
🧠 AI-Powered App Workshop Guide
Build a front-end app prototype using ChatGPT + Vercel’s v0.dev

Welcome!
Tools we’ll use:

●​ ChatGPT (we’ll use GPT-4o)
●​ Vercel’s v0.dev

○​ GitHub is optional for this workshop​

Before we begin:

●​ Log in or sign up for free versions of both tools
●​ Get comfy, grab a drink—this is a hands-on, beginner-friendly session​

Housekeeping + What to Expect

●​ Mics will stay on mute so we can keep a smooth pace through the workshop.
●​ Drop questions in the chat any time—we’ll respond there or during a break if possible.
●​ We’ve got a lot to cover, so we’ll keep things focused and hands-on.​

Staying Current

●​ AI tools like ChatGPT and v0.dev are evolving fast.
●​ Don’t be surprised if the UI or steps change over time.
●​ We recommend staying current with their latest docs, changelogs, or community

threads.​

Tip: If you're watching this later or reviewing the materials, always double-check what version
you're using—new features or interface changes are common!​

https://chat.openai.com
https://v0.dev
https://v0.dev

What We’ll Do Today
Step-by-step flow:

1.​ Write a Product Requirements Doc (PRD) with ChatGPT
2.​ Use v0.dev to generate your app’s front-end UI
3.​ Polish the UI using natural language prompts
4.​ (Optional) Connect a database to make it functional
5.​ Explore how your UI can evolve into an intelligent agent​

ChatGPT Primer
Use GPT‑4o (free or Pro)​
 Best for UI prompting, fast, and contextually sharp.

●​ See Appendix for more insight on Chat GPT models.

​
Features to know:

●​ Projects – Save your ideas + files together
●​ Custom GPTs – Create tools in your tone and voice
●​ Tasks / Operator (Pro) – See how the model “thinks” step-by-step​

Vercel Overview
Key features:

Tool What it does Why it matters

v0.dev Turns prompts into live UIs Instant layout + styling

Preview
Deploy

Shareable URLs Easy testing +
feedback

Forking Save versions like “Save As” Safe exploration

Vercel + Neon Optional DB setup Make it persistent

UI libraries used:

●​ shadcn/ui
●​ Tailwind CSS
●​ Radix UI​

Write Your PRD in ChatGPT
Prompt to use:

Turn the following idea into a one-page PRD.
Include: 1. Problem 2. Target persona 3. Success metric
4. Happy path 5. Out-of-scope 6. What we can fake

Idea: “A recipe tracker that stores recipe URLs you give it, auto-tags
by season & ingredients, lets you rate, and resurfaces in-season
dishes. The app would also let you search by ingredient/season/dish.”

After generating it:

●​ Clean up hallucinations
●​ Cut extra features
●​ Clarify the success metric
●​ Highlight what we can fake (like search or rating)​

After you Generate Your PRD Add This Line to the Top of
Your Prompt for Vercel

Build a mobile-first front-end prototype using static props or mock
JSON. No backend or real data calls—this is for design approval only.

This keeps v0’s focus on UI only. Save backend setup for later.

https://tailwindcss.com/
https://www.radix-ui.com/

​
So it ends up looking like this (full prompt ready for Vercel):

Prompt:

Build a mobile-first front-end prototype using static props or mock JSON. No
backend or real data calls—this is for design approval only.
Design a recipe tracker web app that lets users add and save recipes either by
pasting a URL or manually entering details. Prioritize a clean, responsive UI
with a fast, frictionless experience.
Core features:

●​ Homepage/dashboard showing saved and seasonal recipes.
●​ Sticky or floating “Add Recipe” button on mobile.

●​ Opens two options: “Paste URL” or “Enter Manually.”
●​ Paste URL flow:

●​ Simple input form.
●​ Simulate a loading state after submit.
●​ Auto-fill fields: recipe name, ingredients (list), image,

instructions.
●​ If it fails, show a friendly message and the manual form.

