Heysil Baez (hb365); Neha Malepati (nm458); Oluwatise Faith Alatise (ofa2) | 1

Handwriting Text Recognition (HTR)

Link to Repository: https://github.coecis.cornell.edu/nm458/4701-project

Introduction:

Meet Em, a diligent college student and an SDS note taker! Her job is to take notes in various classes so
they can be distributed to students with SDS accommodations who need access to learning materials. The
notes that will ultimately be sent to the students must be digital, but Em prefers taking handwritten notes
with a pencil and notebook. In order to solve Em’s problem, we hope to develop an AI Handwriting to
Text model that allows Em to take notes to the best of her ability while ensuring the notes are accessible

for the students who need them.

We hope to use our model to help mitigate accessibility issues related to handwritten documents. Making
handwritten notes accessible to a larger pool of users by translating them into typed forms of
communication can be powerful in expanding accessibility. The clarity and visibility of a document with
this effect immediately increases for users, especially for those with disabilities who may have been
unable to properly view and understand the original document (i.e. due to colors, handwriting style, size).
We have described one example of such a problem above, but we also believe that the scope can be

broadly applied to other disciplines, such as research.

For example, an application we believe is important is

transcribing ancient texts and related documents, some of =

7/’1/&;7//12 2!
which may be unreadable to the human eye. However, by G ;; g f
}
|

implementing a well trained Al model, such texts can be

transcribed, preserved and studied by anthropologists,

¢ e Suoge dy e

o
ma ;;mwmém mlvvhmm.mm

philosophers, and historians. Using this technology to

decipher and reconstruct ancient texts into documents for greater visibility can allow research on these
texts to become accessible for translations and other forms of analysis. Al Transcription may also increase
the amount of translations available for research by improving the access of these documents. We believe
that it is important to maintain as much documentation as possible from history and hope to use the

Handwriting to Text model to do so.

Our vision for creating such a program is to experiment with these potential outcomes and better

understand how such technology can be applied to Cornell and beyond. We hope to modernize the way

https://github.coecis.cornell.edu/nm458/4701-project

Heysil Baez (hb365); Neha Malepati (nm458); Oluwatise Faith Alatise (ofa2) | 2

people use handwritten notes and provide a tool that can make notes universally accessible and utilizable.
We also hope to learn about how each level of knowledge we achieve in creating this model could help us

increase documentation accessibility.

Prior Work:

Of prior work, two of the most notable existing apps are Notability and GoodNotes 5. Notability allows
users to take handwritten notes on touchscreen devices, and allows users to search for keywords within
their handwritten notes. Notability advertises that their Handwriting Text Recongition and Search are
powered by MySript (Notability). While the exact implementation used by Notability is not open source,
it is likely that they use similar AI methods to develop and train a model to recognize handwritten letters

and numbers and detect words.

Examples of Handwriting Tech Recognition in Notability (YouTube Demo)
v

FROM NOTABILITY!

GoodNotes 5 is similar to Notability in that it allows users to write and share
written documents comfortably as they take notes on tablets or other

touchscreen devices, but it differs in variety of features. Among the two apps,

GoodNotes 5 allows users much more flexibility in the shape, size, color, and B L L

texture of the pen used, whereas Notability is far more restrictive in this aspect.

ent-child relationships o
»mit on a voluntary basis ¢
sonucleic acid (DNA) test

It is important to consider the variety of features, which can indicate a model fes acreivd by the Am
, .

at

that has been trained with more diverse data, allowing users to be more creative I Onopooooog ;

while preventing loss of detection of letters, numbers, and words.

In terms of existing technology, we researched heavily into past models to determine which model we
should implement. Among the most notable are Keras and TensorFlow, a model by Harald Scheild, and
Arthurflor. Keras is a deep learning Python API which runs on top of TensorFlow, a machine learning
platform. Keras enables fast experimentation, which we believed to be important to ensure we would be

able to complete this project in the given time frame. Keras has been used to develop handwriting

Heysil Baez (hb365); Neha Malepati (nm458); Oluwatise Faith Alatise (ofa2) | 3

recognition models using the IAM Dataset, which contains multiple forms of handwritten English text
which can be used to train handwriting recognition models. Since the IAM Dataset is used widely, we

believed the Keras implementation could serve as a good starting point to learn how to build our model.

