well.

First, we’ll dive into Freighter view by view. For each view, we’ll dive into small, medium, and large
t-shirt size improvements we can make to each. We’ll discuss each improvement in relation to the
baseline loading time I’'m seeing for my test account
(GBTYAFHGNZSTE4VBWZYAGB3SRGJEPTI5I4Y22KZ4.TVANS6LESB6.ZOF KCEVENE I EVEREIRET
on my home wifi network in NYC. This account has 15 trustlines and 2 SEP-41 tokens. Although
this load time may not be typical, it will at least provide us a baseline from which to extrapolate.

A metric we will look at frequently is Largest Contentful Paint (LCP). Generally, this means the

amount of time it takes to go from page load, past the loading spinner, to a view that shows the
user actual data with which they can interact. Our goal is to get that number below 2 seconds in
all cases.

Second, we’ll discuss observations about our backend response times. To dig deeper into slow
response times, I'd like to do an additional design spike working alongside a backend engineer.
As a starting point, I'll lay out some trends I've observed and some theoretical solutions to
explore. In addition, I've listed some actual concrete optimizations that we can start to think about

implementing.

https://web.dev/articles/lcp

BACKGROUND

This document presumes that you have read through this previous doc related to this topic. This
doc does a great job defining our pain points and our overall approach to loading pieces of Ul
blocking data like balances. Below, I'll start to drill deeper into some of the topics broached in the
last doc.

For additional context, we’ll need to look deeper at how we load asset icons in Freighter, as this
can also be a very costly request. The first time a user ever loads a trustline in Freighter, we
attempt to load and then cache the asset icon in the extension. Because Stellar didn’t have a
standardized simple method for web Ul’s to retrieve asset icons, we implemented asset icon
fetching by looking up the asset issuer’s home domain. Then, hitting the home domain to retrieve
the asset’s toml file before finally fetching (and caching) the icon from said toml file. On first load,
this leads to an astonishing 3 XHR’s to retrieve an icon. If this fails, we look to the user’s asset
lists for icons. If we still aren’t able to find the icon, we retry this method on every page load in
hopes that we will finally find an icon. In the optimistic path, we do this painful process once and
then cache the icon, never having to make these lookups again. Otherwise, for every asset
missing an icon, we do this whole lookup on every single load.

GOALS

1. ldentify changes that will improve both perceived and actual loading times
a. Actual loading time improvements can be defined as optimizing code to actually
run faster
b. Perceived loading time improvements can be defined as changes to the UX that
make the user believe all the data has loaded while processes are still running in
the background
2. Categorize possible improvements by the size of the job and its relative impact

3. Be able to assign rough estimates to loading time savings

Sizing and prioritization:

For each task, | assigned a rough estimate of the amount of work (t-shirt size) and a priority
loosely based on the amount of time needed to complete relative to the improvement we would

see.

T-shirt sizing Key:

https://docs.google.com/document/d/1UxEHQr1m7PokF2YfZHZguKjU0_nodI92H3Xp9f1hbFs/edit?tab=t.0

Priority Key:
HIGH = small/moderate with high savings
MEDIUM = moderate work with low savings

LOW = high amount of work with low savings

Ul OPTIMIZATIONS

Account

This is the most high priority view to improve for multiple reasons. First, this is the main view a
user lands on when opening Freighter and also the default screen a user gets kicked back to
after completing a flow (like Send, for ex). Because of that, slow performance here can
immediately sour a user on their overall experience of the app. Second, this is one of our slowest
loading screens because of how we fetch balances AND how we fetch icons. If we can find

improvements here, we can extrapolate this to other views that need to load the user balances.

One of the main bottlenecks here is the amount of XHR requests we make before LCP. Currently,
not only do we load the /account-balances™ endpoint from Freighter BE, we also load /history’,
token lists, and various G accounts from Horizon (because of the aforementioned missing asset
icon lookups) before we show the user anything other than the loader (as seen in the example
video).

Current baseline: I'm observing the largest call being the /account-balances™ endpoint that takes
about 800ms. Next up, each around 300ms each, are /history’, and perhaps surprisingly,
LOBSTR’s asset list.

