
Abstract:

To make use of parallel resources on modern multicore and multiprocessor systems,
programmers often use explicit parallel programming models such as OpenMP or Intel Thread
Building Blocks (TBB) to overcome the semantics enforced by inherently sequential
programming languages such as C and C++. However, these programming models are plagued
by the difficulty of determining where and how to parallelize the code most efficiently, further
complicated by the fact that these choices may need to be reconsidered based on the target
architecture and subsequent code changes. Moreover, they frequently exhibit less-than-optimal
speedups, stemming from the inability to transform code due to strict conventions of the
programming model and large overheads in the runtime. On the other hand, implicit parallelism
with automatic parallelization shifts this burden from the programmer to the compiler, which can
take advantage of state-of-the-art static analysis, speculation techniques, and parallelization
schemes to transform the code in ways not conceivable at the source level. This work bridges
the dichotomy between these two approaches by repurposing OpenMP annotations as
additional memory dependence information in an automatic parallelization framework,
outperforming its use as directives for explicit parallel programming. We evaluate the number of
dependences and sequential strongly connected components (SCC) removed on 17 C/C++
benchmarks parallelized with OpenMP from the Rodinia benchmark suite compared to each
unannotated counterpart to understand if programmer annotations can indeed aid in better
automatic parallelization.



Reading list:

Textbook:
[1] A. W. Appel, Modern Compiler Implementation in ML. New York, NY, USA: Cambridge University
Press, 2004.

Papers:
[1] D. Koes, M. Budiu, and G. Venkataramani, “Programmer specified pointer independence,” In
Proceedings of the 2004 workshop on Memory system performance (MSP ’04), 2004.
[2] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita Bala, and L. Paul
Chew. “Optimistic parallelism requires abstractions,” In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI '07), 2007. p. 211–222.
[3] M. J. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. I. August, "Revisiting the sequential
programming model for multi-core," in 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO ‘07), 2007, p. 13.
[4] H. Vandierendonck, S. Rul, and K. De Bosschere, “The Paralax infrastructure: automatic parallelization
with a helping hand,” in 2010 19th International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2010.
[5] P. Prabhu, S. Ghosh, Y. Zhang, N. P. Johnson, and D. I. August, "Commutative Set: A Language
Extension for Implicit Parallel Programming," in Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2011.
[6] A. Udupa, K. Rajan, W. Thies, “ALTER: exploiting breakable dependences for parallelization,” in
Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2011.
[7] S. Campanoni, T. Jones, G. Holloway, V. J. Reddi, G.-Y. Wei, and D. Brooks, "HELIX: automatic
parallelization of irregular programs for chip multiprocessing," in Proceedings of the Tenth International
Symposium on Code Generation and Optimization - CHO '12, San Jose, California, 2012, p. 84.
[8] N. P. Johnson, H. Kim, P. Prabhu, A. Zaks, and D. I. August, "Speculative separation for privatization
and reductions," in Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2012, pp. 359–370.
[9] N. P. Johnson, J. Fix, S. R. Beard, T. Oh, T. B. Jablin, and D. I. August, "A collaborative dependence
analysis framework," in 2017 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO), 2017, pp. 148–159.
[10] N. B. Jensen, S. Karlsson, “Improving loop dependence analysis,” in 2017 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), 2017.
[11] S. Apostolakis, Z. Xu, G. Chan, S. Campanoni, and D. I. August, "Perspective: a sensible approach to
speculative automatic parallelization," in Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2020.
[12] S. Apostolakis, Z. Xu, Z. Tan, G. Chan, S. Campanoni, and D. I. August, "SCAF: a speculation-aware
collaborative dependence analysis framework," in Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2020.