The handwriting recognition model built by Harald Scheild uses TensorFlow, and the implementation is
minimalistic, uses neural networks, and can be trained on the CPU. Handwritten recognition models scan
images to transcribe handwritten into digital text. This can be achieved using a neural network that is
trained on images from the IAM dataset. By keeping the input layer for the neural network small, training
this model is feasible on the CPU. This implementation uses TensorFlow to achieve this goal. We
believed this model was feasible because it does not require a GPU, and is within the scope of our

abilities, time frame, and hardware to train.

Another implementation we looked into was Arthurflor, which is a Handwritten Text Recognition (HRT)
system that is implemented using TensorFlow. This system is also a Neural Network model (similar to
above) that is trained on the IAM dataset. However, this implementation is also trained on various other
offline handwriting text recognition datasets, such as Bentham, Rimes, Saint Gall, and Washington. The
model, unlike the one above, recognizes the text of segmented text lines in images. The model also used

data partitioning to train, validate, and test each dataset.

Methods:

Our approach was to use deep learning (specifically a convolutional neural network) to build our model.
The core vision was to develop an Upload and Translate model, in which images of handwritten text
could be uploaded, and our trained model would attempt to scan the image and then translate the

handwritten text.

For our first model, we built on a Handwritten Digits Recognition YouTube tutorial that uses the MNIST
dataset from the Keras library in Python to first be able to recognize and translate digits. We wanted to
focus on this approach first as thereare only ten digits as opposed to twenty six letters, and we believed it
was important to be able to flesh out our understanding on a deep learning model with a smaller dataset
before moving onto a larger dataset. Of the seventy thousand images in the MNIST dataset, we used sixty
thousand images for training and ten thousand images for validating. We wanted to ensure there would be

enough samples in the training dataset and validation dataset so our model could be properly fitted.

Heysil Baez (hb365); Neha Malepati (nm458); Oluwatise Faith Alatise (ofa2) | 4

The model we used for this portion was Sequential, as it allowed us to build a model layer by layer
compared to a function API. We used three convolution layers to deal with our input images as well as an
activation function. The first layer takes in the input image after which our model calls the activation
function (RELU to ensure non-linearity). There are two additional layers both of which also call the
activation function immediately after (RELU for non-linearity or softmax for class probabilities). After
we finish convolving, we use a Flatten layer which serves as a connection in between the convolution and
dense layers. Dense layers are a standard neural network layer type, which is what we used for output

layer.

As seen in the diagram below, we have eighty one thousand and sixty six trainable parameters. The
diagram visualizes our sequential model, which uses convolutional layers as well as dense neural network

layers.

Model: "sequential_1"

Layer (type) Output Shape Param #
com2i i (Comm) (e, 26, %, 68 6o
activation_1 (Activation) (None, 26, 26, 64) 0
max_pooling2d_1 (MaxPooling (None, 13, 13, 64) 0

2D)

conv2d_2 (Conv2D) (None, 11, 11, 64) 36928
activation_2 (Activation) (None, 11, 11, 64) 0
max_pooling2d_2 (MaxPooling (None, 5, 5, 64) 0]

2D)

conv2d_3 (Conv2D) (None, 3, 3, 64) 36928
activation_3 (Activation) (None, 3, 3, 64) 0
max_pooling2d_3 (MaxPooling (None, 1, 1, 64) [0}

2D)

flatten (Flatten) (None, 64) 0

Heysil Baez (hb365); Neha Malepati (nm458); Oluwatise Faith Alatise (ofa2) | 5

dense (Dense) (None, 64) 4160
activation_4 (Activation) (None, 64) 0
dense_1 (Dense) (None, 32) 2080
activation_5 (Activation) (None, 32) 0
dense_2 (Dense) (None, 10) 330
activation_6 (Activation) (None, 10) 0