Generally, for my test account, this view takes 3-4 seconds for LCP

In the below video, | have throttled the network to a slow 4G speed so we can illustrate all of the
XHR’s we are waiting to resolve before loading any information for the user:

W agccount-loading.mov

Load history in the background

One of our biggest requests is for /history’, the response of which actually is not seen on the
Account view. We need history when we click onto an individual asset, which takes the user to
the Asset Detail subview. This subview is where we actually see the history response as this view
shows history items related to that specific asset.

1.0453059 yXLM
$0.37

+0.0000458 yXLM

Sep 03

+0.0000458 yXLM

Sep 02

+0.0000458 yXLM

Sep 01

+0.0000458 yXLM

Because we don’t actually need this data right away, instead of blocking the view until history is
loaded, we can simply load this history in the background.

This reduces my LCP by about .5s, the amount of time needed to load my account’s history

UX IMPACT: Hopefully, by the time a user clicks on an asset row, this data has finished loading.
But in the worst case, a user may have to wait an additional number of milliseconds for their
Asset Detail history rows.

Priority: HIGH

Optimize Webpack bundling using tree shaking and caching

https://drive.google.com/open?id=1rbn4pnn9L-WPX3woGbjNImqcvp0TaOfr

Webpack, our current JS bundler, does offer a significant amount of customability when it comes
to bundling your code. By removing dead code and slimming our JS bundles, we can conceivably
improve load times. In my test environment, I’'m already seeing quite fast load times for JS files as
the files are being loaded from the user’s machine and no XHR roundtrip is needed. In my

opinion, this is a complex task that may only save us small amounts of time.
This would conceivably only reduce my LCP by about 100ms

UX IMPACT:

None

Priority: LOW

Poll and Cache account balances

One of the compounding factors for slow load times is that we make a fresh request to the

“/account-balances’ on every load of the Account view. So, if a user opens Freighter and lands on
Account, they have to wait 2.5-3 seconds before they see anything. Then, if they go to Settings
and then go back to Account, they have to wait an additional 2.5-3 seconds while we make
another request to the account balances. What can be especially frustrating about this is that a
user’s balance may not have changed, yet we make another request. We have historically opted
to always showing the most up-to-date possible information. However, we could possibly take

some shortcuts here by strategically showing a cached balance.

One possible solution: In the event that the user has already loaded and cached their balance,
upon navigating back to Account, we could show the user their cached balance and in the
background, make a fresh request for the updated balance. In the event of a delta, after a brief

delay while the fresh request is completed, we could then update the values in the Ul.

Another possible solution: In Freighter Mobile, we have a drag to refresh balances feature and
there is not an expectation that balances are always up-to-the-minute. We could implement

something similar so users have some control over retrieving their own latest information.

In either of the above solutions, we would still opportunistically force an account-balance refresh
when the user takes an action that would impact their balance. For example, any time a user
completes a send/swap or adds a trustline, we would proactively fetch the latest balance so
when they go back to the Account screen, they will have the latest balance without the need for

an update.

This reduces my LCP by about 1s, the amount of time needed to load balances, on

subsequent page views
UX IMPACT:

This does break a user’s expectation slightly as up until now, a user always had their latest
balance. With this type of change, a user may face a delay before receiving the latest update. The
user also does not get to enjoy these savings until after they’'ve loaded the balance once

Priority: HIGH

Load missing icons in background
T-shirt size: LARGE:

As described above, we hold up the loading process to try to fetch all asset icon URLs before
Account load. The icon URL fetching process *can* be very convoluted. If it's an asset like USDC
with a defined icon on their configured home domain, it’s likely that Freighter cached the asset url

and it’s quite fast to load the icon.

If it's an asset like BENJI that previously had no icon set, every time we load balances, we see
BENJI has no icon and we need to look up the issuer and then look up the home domain to see if
they have added it. Because it’s possible that BENJI at some point will add this icon, we want to

keep checking. However, we don’t need to hold up loading balances while we make this check.