Manual entry form:

●​ Recipe Name
●​ Ingredients (multi-line or tag-style)
●​ Instructions (multi-line)
●​ Optional image upload or link
●​ Season & Dish Type (dropdowns or buttons)

Saved recipes view:

●​ Recipe cards: image, name, rating, tags
●​ Filter/search bar (ingredient, season, dish type)
●​ Highlight “In Season Now” recipes

Extras:

●​ 1–5 star rating option
●​ Static tag mapping for seasonal ingredients
●​ Tooltip help for vague terms (e.g., “mixed vegetables”)
●​ No login required; simulate all data
●​ UI should feel modern, friendly, fast, and touch-optimized

Okay to fake:

Saving recipes to local state only—no real database. Just simulate the action
and visually confirm the recipe appears in the list.

Success metric:

A user should be able to sort through their recipes and find what they want
using filters in no longer than 60 seconds.

Generate Your Base UI
Steps:

1.​ Go to v0.dev
2.​ Click New Project
3.​ Search by typing “Blank Template”
4.​ Paste your full prompt (include the line above + your PRD)
5.​ Choose model version v0-1.5-md
6.​ Let it build your layout (~2 min)​

Save Your Work
●​ Click Publish → Deploy to Vercel
●​ Get a live, shareable URL
●​ Think of it like saving your work in Figma or Docs​

Keep Iterating
To reopen or fork:

●​ Go to v0.dev

https://v0.dev
https://v0.dev

●​ Click My Projects
●​ Choose your project
●​ Hit Fork to create a copy you can safely experiment on​

Test Your App
Look for:

●​ Missing features
●​ Extra features you didn’t ask for
●​ UI bugs (unresponsive, weird spacing)
●​ Modals behaving oddly​

Fixing flow:

●​ Hover → click Design → type your fix prompt
●​ OR type into the main prompt chat
●​ If stuck: ask v0 for a “complete audit” → paste it into ChatGPT → ask for a fix

Prompting tips:

●​ Vercel AI uses a large GPT-style context window (up to ~128k tokens), but complex UIs
can still overflow it. Keep prompts scoped—one component or feature at a time. Once
context degrades, fork the chat or start a new one to stay fast and reliable.​

Examples of Fix Prompts

Make the Add Recipe button fixed at the bottom.
Make this card tappable but allow inner links.
Remove social sharing features.
Group tags into pill-style components.

Save a Snapshot Before Styling

●​ Hit Fork
●​ Name it something like recipe-ui-polished
●​ This is your “clean copy” before trying big layout changes​

Polish Your UI
Prompt ideas:

●​ “Use soft drop shadows and generous spacing”
●​ “Style this like a wellness app”
●​ “Add mock recipe images”
●​ “Use soft greens as the accent color”
●​ “Make it responsive and mobile-first”​

Inspo:

●​ https://godly.website
●​ https://dribbble.com​

Examples of UI Tweaks
●​ Lightened background
●​ Changed primary color to sage green
●​ Increased font size for accessibility
●​ Rounded recipe cards
●​ Hid stars if not rated
●​ Improved spacing between sections​

Fork & Deploy Your Final UI

●​ Name your new fork something like recipe-ready-for-db
●​ Hit Publish → Deploy to Vercel

https://godly.website
https://dribbble.com

●​ You now have a final live version of your polished front end​

Adding a Database (Optional)
When you’re ready:

1.​ Fork your app
2.​ Tell v0 what you want to persist (“Save recipes, tags, ratings”)
3.​ v0 will prompt you to connect a Neon DB (free)
4.​ Follow setup flow + test
5.​ Fix any server errors by clicking them → v0 will help debug​

This step uses more credits and is where bugs usually start—save it for last.

Your Final Prototype
Features:

●​ Responsive layout
●​ Recipe cards
●​ Add Recipe modal
●​ Tag and rating UX
●​ Deployed and clickable with no code written

​
Sharing a v0 Prototype (with Chat History):

Useful for when you want to show how the UI was built—great for teaching, feedback, or
collaboration. Anyone with the link can see your UI and the full prompt/chat history used to
generate it.