Total params: 81,066
Trainable params: 81,066

Non-trainable params: 0

We then compile our model using optimizer, loss, and metrics parameters. The optimizer parameter
controls the learning rate, which determines how fast the optimal weights for the model are calculated
(smaller learning rate may lead to more accurate weights but computation time for weights will be
longer). We used ‘adam’ for our optimizer which adjusts the learning rate as the model trains. For our loss
function, we used ‘sparse_categorical crossentropy’ for which a lower score indicate a better performing
model. We also used the accuracy metric to see the accuracy score on our validation set when we train and
validate our model. These are also the parameters with which we evaluated our approach, as we believed
it was important to take into account all three metrics to gain a better understanding of the efficiency of
our system. The quantitative measures we focused on the most were the loss value and the accuracy score

(we wanted to minimize loss and maximize accuracy).

To train our model, we use the ‘fit()’ function which takes in our training data, target data, number of
epochs, and validation split. We used five epochs, as we believe cycling through the data five times will
allow the model to improve. We believed using a higher number may deteriorate our model and disallow

it from improving.

Finally, we can use our test data and have our model make predictions. We use a probability array to make
predictions on the likelihood that an input image represents one of ten digits, and the digit corresponding

to highest probability value will be the predicted number.

Heysil Baez (hb365); Neha Malepati (nm458); Oluwatise Faith Alatise (ofa2) | 6

Our second model is also a neural network model, but this model consisted of convolution neural network
(CNN) layers, recurrent neural network (RNN) layers, as well as a Connectionist Temporal Classification

(CTC) layer. We built on the tutorial made by Harald Scheidl. An overview of the system is shown below.

length < 32

width=128 “little”

i
M.y# (nelani=s2
* A

l

0.123.....

length < 32

“little”

features=256

time-steps =32

time-steps =32

The model is trained on images from the [AM dataset, which allows us to have a smaller input layer,

making neural network training feasible on a CPU using TensorFlow.

First, we feed an input image into the CNN layers, which are trained by our model to detect important
features. Each layer has a convolution operation, a non-linear Rectified Linear Unit function (RELU), and
a pooling layer. The convolution operation applies a filter kernel of size 5x5 for the first two layers and
3x3 for the last three layers. Similar to our first model for digits, we the RELU activation function to
ensure non-linearity. We lastly use a pooling layer to summarize the regions of the image as well as

output a downsized version of our input image (channels are however added throughout this process).

Next, we use RNN to propagate important information through a specific feature sequence (ours contains
two hundred fifty six features for every time step). We used the Long Short-Term Memory (LSTM)

implementation as it allows us to train our model in a more robust manner.

Heysil Baez (hb365); Neha Malepati (nm458); Oluwatise Faith Alatise (ofa2) | 7

Finally, we use CTC. While we train the neural network, we use the RNN output (character probability
matrix) as well as the ground truth text for CTC inputs to compute the loss value. We use the mean of the

loss values of an inferred batch to train the neural network.

Our model consisted of four modules. The first module was our preprocessing module, which dealt with
image processing. The module prepared images from the IAM dataset so they could be used as inputs for
the neural network. The second module our data loading module, with dealt with file I/O. This module
read samples and placed them into batches. It also provided an iterator interface which could be used to
traverse the data. The third module created our actual model (implementation described above). This
module loads and saves modules and manages the TensorFlow sessions. It also provided us with an
interface for training and inferring. The last module was our main module, which combined all previous

modules and provided us with an interface to train, validate, and test the model.

The main difference between our first two modules was the inclusion of the RNN layers as well as the
CTC. The CTC improves accuracy by allowing us to train our model using the loss values from our
training dataset. The quantitative metrics we used for our model were the character error rate (percentage
of incorrectly recognized characters over total number of input characters) and word accuracy (percentage

of recognized words over total number of input words).

The main focus of our evaluation was the generalizability of our models. We wanted to be able to write
letters and numbers in our own handwriting styles on different devices and materials, and have our model
be capable of recognizing the handwritten text. As we mentioned previously, one of our main goals for
creating this model was to improve accessibility. In order to ensure we are able to work towards this goal,
we need to be able to generalize our model to various inputs outside of those contained in the datasets we

used to train our model.