If we still can’t find BENJI's asset icon, we check the user’s asset lists for an icon. This can also be
costly as we need to load the user’s asset lists and then check them. In my test account with only
the 3 default asset lists, this took about 800ms total. Similar to the home domain look up, we do

not need to block loading for this. We can do this in the background.

Furthermore, we can re-order our priorities here: first checking the cache, then the user’s asset
lists, and then finally the costly Horizon lookup. Caching the user’s asset lists will also prevent
having to do a fresh lookup on subsequent Account view loads. If an icon cannot be found on this

initial lookup, we can simply stop checking on subsequent loads.

Moving home domain lookup for each asset to the background reduces my LCP by about
1.25s

Moving asset list lookup to the background reduces my LCP by about .75s

UX IMPACT:

This experience will greatly vary by user, but one first load, a user may see their balance appear
while icons show a loading state as they are initially fetched and then cached. On subsequent

loads, their icons should appear very quickly.

Priority: HIGH

Manage Assets

Similar to the Account view, this view suffers from the complex account balance and icon fetching
above. Implementing some or all of the changes above will carry over to this view, as well. One
additional feature slightly slowing down performance here is that we need to fetch home
domains for each asset. Though we do cache these results, on initial load, we are making a call to

each asset’s issuer on Horizon at least once.

Generally, for my test account, this view takes 3-4 seconds for LCP

Load home domains in the background
T-shirt size: SMALL:

Similar to loading account history in the background, we could proactively load an account’s
home domains in the background in the Account View. If we did this, a user’'s home domain

cache would likely already be populated once they clicked the Manage Assets button.

The reduction in LCP is nominal for my test account, but could be significant if an account
has many assets. For my test account, | observed if each home domain lookup took about

40ms, so savings for my account would be about 40*n ms.

UX IMPACT: Hopefully, by the time a user clicks on manage assets, this data has finished loading.
But in the worst case, a user may have to wait an additional number of milliseconds for the asset
home domains. Another caveat here is that if a user had Freighter in fullscreen mode and
refreshed their browser on the /manage-assets view, they would need to wait for the cache to be
populated as that would not have been done already by a previous screen.

Priority: MEDIUM

Send/Swap

Similar to Manage Assets, this view suffers mostly from an unoptimized account balance and icon
fetch. The slowest loading view in my observation was loading the user’s token list. Making the
above optimizations under Account View will improve this experience along the same magnitude

of the Account View’s improvement.

Generally, for my test account, this view takes 2-3 seconds for LCP

Only make one call to /account-balances on Send/Swap

An additional note here is that I'm observing we’re making 2 blocking calls to /account-balances
when loading a user’s token balance. We should remove this extra call.

The reduction in LCP would be about the length of the /account-balances call, so for this test
account, it was about .5-1s

UX IMPACT: None

Priority: HIGH

Sign Transaction

Another view that suffers from blocking calls to /account-balances and icons. Balance is only
used to show a user a warning if their wallet doesn’t have enough XLM to cover the fee
associated with the transaction. The above optimization to load icons in the background would
bleed over to this screen.

Generally, for my test account, this view takes 2 seconds for LCP

Load /account-balances in the background on Sign Transaction

We only use account-balances to determine if a user has enough XLM to cover the fee. This is
probably a pretty rare occurrence. Because of that, we may want to opt for loading balances in

the background and showing the user the rest of the tx details in the meantime. We cannot rely
on a cache of any kind for this view as Freighter automatically opens a new window to sign a

transaction, so we must grab all user info fresh from the BE.

The reduction in LCP would be about the length of the /account-balances call, so for this test

account, it was about .5-1s

UX IMPACT: If a user does not have enough XLM to cover the fee, they would get a jarring
experience where they suddenly get a warning that takes over the screen after a second or two.
We could perhaps mitigate this by animating in this warning rather than abruptly taking over the
screen

Priority: HIGH

BACKEND RESPONSE TIME OPTIMIZATION

All of our solutions thus far have been based on the assumption that an account with more
trustlines and more custom tokens _should_ be our slowest loading wallets. Furthermore, even
with an account with numerous trustlines and custom tokens, | have never approached the 30
second wait times some users have reported. We’ve had some users with only one trustline
report these very slow loading times. Although there are some optimizations to be made to the
Ul, there may be more work to do on the backend.

