
Abstract:

To make use of parallel resources on modern multicore and multiprocessor systems,
programmers often use explicit parallel programming models such as OpenMP or Intel Thread
Building Blocks (TBB) to overcome the semantics enforced by inherently sequential
programming languages such as C and C++. However, these programming models are plagued
by the difficulty of determining where and how to parallelize the code most efficiently, further
complicated by the fact that these choices may need to be reconsidered based on the target
architecture and subsequent code changes. Moreover, they frequently exhibit less-than-optimal
speedups, stemming from the inability to transform code due to strict conventions of the
programming model and large overheads in the runtime. On the other hand, implicit parallelism
with automatic parallelization shifts this burden from the programmer to the compiler, which can
take advantage of state-of-the-art static analysis, speculation techniques, and parallelization
schemes to transform the code in ways not conceivable at the source level. This work bridges
the dichotomy between these two approaches by repurposing OpenMP annotations as
additional memory dependence information in an automatic parallelization framework,
outperforming its use as directives for explicit parallel programming. We evaluate the number of
dependences and sequential strongly connected components (SCC) removed on 17 C/C++
benchmarks parallelized with OpenMP from the Rodinia benchmark suite compared to each
unannotated counterpart to understand if programmer annotations can indeed aid in better
automatic parallelization.
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