In order to compare the two models, we focused on the accuracy metric as a quantitative measure. We
believe this would be the best metric to evaluate the accuracy of our models, as we wish to maximize
accuracy. This also aligned with our goal of generalizability, as a higher accuracy rate would ensure

increased visibility and clarity on a sample handwritten text.

Results:
Digits Demo: After training and testing on the mnist dataset, we created our own digit bank from (0 to 9)

to test our model. We handwrote the digits on black paper with white ink on notability to run our model.

Heysil Baez (hb365); Neha Malepati (nm458); Oluwatise Faith Alatise (ofa2) | 8

We printed the COMPUTER’S BEST GUESS and the PROBABILITY for said guess since we had the
probability that the computer corresponded each digit with a digit between [0,9]. We double checked
accuracy with image display after the print statements. It correctly identified 14/16 inputs giving it an

87.5% accuracy on the custom digit bank we created for this project.

Accuracy: 0.9847 (after 5 epochs)
KEY

7 Correct
Xlncorrect

Computer's Best Guess: 0 ['4 Computer's Best Guess: 0 [74

Probability: 0.7876914 Probability: 0.9997167

=
P

Computer's Best Guess: 1 ['4 Computer's Best Guess: 1 [/4
Probability: 1.0 Probability: 1.0

N
S

Computer's Best Guess: 2 {74 Computer's Best Guess: 2 [/4
Probability: 0.9999944 Probability: 0.99996305

03
03

Computer's Best Guess: 3 [Computer's Best Guess: 3 [/4

Probability: 0.99999976 Probability: 0.9955836

=
N

Computer's Best Guess: 4 ['4

Probability: 0.9952188 Computer's Best Guess: 1 X

Probability: 0.99992704

Heysil Baez (hb365); Neha Malepati (nm458); Oluwatise Faith Alatise (ofa2) | 9

Computer's Best Guess: 5 [/4
Probability: 0.99987125

Computer's Best Guess: 6 ['4
Probability: 0.9999999

1_.,..

Computer's Best Guess: 1)¢ Computer's Best Guess: 7 ['4
Probability: 0.99999046 Probability: 0.9915236

OOl

Computer's Best Guess: 8 ['4
Probability: 0.99994195

Computer's Best Guess: 9 [/4
Probability: 0.964976

Aside: Testing our model with different fonts of typed text.
During our research into prior art, we saw that models for handwriting text recognition were also being used to
recognize typed text on photos. For example, Apple uses it in their app Preview to enhance user experience by

connecting addresses to their Maps application and phone numbers to their Phone application.

Heysil Baez (hb365); Neha Malepati (nm458); Oluwatise Faith Alatise (ofa2)| 10

There are four main types of fonts: Serif, Sans Serif, Script, Decorative. We tested our digits model on each of

these to see the accuracy. Sans serif fonts are typically more used for display but blank had the highest

Sans Serif Font

“ NI HEHEBOEHBEOHKHEE
4 4 4 4 X 4 4 X 4 4

Result

Serif Font

" BB AEHOAOHBEBE
4

V| V| X 4 4 4 4 4

Result V|

Script Font (closer to handwriting)

" SlSEEEBEHEER
4 4 X X 4

1
Result X 4 X X 4

With the aside and our custom dataset, we can see our model greatly struggles with identifying 7,

oftentimes misidentifying it with 1.

Main Model Test Dataset:

The testing set for our character and word model yielded a character error rate of 10.624916% and a word
accuracy rate of 73.686957%. The character error rate is the proportion of incorrectly recognized
characters to the total number of characters in the test dataset. The character error rate implies a character
accuracy rate of 89.375084%. The word accuracy rate is the proportion of correctly recognized words to

the total number of words in the test dataset.

Main Model Sample Data:
Running our model on the sample PNG with the word “little” from the IAM dataset yielded a Recognized
value of “little” (which is correct!) and a Probability value of 0.9662546, which is the probability that the

Recognized value is accurate.