●​ Open your project in v0.dev → Click the Share button (top-right corner).
●​ Set visibility to Unlisted or Everyone in the team.
●​ Copy the link and share it.

https://v0.dev

Sharing a v0 Prototype (without Chat History):

Use this when you want to show just the UI—no prompts, no behind-the-scenes. Ideal for user
testing, demos, or executive reviews. This gives you a polished, stand-alone front-end—clean
and professional. Great for sharing with non-technical audiences.

●​ Fork your project (to create a clean copy).
●​ Edit or strip any visible chat content if needed.
●​ Go to Export → Deploy to Vercel
●​ Share the hosted link (e.g. your-prototype.vercel.app).​

Example from Workshop:​
https://v0-mobile-recipe-tracker.vercel.app/

Agent Graduation Roadmap

Stage Capability What It Enables

v1 Smart Tagger Auto-labels ingredients + seasons

v2 Ingredient Scaler Adjusts recipes for 2 or 6 servings

v4 Grocery Export Sends shopping list to Instacart or
Tasks

From Prototype to Agent
Next up: Cody will demo a different agent—not from this app, but to show how your prototype
could evolve into something intelligent and helpful.

Watch her flow, take notes, and start imagining where you could go from here.

https://v0-mobile-recipe-tracker.vercel.app/

📎 Appendix

A. Credit Tips

●​ Free = 5 credits/day
●​ v0 generations = 1 credit
●​ Fork instead of regenerating​

B. Prompting Tips

●​ Clear, plain English wins
●​ One intent per prompt
●​ “Make this look like Substack” works!
●​ Use emotional language for the UI
●​ Use screenshots if you have an exact UI you want to match​

C. Common Bugs

●​ Layout broken? Prompt “fix responsive layout”
●​ Modal janky? Prompt “fix modal close logic”
●​ No save? Add a database.​

D. Design Resources

●​ godly.website
●​ mobbin.com
●​ dribbble.com
●​ land-book.com
●​

E. Choosing the Right ChatGPT Model

●​ GPT‑4o: Fast, smart, and great at handling design + product prompts. Works well for UI
feedback, PRD generation, and natural-language brainstorming. This is what we’re using
today—and it’s free for most tasks.​

●​ GPT‑4: Stronger reasoning and context retention, great for debugging or helping with
trickier prompts. It’s slower than 4o and only available on the Pro plan, but can be useful

https://godly.website
https://mobbin.com
https://dribbble.com
https://land-book.com

when you want the AI to “think deeper.”​

●​ GPT‑4 Mini / Mini High: Faster and cheaper alternatives to full GPT‑4 if you're on Pro.
These are good for repeated structured tasks (like generating multiple PRDs or audits)
where speed matters more than nuance.​

●​ GPT‑3.5: Free and quick, but struggles with complex UX, design prompts, or multi-step
planning. Okay for basic writing tasks or early brainstorming, but not recommended for
UI-heavy workflows.

​

F. Glossary

●​ PRD = Product Requirements Doc (What we want to build)
●​ Prompt = Instruction to the AI
●​ Fork = “Save As”
●​ Deploy = “Publish”
●​ Frontend = UI
●​ Backend = Logic/data (optional today)

https://land-book.com

	🧠 AI-Powered App Workshop Guide
	Build a front-end app prototype using ChatGPT + Vercel’s v0.dev
	Welcome!
	Housekeeping + What to Expect
	Staying Current

	What We’ll Do Today
	ChatGPT Primer
	Vercel Overview
	Write Your PRD in ChatGPT
	After you Generate Your PRD Add This Line to the Top of Your Prompt for Vercel
	Generate Your Base UI
	Save Your Work
	Keep Iterating
	Test Your App
	Examples of Fix Prompts
	Save a Snapshot Before Styling
	Polish Your UI
	Examples of UI Tweaks
	Fork & Deploy Your Final UI
	Adding a Database (Optional)
	
	Your Final Prototype
	
	Agent Graduation Roadmap
	From Prototype to Agent
	
	📎 Appendix
	A. Credit Tips
	B. Prompting Tips
	C. Common Bugs
	D. Design Resources
	E. Choosing the Right ChatGPT Model
	F. Glossary