Implement synthetic monitoring to test API response times from various locales at
various times of day

Looking through Argo, we start to see some interesting trends. We see that some very long

response times are being reported by users in Brazil, Thailand, and Turkey. This is a small sample
size, but can we infer that the user’s locale in relation to our data centers is causing some of the

user’s long load times? Here we see a request from Thailand

responseTime: 7.131009101867676
[16:13:46.371] [32mINFO[39m (freighter-logger/1): [3| ng request[39m
reqld: "req-phd"|

/api/vl/scan-dapp?url=https%3A%2F%2E
{

: "https://mainnet.blend.capital/"

cf-connecting

accept-language":
iori "u=4

user-agent

1,
"remoteAddress
“remotePort": “Redacted"

}
[16:13:46.450] [32mINFO[39m (freighter-logger/1): [36mrequest completed[39m
reqld: "req-phd"
s: {

res:
"statusCode": 200

responseTime: 78.84242057800293

We also see some slower than expected load times for a user in Canada, though not on the scale
of the user from Thailand:

[16:15:43.118] [éZmIN;0[39m (freighter-logger/1): [36mingoming request[39m
"req-pi3"

x-forwarded-for
x-forwarded-hos
x—forwarded-port"

x-original-forwar

content-length" 1,
97a706e51b46c37d-SEA",
/",

"accept—encodihd
"sec-fetch-stor:

Gf: untry”: “CA",
"cf-visitor": "{\"scheme\":\"https\
"'cf-connecting-:
"sec-fetch-mode":
“priority": o
cross-site",
tension://bcacfldlkkdogcmkkibnjlakofdplcbk",
=0.9",

139\", \"Chromiul jv=\"139\"",
"'sec—ch-ua-mobile"

’
"remoteAddress": "Redacted",
"remotePort" Redacted"

reqIld: "reg-pi
re:

}
[16:15:43.124] [32mINFO([39m (freighter-logger/1): [36mrequest completed[39m
3

s
"statusCode": 200

responseTime: 6.2300801277160645

After talking with the BE engineers, it sounds like we have data centers in US East/West. Perhaps
we need to increase our data centers and spread them more globally?

Also, we currently have 2 pods for Freighter BE. Is that sufficient for the number of requests we’re
receiving? Are there times of day when possibly one pod is getting too many requests, leading to

slow response times?

Synthetic monitoring may provide us a more clear picture of where these long response times are
coming from. Perhaps this data is already available to us in Grafana?

Priority: HIGH

Implement web vitals monitoring from Sentry

While we are increasing monitoring for our BE systems, we should also look at increasing
monitoring for our Ul. After all, we care about the Ul loading quickly more than anything else,
regardless of APl speed.. Sentry provides a web-vitals monitoring tool that we should be able to
use to detect if, even after all of our improvements to the Ul and BE, we are still experiencing Ul
slowdowns. Additional context

Priority: HIGH

Use getLedgerEntries to fetch XLM balances and home domains

o
o

Up above, we described fetching home domains (for icons and for the Manage Assets view) and

for grabbing XLM balance (for determining if a user has enough XLM to cover a tx). Currently, we
do this by fetching an account from Horizon. This can possibly be sped up by using RPC’s
getLedgerEntries method.