Heysil Baez (hb365); Neha Malepati (nm458); Oluwatise Faith Alatise (ofa2)| 11

LAt e

Recognized: "little"
Probability: 0.9662546

Main Model Custom Data:

We created custom input images by writing our names on paper, scanning them with our iPhone and
converting the PDFs to PNGs. Below is a table of the four custom input images with Recognized (the
output translation from our model) and Probability (the probability that the recognized word is accurate)

values. The character error rate is 13.04% and the word accuracy rate is 50%

he ysi | Keri
Recognized: "keri" [4

Recognized: "heysil"
& ysil" Probability: 0.49379802

Probability: 0.36286518

nehq oluwa-tise

Recognized: "meta")¢ Recognized: "dluwatise")¢
Probability: 0.3235437 Probability: 0.38318378

Discussion:

We used test driven development to build our system. We essentially specified test cases and built the
different components of our model iteratively. This allowed us to immediately determine if our code
fulfilled our specification and allow for incremental debugging, which helped us implement changes to
our code with more confidence. Using test driven development on our system allowed us to continuously
train the model and learn from the data. It also allowed us to gain a deeper understanding of the system.
We believe that the process of building the model, training it, and testing the model lead to more accurate

predictions than if we did not use test driven development.

Heysil Baez (hb365); Neha Malepati (nm458); Oluwatise Faith Alatise (ofa2) | 12

For our first model, we wanted to start with a smaller size of input data, which is we built a model to
recognize handwritten digits, as there are only ten possible digits. For this model, we were more focused
on understanding the convolutional neural network which is why we did not include RNN layers or CTC.
We used five epochs for our model, as we believed cycling through the training dataset five times would
be enough such that the model no longer improves. Our dataset contained over eighty thousand
parameters, which is why we believed five epochs was an acceptable value. At the fifth epoch, we saw
our validation accuracy < accuracy. We assumed that since our validaiton and symbol accuracy should be

closer, it seemed like our model did well and we didn’t overfit our data.

However, we noticed that after three epochs we achieved an accuracy score of 0.9759. The figure below
shows the process of fitting our model, and contains the corresponding data for each epoch. The goal of
our model was to maximize the accuracy score, as a higher accuracy score (closer to one) implied our
model would make more accurate predictions. Since our model achieved a high accuracy score after three
epochs, we believe that five was likely too high for the number of epochs. Increasing the number of
epochs could lead to overfitting, which would lead to a large gap between training loss and generalization
loss. Given that our core vision is to create a model that can be generalizable and accessible, we believe
that it is important to take into consideration the number of epochs to ensure that we are not overfitting
our model, causing it to be too complex and not recognize new and unseen data. We believe that this is the
main reason our model struggled to recognize the digits “4” and “7”—we used two different handwriting
styles to write the number but our model was unable to recognize either version. While our model was
able to recognize every other digit we still believe the model was overfit which led to a loss of prediction

regarding the digit four. To correct our potential overfitting, it would be acceptable to drop a layer.

Epoch 1/5

1313/1313 [================z==z==z====z======] - 28s 20ms/step - loss: 0.3378 - accuracy: 0.8936 - val_loss:
0.1213 - val_accuracy: 0.9641

Epoch 2/5

1313/1313 [================z====z==========] - 3Q0s 23ms/step - loss: 0.1044 - accuracy: 0.9674 - val_loss:
0.1012 - val_accuracy: 0.9687

Epoch 3/5

1313/1313 [==============================] - 39s 30ms/step - loss: 0.0739 - accuracy: 0.9777 - val_loss:
0.0711 - val_accuracy: 0.9777

Epoch 4/5

1313/1313 [==============================] - 34s 26ms/step - loss: 0.0593 - accuracy: 0.9812 - val_loss:
0.0615 - val_accuracy: 0.9812

Epoch 5/5

Heysil Baez (hb365); Neha Malepati (nm458); Oluwatise Faith Alatise (ofa2) | 13

1313/1313 [====================z==========] - 3Q0s 23ms/step - loss: 0.0470 - accuracy: 0.9847 - val_loss:
0.0682 - val_accuracy: 0.9795

For our second baseline model, we were confident in our ability to implement a model that used CNNss,
and wanted to use RNNs and CTC to create a more accurate model that could be trained on more complex
data. Given that we wanted to work with characters, we believed adding RNN layers and CTC would
allow us to add more input data without compromising accuracy. This is because while there are only ten
possible digits in our first model, our second model has seventy nine characters (number of characters in
IAM dataset). Moreover, we believe that the model will perform better with the addition of RNN, as our
model is sequential (similar to our first model). RNN is best suited for sequential data as it can handle
arbitrary input and output lengths and uses its internal memory to process the sequence of inputs. We
believed this would improve our model for words as digits have a stationary input and output size (size of
one) whereas words have arbitrary sizes, and the sequence of characters in a word is dependent on the
preceding and succeeding characters. The addition of CTC allowed us to train our neural network without
knowing the alignment between the input and the output, making it ideal for handwritten recognition for

words.

As for evaluating our system, we started with a basic test case, to recognize the handwritten word “little”
from the sample dataset we used to train and validate our model. As discussed in Results, our model was
able to recognize the word with a probability rate of 0.966256. Running the test dataset on our model
yielded a character error rate of 10.624916% and a word accuracy rate of 73.686957%. The character
error rate implies a character accuracy rate of 89.375084%. While neither word accuracy rate or the
character accuracy rate are as high as the accuracy rate from our first model, we believe that this model
was still an improvement. The addition of RNN layers and CTC allowed us to work with a more complex
dataset. The IAM dataset contains 115,320 words. Given the increase in the size of the dataset, the
increase in the size of the inputs themselves, and the complexity of the dataset, we believe these accuracy
values still indicate an improvement from our first model, despite the fact that these additions led to lower

accuracy values.

As mentioned previously, the goal of our model is accessibility. We hope to create a model that is
generalizable. Keeping test driven development in mind, after we were able to create a model that
recognized the sample image “little” from the IAM dataset, we moved on to inputting custom data for our
model to recognize. We believe it is important to test our model on various handwriting styles and fonts to

be able to achieve our goal. As seen in Results, the character error rate is 13.04% and the word accuracy

Heysil Baez (hb365); Neha Malepati (nm458); Oluwatise Faith Alatise (ofa2) | 14

rate is 50%. The character error rate implies a character accuracy rate of 86.96%. The character accuracy
value for our custom data is close to that of testing data, but the word accuracy rate for our custom data is
much lower. Compared to our first model, we do not believe we overfitted our model based on the
number of epochs. This is because we stopped cycling through the data as soon as we recognized that the
model was not improving, ensuring we did not overfit on this basis. However, we do believe that the
increase in complexity of our model (5 CNN layers, 2 RNN layers, and CTC) may have caused overfitting
and decreased generalizability. While the model is able to recognize a majority of the characters, the
probability values corresponding to words are relatively low (around 30%) indicating our model is not
confident in its predictions. We also believe that the complexity of the dataset may have contributed to the
overfitting of our model. We wanted to create a model that would be able to work with a diverse input
dataset, and we do believe that we were successful in this regard, but we also recognize both our models

have not achieved the level of generalization we desired.

Conclusion:

One of the key findings from our project was the importance of accounting for a multitude of factors
when looking at generalization. Our core vision was to create an Upload and Translate Handwritten
Recognition Text model, which we accomplished, but there are still improvements that can be made
regarding our accuracy. Our goal was to always create a model that increased accessibility and focused on
generalization, and through test driven development we were able to construct our model to read and
recognize custom inputs. However, the accuracy is still not as high as we desire, but given our limitations

we believe that we achieved our goal within the scope of our time frame and abilities.

The greatest limitations we faced in this project were hardware and time constraints. Our hardware was
not prepared to handle the desired size of data we wished to use on our model, and we did not have access
to a GPU. These limitations mean we had to constrain the size of our datasets as well as the size of our
inputs to ensure our computers had the capacity to train our model. We also had to restart and redo our
model several times, part of which was due to the constraints described above. A large part, however, was
due to the amount of research we placed into how to best train and create our model. Ultimately, we did
not pivot from our core vision of an Upload and Translate Handwriting Recognition Text model because

we believed the idea was feasible.