Priority: HIGH

Parallelizing fetching token details in Freighter BE

When we fetch details about a SEP-41 custom token, we need to get multiple pieces of
information: balance, decimals, name, and symbol. Currently, we make these requests

sequentially. If we were to make these calls in parallel, rather than waiting for 4 separate XHR’s to

https://sentry.io/for/web-vitals/?utm_source=google&utm_medium=cpc&utm_id=%7B22235705447%7D&utm_campaign=Google_Search_NB_Web-Vitals_NORM_Beta&utm_content=g&utm_term=how%20to%20improve%20lcp&gad_source=1&gad_campaignid=22235705447&gbraid=0AAAAADua1WLc_5yTZtCd9PoFMe5m8h3bO&gclid=CjwKCAjw_fnFBhB0EiwAH_MfZkzG0IFeMityvrKB2k09tVUnJ37wAvtTNgvHQbtoGXtlm17IHPLHqRoCmzEQAvD_BwE

complete, we would just be left waiting for the longest of the 4 XHR’s to complete. For additional
context, we’ve heard that not many users have custom tokens, so this may be an optimization

that only meaningfully helps a small number of users.

For our test account, parallelizing these calls for our 2 custom tokens saved about 250ms in
LCP

Priority: MEDIUM

Wallet BE Returns asset icons, home domains, history rows along with balances

We’ve been talking a lot about fetching/caching icons and home domains in the background to

prevent blocking loading pages. This can be fully solved if the /account-balances™ endpoint
returns all of the data needed in one payload. This is likely the most complete solution to slow
loading times for /account-balances'.. While this will require a more complete design discussion,
essentially Wallet Backend would do the lookup for asset icons and home domains so the Ul
does not have to worry about fetching the information itself. A possible implementation is for the
BE to cache the icon and home domain for every asset:issuer it ever fetches, making the first call
for (for ex) USDC a bit expensive, but making every subsequent fetch much faster. The icon and
home domains in cache could be periodically checked and updated by a cron job to ensure

we’re not caching stale information.

Also, we could discuss returning each asset’s history rows along with the balances, which would
prevent us from having to make a separate call to history and parsing the result for pertinent
history rows for each asset.

LCP savings would need a bit more research. This would simplify the Account View as it
would just be making one call to /account-balances. This should theoretically be much faster,
but unclear if adding these extra tasks to the BE would make the /account-balances endpoint

slower

Priority: HIGH

Conclusion

We’ve looked at a lot of possible optimizations to both the Ul and the BE layer. We still have a bit

of work to do to pinpoint exactly why some users are facing load times.

In the near-term, we could tackle the high impact changes to the Account View that will
immediately make Freighter feel snappier for all users. Meanwhile, we’ll start to investigate the
BE infrastructure needs and investigate why some users are hitting very long response times.
Even if we can’t reduce the number of BE calls or their response time right away, we can hide
some of those loading times with our Ul optimizations. We could conceivably move from about
3-4 second loading times to 1-2 second loading times using just our Ul optimizations for users

getting typical response times from the BE.

Hopefully after implementing a synthetic monitoring system, we should be able to reduce the
amount of very long response times we’re seeing from the BE in the near-term. This should bring

all users into the 1-2 second loading time timeframe from above.

While that work happens, in parallel, the Wallet BE work to return asset icons, home domains in
the account-balances can begin. When that work completes, we should have a single endpoint
that provides all of our needed information quickly and we can implement that in the UL
Optimistically, this should provide the best UX: all information (balances, icons, etc) being

available immediately within 1-2 seconds

Below is an example of how we might tackle the work outlined above.

Beginning Q4
End of Q4
Immediate-Term Near-Term Medium-term
1. Implement any 1. In Ul, Implement new
infrastructure Wallet BE routes that
1. Poll and Cache account changes needed return icons, home
balances to address domains, and balances
findings from in one payload
2. Load history in the .
monitoring
background k
2. Continue
3. Load missing icons in monitoring
background Freighter
loading times

4. Implement synthetic
monitoring of the BE

5. Wallet BE Returns asset icons and home domains along
with balances

UPDATE 11/17: Freighter Release 5.36.0 - State of the Union

	Freighter Tiered Performance Improvements
	OVERVIEW
	BACKGROUND
	GOALS
	UI OPTIMIZATIONS
	Account
	Manage Assets
	Send/Swap
	Sign Transaction

	BACKEND RESPONSE TIME OPTIMIZATION
	Conclusion
	UPDATE 11/17: Freighter Release 5.36.0 - State of the Union