One improvement for future work on our model is enhancing the decoder. We used a greedy algorithm to
implement our decoder, and we were still able to successfully decode a large portion of our dataset, we

believe that using CTCWordBeamSearch would greatly improve our model. This is because the

Heysil Baez (hb365); Neha Malepati (nm458); Oluwatise Faith Alatise (ofa2)| 15

CTCWordBeamSearch algorithm uses words constrained by a dictionary, which is extremely helpful
when characters within a word are incorrectly recognized. Using a dictionary constrains the output and
makes recognition more accurate. Moreover, the algorithm also allows non-word characters such as
numbers and special characters, which can be extremely useful and allow our model to translate more

diverse inputs.

Another improvement is using text correction. Text correction can be used such that if a recognized word
is not contained within a dictionary, we can search for the next best word, or the one most similar to our
input. This addition would improve the word accuracy of our model because even if individual characters
within a word are not recognized, the algorithm would search for the most similar word, improving the
likelihood that the translation of the input image is correct. However, it may also run into issues with

29 ¢

non-english names like “oluwatise,” “neha,” and “heysil.”

Initially, we planned on creating a GUI which would allow a user to write text on a digital notepad, and
we would have an output panel that would scan the notepad, decode the text, and display the translation.
However, we believed it was more important to focus on our model and the Al component than it was to
focus on the interactive display. We do believe that the user interface is a very powerful application and a

good direction for future improvements, as it once again improves accessibility.

We did follow a tutorial implementation where our GUI could read the handwritten digits on a video.
However, the experience showed low accuracy on our side compared to the tutorial demo and required a
lot of processing power. Since our hardware constraints limited our ability to run the program multiple
times efficiently for testing, we only demoed it once during our final presentation. Regarding our code
submission, it’s commented out as we decided not to improve its accuracy. It was difficult to program that
experience iteratively and apply test driven development to the model tutorial so we’ve cited said code

instead.

Heysil Baez (hb365); Neha Malepati (nm458); Oluwatise Faith Alatise (ofa2)| 16

References

A. F. de Sousa Neto, B. L. D. Bezerra, A. H. Toselli and E. B. Lima, "HTR-Flor: A Deep Learning
System for Offline Handwritten Text Recognition," 2020 33rd SIBGRAPI Conference on
Graphics, Patterns and Images (SIBGRAPI), 2020, pp. 54-61, doi:
10.1109/SIBGRAPI51738.2020.00016.

Assogba, Yannick. “Handwritten Digit Recognition With CNNs | TensorFlow.js.” TensorFlow, 16 May

2022, www.tensorflow.org/js/tutorials/training/handwritten_digit cnn.

DeepLearning by PhDScholar. “Deep Learning- Handwritten Digits Recognition Tutorial | Tensorflow |
CNN | for Beginners.” YouTube, 24 Oct. 2020,
www.youtube.com/watch?v=u3FLVbNn90Os.

Flor, Arthur. “A Robust Handwritten Recognition System for Learning on Different Data Restriction
Scenarios.” A Robust Handwritten Recognition System for Learning on Different Data
Restriction Scenarios - ScienceDirect, Apr. 2022,

https://doi.org/10.1016/j.patrec.2022.04.009.

Notability. “Handwriting Search and Conversion in Notability.” YouTube, 29 June 2018,
www.youtube.com/watch?v=H6d8NF7ZqTs.

Paul, Sayak, and Aaakash Nain. “Keras Documentation: Handwriting Recognition.” Handwriting

Recognition, 16 Aug. 2021, keras.io/examples/vision/handwriting_recognition.

Scheidl, Harald. “Build a Handwritten Text Recognition System Using TensorFlow.” Medium, 3 May
2021,
towardsdatascience.com/build-a-handwritten-text-recognition-system-using-tensorflow-2

326a3487cds5.

